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In the field of public health, accurately identifying maternal health risks through social network data is both vital and
challenging due to the complexities of multimodal sentiment analysis. Our study addresses this challenge by introducing
the maternal health risk factor detection using deep learning approach (MHRFD-DLA), a novel framework that integrates
convolutional neural networks, long short-term memory networks, and attention mechanisms. This approach enhances
sentiment analysis and risk detection in maternal health, with the focus on critical areas such as prenatal care, mental
health, and nutrition. MHRFD-DLA utilizes multimodal data, including text and electrocardiogram (ECG) signals, offering
a comprehensive assessment of maternal health risks. Our model outperforms existing multimodal sentiment analysis
models, achieving an accuracy of 98.4%, a precision of 97.6%, a recall of 95.6%, and an F1 score of 98.4%. Through
performance evaluations, visualizations such as the confusion matrix and class distributions further validate its robustness.
The MHRFD-DLA model not only bridges significant gaps in current methodologies, but it also sets a new benchmark for
maternal health surveillance and intervention, demonstrating its practicality and effectiveness in real-world applications.
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1. Introduction
Understanding the varied material published on social
networks, which includes both text and auditory
information, is greatly assisted by multimodal sentiment
analysis (Gupta et al., 2021). By considering a variety
of inputs, rather than just text, this analytical method
provides a more complete picture of user sentiment
than is possible with conventional sentiment assessment
(Afyouni et al., 2022). Understanding the complexities
of user-generated material is crucial in the ever-changing
world of social media, as it provides insight into
people’s multifaceted emotions (Nazir et al. 2022).
Regarding online conversations around mother fitness,

*Corresponding author

multimodal sentiment analysis is a lifesaver (Ghosh et
al., 2023). Addressing issues and increasing monthery
well-being requires understanding the views expressed
in these talks (Geethanjali and Valarmathi, 2022). A
sophisticated comprehension of the feelings expressed in
these conversations is necessary to identify possible risk
factors for maternal health (Zhang et al., 2020).

Understanding user attitudes allows for the prompt
implementation of treatments to tackle new issues and
reduce risks, ultimately resulting in better maternal
outcomes (Acharya et al., 2023). Communities,
healthcare providers, and lawmakers may all benefit
from sentiment analysis since it goes beyond simple
observation and gives them the tools they need to
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customize solutions (Oueslati et al., 2020; Garcı́a-Dı́az et
al., 2020).

Understanding the sentiment expressed in social
network data is crucial for addressing maternal health
challenges effectively. Multimodal sentiment analysis,
which considers various inputs like text and auditory
information, provides a comprehensive understanding
of user sentiment, essential in the dynamic landscape
of social media. Analyzing user-generated content
helps in grasping multifaceted emotions, especially
pertinent in discussions concerning maternal fitness.
By comprehending the sentiments conveyed in these
conversations, potential risk factors for maternal health
can be identified promptly, enabling timely interventions
and improved outcomes. Such insights empower
communities, healthcare providers, and policymakers to
tailor solutions effectively, transcending mere observation
and fostering proactive approaches towards maternal
well-being.

Furthermore, the nuanced understanding gleaned
from sentiment analysis aids in the customization of
interventions to address specific needs within maternal
health. By delving deeper into the sentiments expressed
across social networks, stakeholders gain valuable
insights into the concerns, challenges, and aspirations
of mothers. This enables the development of targeted
strategies aimed at improving maternal outcomes and
promoting overall well-being. Moreover, the timely
identification of emerging issues through sentiment
analysis facilitates the rapid implementation of responsive
measures, fostering a proactive approach to maternal
healthcare. Ultimately, leveraging sentiment analysis
in maternal health not only enhances our understanding
of maternal experiences but also empowers us to enact
meaningful change for the betterment of maternal and
child health outcomes.

1.1. Problem statement. This study delves into the
complex landscape of social networks, aiming to decipher
maternal health risks and sentiments effectively. It
introduces a cutting-edge hybrid deep learning model,
amalgamating convolutional neural networks (CNNs),
long short-term memory (LSTM) networks, and attention
mechanisms. This model provides a holistic approach to
sentiment analysis, considering both textual and auditory
data, thereby offering a more nuanced understanding
of maternal well-being within online communities. By
outperforming existing methods, it not only enhances
the detection of maternal health risks but also facilitates
timely interventions, ultimately contributing to improved
maternal outcomes.

1.2. Motivation of the work. The motivation behind
this work stems from the pressing need to address

maternal health risks effectively in the digital age. With
the proliferation of social networks, there is a wealth of
data available, presenting an opportunity to gain insights
into maternal well-being and potential risks. However,
existing methods often struggle to accurately analyze the
multifaceted emotions and sentiments expressed in these
networks, hindering timely interventions. Therefore, the
study seeks to pioneer a comprehensive approach that
leverages advanced deep learning techniques to bridge
this gap. By integrating CNNs, LSTMs, and attention
mechanisms, the aim is to develop a model capable
of not only detecting maternal health risks, but also
understanding the nuanced sentiments surrounding them.
Ultimately, the goal is to empower healthcare providers,
communities, and policymakers with actionable insights
to improve maternal outcomes and support networks.

1.3. Technical gap. The technical gap addressed by
this study lies in the inadequacy of existing methods to
effectively analyze multifaceted emotions and sentiments
in social network data related to maternal health.
Traditional approaches often struggle to capture the
nuanced expressions of maternal well-being, hindering
accurate risk detection and timely interventions. By
pioneering a comprehensive deep learning approach
integrating CNNs, LSTMs, and attention mechanisms,
this study aims to fill this gap by developing a
more sophisticated model capable of understanding
and analyzing complex sentiments surrounding maternal
health risks in digital platforms.

1.4. Contribution to the work. A hybrid CNN
LSTM attention model has been implemented to tackle
the intricate issue of multimodal sentiment assessment
within the framework of maternal fitness threat detection
(Rahman and Alam, 2020). More study and development
are required for these methods to reach their maximum
potential and improve motherly well-being in online
communities. Here are specific objectives to be attained:

• With a focus on identifying risks to maternal
health, create an effective method for multimodal
sentiment analysis in social networks. A more
sophisticated comprehension of the ever-changing
nature of user-generated content on social media
platforms can be achieved by implementing a CNN
+ LSTM + attention hybrid model, which expertly
combines visual and textual data.

• To monitor and detect maternal health risk indicators
across several social media platforms in real-time,
implement the developed MHRFD-DLA model.
Facilitate the prompt detection of feelings about
variables impacting a mother’s health, such as
prenatal care, diet, and mental health.
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• To ensure the suggested MHRFD-DLA model is
accurate, run comprehensive simulation studies with
various social network datasets. Measure its efficacy
compared to preexisting methods by calculating its
F1 score, accuracy, and recall. Exhibit the model’s
strength and effectiveness in detecting intricate
sentiment patterns linked to factors that influence
maternal health.

1.5. Structure of the article. The literature
review is presented in Section 2. Section 3 contains
the mathematical study of the maternal health risk
factor detection using a deep learning approach
(MHRFD-DLA). Results and discussion are presented
in Section 4, Future research directions presented in
Section 5. A brief overview and some concluding
recommendations are included in Section 6.

2. Literature review
Gopalakrishnan et al. (2023) developed the attribute
selection hybrid network (ASHN) to identify postpartum
depression (PPD) from social media posts. ASHN
analyzes characteristics of Facebook postings, such as
tone and reflective thinking, and effectively extracts
psycho-linguistic signals. It outperforms baseline
methods in detecting signs of depression in online posts
using metrics like F1 score, recall, and precision.

Nadeem et al. (2022) introduced the sequence,
semantic, context learning (SSCL) framework for
depression diagnosis using a Twitter dataset. This
deep learning method combines LSTM, CNN, GRUs,
and self-attention, achieving 82.9% accuracy for ternary
labels and 97.4% for binary labels. Its 94.4% F1-score
on unseen data and superior performance in sarcasm
detection highlight its robustness.

Shoumy et al. (2020) enhanced affective computing
by integrating physiological modalities with text, audio,
and visual data. They address limitations in anti-spoofing
and environmental resilience. Cimtay et al. (2020)
developed a multimodal emotion identification system
combining EEG, facial expressions, and galvanic skin
response (GSR), achieving up to 91.5% accuracy on the
DEAP dataset and 81.2% on a custom dataset.

Togunwa et al. (2023) proposed a hybrid deep
learning model combining artificial neural networks
and random forest algorithms for maternal health risk
classification. The model shows promising results in
improving health outcomes for pregnant women and
infants. Lilhore et al. (2024) introduced a hybrid
framework for detecting postpartum depression using text
and audio data, demonstrating better performance than
existing models.

Nti and Owusu-Boadu (2022) utilized machine
learning to predict maternal health risks, with gradient

boosting showing the highest accuracy. Explainable AI
methods like LIME and SHAP provided insights into
prediction rationales. Acharya et al. (2023) developed
a hybrid boosting ensemble model, integrating XGBoost
and CatBoost, to predict maternal mortality risk, offering
valuable insights for maternal healthcare, especially in
developing countries.

Gupta and Sharma (2023) emphasized early
detection of postpartum depression (PPD) due to its
impact on maternal and infant well-being. They review
current detection techniques, noting the limitations
of questionnaire-based tools and highlighting the
effectiveness of support vector machine classifiers and
EEG-based methodologies.

Byeon (2023) introduced SSDD for depression
detection on social media using semantic representation
and semi-supervised deep learning. SSDD combines
hybrid feature analysis and deep autoencoders with
Bi-LSTM for detecting depressive content on platforms
like Twitter, outperforming existing models.

Teisseyre (2022) explored the role of explainable
AI (X-AI) in mental health assessments for depression.
The study reviewed methods using SHAP and LIME,
emphasizing the need for transparent AI predictions to
improve depression prediction and treatment. Feature
selection methods using weighted penalized empirical risk
minimization, demonstrating effectiveness in handling
unobserved variables and improving predictive accuracy.

3. Proposed methodology: Multifaceted
emotion analysis for maternal health risk
detection

3.1. Operating environment. Utilizing Google Colab
as the platform, our proposed methodology focuses on
multifaceted emotion analysis for maternal health risk
detection. Leveraging the collaborative and cloud-based
features of Colab, we integrate deep learning techniques to
analyze diverse emotional expressions in maternal health
discussions on social networks. This approach enables
real-time processing of textual and audio data, facilitating
the detection of nuanced sentiments and potential health
risks among pregnant women.

3.2. Dataset descriptions. In this research, two
datasets were utilized to conduct sentiment analysis on
different modalities: the maternal health risk
data dataset was employed for text sentiment analysis,
while the heartbeat data was utilized for audio
sentiment analysis. The integration of these datasets
allowed for a comprehensive analysis of sentiments
related to maternal health, encompassing both textual
and auditory aspects, thereby providing a more holistic
understanding of maternal well-being in the context of
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healthcare.

3.2.1. Text SA dataset. The maternal health
risk data dataset contains essential health attributes
of pregnant patients, such as age, blood pressure, blood
glucose levels, and heart rate, aiming to predict maternal
risk intensity during pregnancy. It enables researchers to
develop predictive models for maternal health risks and
improve prenatal care (Geethanjali, 2024).

3.2.2. Audio SA dataset. Heartbeat data
includes segmented and preprocessed electrocardiogram
(ECG) signals from multiple sources. It features normal
and abnormal heartbeat patterns, facilitating research in
heartbeat classification using deep learning and transfer
learning techniques for cardiovascular health assessment
and diagnostic advancements (Fazeli, 2024).

3.3. Data preprocessing. In the preprocessing
phase of text sentiment analysis using the maternal
health risk data dataset, tasks included text
cleaning (removing special characters and punctuation),
tokenization (splitting text into words), stopword removal
(eliminating common but non-informative words), and
stemming or lemmatization (normalizing words to their
root forms). The processed text was then encoded into
numerical formats, such as one-hot encoding or word
embeddings, for deep learning models.

For audio sentiment analysis with the ECG
heartbeat categorization dataset pre-
processing involved signal processing to remove noise,
segmentation to divide ECG signals into heartbeat
segments, and feature extraction to capture characteristics
like amplitude and frequency. The extracted features were
normalized, and the data were converted into numerical
formats, such as feature vectors or spectrograms, for input
into deep learning models.

3.4. Feature extraction. For text sentiment analysis
using the maternal health risk data dataset,
feature extraction involves converting textual data into
numerical forms suitable for deep learning. Techniques
include bag-of-words (BoW), which represents
documents as vectors based on word frequencies;
TF-IDF (term frequency-inverse document frequency),
which weights terms according to their importance in
individual documents and across the corpus; and word
embeddings, which encode contextual relationships
between words in dense vector spaces, capturing semantic
information.

In audio sentiment analysis with the heartbeat
data feature extraction focuses on capturing key
characteristics of ECG signals. Methods such as
mel-frequency cepstral coefficients (MFCCs) are used

to extract the spectral envelope, providing insights into
acoustic features like pitch. Spectrograms are also utilized
to represent the frequency content of the ECG signals
over time, allowing visualization of changes in frequency
components. Combining MFCCs and spectrograms
offers a comprehensive understanding of the audio data’s
acoustic properties, enhancing the deep learning analysis.

3.5. Proposed MHRFD-DLA model. Our maternal
health risk factor detection using a deep learning
approach (MHRFD-DLA) employs advanced sentiment
analysis on social media to identify maternal health
risks. By integrating CNNs and LSTMs with an
attention mechanism, MHRFD-DLA forms a hybrid
framework for analyzing multimodal data, including
text and audio. This approach enhances sentiment
assessment for early detection of risk factors in maternal
health by processing and analyzing social media content.
The hybrid CNN + LSTM + attention model allows
for nuanced understanding of evolving user-generated
content, improving real-time tracking and detection of
maternal health risk indicators.

The model leverages multimodal fusion to integrate
textual and audio data, enhancing its ability to detect
complex emotional correlations. This hybrid approach
provides a more comprehensive view than unimodal
methods by combining sentiments from both modalities
to identify maternal health risk factors.

Figure 1 illustrates the detailed multimodal sentiment
analysis process used for early identification and
intervention in maternal health issues, aiming to deliver
deeper insights through the fusion of text and audio data.
The accuracy of a CNN for detecting maternal health risks
is assessed using
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This equation evaluates performance by comparing

the model’s predictions P
(j)
CNN with the true labels Z(j)

using a cross-entropy loss. An exponential function
scales the loss to penalize larger discrepancies, while a
regularization term, controlled by λ, prevents overfitting
by penalizing complex models. The Kronecker delta
function α contributes to the accuracy calculation by
assigning a value of 1 if the prediction matches the label
and 0 otherwise. This comprehensive approach integrates
loss, regularization, and prediction accuracy to measure
the CNN’s effectiveness in identifying maternal health
risk factors.

Equation (2) for precision evaluates how well the
model identifies maternal health risk factors. Precision Q
is calculated using correct positive forecasts (UQ), true
negative predictions (GO), and true positives (GQ). It
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Fig. 1. Proposed MHRFD-DLA architecture for multimodal
sentiment analysis to identify risk factors in maternal
health.

incorporates a weighting factor γ to balance recall and
precision, while δ and α account for additional feature
contributions and impacts. Regularization parameters
β and λ manage model complexity, influencing true
positives and false negatives through nonlinear functions
and offset terms (σ and ε), and false positives through
∅. A small constant 	 prevents division by zero. This
detailed precision equation integrates multiple variables
and their interactions, highlighting the value of combining
audio and text data in social media sentiment analysis for
maternal health assessment, as shown in Fig. 1. Equation

du = fu × du−1

+ ju × tanh(Xjd × yu + cjd + Vjd × iu−1)

σ(Wjd × yu + djd + Uid × iu−1)
(3)

updates the state of an LSTM cell using several key
variables. The current cell state du and the previous
state du−1 are updated by the forget gate output fu and
influenced by the input gate ju. The input gate involves
weight matrices Xjd and Vjd, while yu represents the time
step and cjd is the bias term. The nonlinear transformation
is given by tanh(Xjd × yu + cjd + Vjd × iu−1), where
Wjd and djd are input weight matrices and biases, and Uid

is the hidden state weight matrix. The sigmoid function σ
scales this transformation to adjust the cell state. Each
variable contributes to the LSTM cell’s ability to manage

temporal patterns in input data. In

T =

o∑

j=1

e(X2×tanhx1[iu ;̃ij ]+c1)+c2

o∑
k=1

eX2×tanh(X1·[iu ;̃ik])+c2

× ĩj (4)

attention weights manage the relevance of each detail,
where T represents the weighted sum of transformed input
elements ĩj in a sequence. A multi-layer perceptron
(MLP) with learnable parameters X1, X2, c1, and c2
computes these weights. At each time step, the hidden
state iu is combined with the transformed input element
ĩj to form [iu; ĩj ]. The hyperbolic tangent function
tanh adds nonlinearity, and the attention weights are
normalized using softmax to sum to one, reflecting each
element’s relative importance in the sequence.

3.6. Attention model. The attention model in the
proposed MHRFD-DLA algorithm dynamically weighs
the relevance of different modalities and segments based
on learned attention scores. By assigning attention
scores to each element in the sequence, it allows the
model to focus on pertinent information during sentiment
analysis for maternal health risk factor detection. Through
nonlinear activation functions and bias terms, the attention
mechanism enhances the model’s ability to capture subtle
sentiment patterns across multiple modalities in social
network data related to maternal health. In

S =

O∑
j=1
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UQj×Attentionj√

2×Attentionj

)
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(
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)) (5)

the recall metric S assesses the MHRFD-DLA model’s
ability to detect maternal health risk factors. The
total dataset occurrences are denoted by O, with UQj

representing true positives for the j-th sample and GOj

indicating false negatives. The attention mechanism
adjusts modality weights dynamically, with Attention2j
showing the weight for the j-th instance.

The risk factor detection output, the final block,
reflects the model’s prediction on maternal health
risks after analyzing social media data. This output
is crucial for continuous monitoring and early risk
identification, leveraging multi-source and multi-modal
information. Algorithm 1 shows the algorithmic
steps for the MHRFD-DLA procedure in multimodal
sentiment analysis for maternal health risk detection.

Equation (6) describes the attention mechanism for
determining modality weights in sentiment analysis. At
the j-th time step, the weight βjk reflects the importance
of the k-th modality. The integration of textual features
and modalities is facilitated by weight matrices W1 and
W2, with a nonlinear activation function φ enhancing
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Q =
(1 + γ2) · σ(UQ+ ρ) + δ · α

(1 + γ2) · σ(UQ+ ρ) + γ2 ·∅(GO + η) + ε ·GQ+	 + β · λ. (2)

βjk =
exp (∅ (X1ij−1 +X2ik + c1)φ (W1fj−1 +W2fk + C2))∑U
l=1 exp (∅ (X2ij−1 +X2il + c1)φ (W2fj−1 +W2fl + C2))

. (6)

Algorithm 1. Proposed MHRFD-DLA algorithm for
multimodal sentiment analysis.

pattern detection. Visual data is also integrated, with
hidden states fj−1 and fk, and corresponding weights
X1 and X2, using φ for nonlinearity and bias term
C2 for adjustment. This mechanism allows the model
to dynamically prioritize modalities, capturing detailed
sentiment patterns in social media data related to maternal
health risks. Each of the variables in the attention rating
equation

bij =
exp

(
σ
(
X i

u × iu + V i
u +W i

u × wj + ciu
))

U∑
k=1

exp (σ (X i
u × ik + V i

u +W i
u × wk + ciu))

(7)
is essential to the attention mechanism for multimodal
sentiment evaluation. Here bij represents the attention
score that the i-th attention unit assigns to the j-th feature
within the sequence. The nonlinear activation function
σ introduces complex interactions. The model provides
an additional degree of flexibility with the inclusion of
ciu as a bias term for the i-th attention head and U as

Fig. 2. Risk level bar chart.

the total number of segments. The algorithm can focus
on pertinent information during sentiment evaluation for
social network threat detection related to maternal health
because (7) dynamically weighs the importance of each
modality and segment based on these factors.

4. Results and discussion
The efficacy of the MHRFD-DLA model is highly
dependent on the precision and accuracy of the sentiment
analysis and risk factor detection. Using a combination
of CNNs, LSTMs, and an attention mechanism,
MHRFD-DLA, seeks to understand emotions and detect
any dangers to the health of mothers.

4.1. Analysis and discussion of text SA re-
sults. The analysis of text sentiment analysis results
reveals significant predictive capabilities, with the model
accurately classifying maternal health risk levels based
on extracted features. This highlights the potential of
leveraging textual data for effective risk assessment in
maternal healthcare contexts.

Table 1 reflects the textual sentiment analysis which
lists variables Age, SystolicBP, DiastolicBP,
BS, BodyTemp, HeartRate, and RiskLevel.
The age limit ranges from 22 to 55 followed by the
systolic BP from 90 to 140. Diastolic BP ranges between



A deep learning based hybrid model for maternal health risk detection . . . 571

Table 1. Textual sentiment analysis EDA.
S.no. Age SystolicBP DiastolicBP BS BodyTemp HeartRate RiskLevel

0 25 130 80 15 98 86 high risk
1 35 140 90 13 98 70 high risk
2 29 90 70 8 100 80 high risk
3 30 140 85 7 98 70 high risk
4 35 120 60 6.1 98 76 low risk
...

...
...

...
...

...
...

...
83106 30 140 100 15 98 70 high risk
83107 31 120 60 6.1 98 76 mid risk
83108 23 120 90 7.9 98 70 mid risk
83109 29 130 70 7.9 98 78 mid risk
83110 17 85 60 7.9 102 86 low risk

Table 2. Comparison of text sentiment analysis models.
Model Accu (%) Prec (%) Recall (%) F1 score (%)
CNN 86.45 87.90 86.45 86.17
LSTM 89.54 88.95 89.54 89.24
CNN+
LSTM 91.43 92.02 91.43 91.72

CNN+LSTM+
attention 93.00 92.77 93.00 92.38

Fig. 3. Confusion matrix for maternity health textual data.

60 to 90 and risk levels as low, mid, and high risks. Other
variables are mentioned in the image.

Figure 2 shows the risk level bar chart illustrating
the low, mid, and high-risk levels. The x-and y-axes of
the graph represent the count and the risk level. The low
risk has a count over 33356, followed by the mid-level
risk at 27372. The high-level risk was identified to be
lower at 22368, which is less than the high- and mid-level
risks. Figure 3 shows the maternity health risk confusion
matrix visualized with categories for low, medium, and
high-risk stages. Figure 4 presents a correlation heatmap
for maternity health data, categorizing risk into low, mid,
and high levels. It visually depicts correlations between

Fig. 4. Correlation heatmap for maternity health textual data.

age, heart rate, body temperature, blood sugar (BS),
diastolic blood pressure (BP), and systolic blood pressure
(BP) across these risk categories. Colors denote negative
to positive correlations, aiding in understanding health
parameter relationships across risk levels.

Table 2 compares the accuracy, precision, recall and
F1 score of various text SA models. Compared with other
models, the CNN + LSTM + attention model performs
better on all measures.

4.2. Analysis and discussion of audio SA re-
sults. The analysis of audio sentiment analysis
results demonstrates robust classification performance,



572 R. Geethanjali and A. Valarmathi

Fig. 5. Bar graph for ECG shapes of different cases.

Fig. 6. ECG signals.

Fig. 7. Confusion matrix for ECG classification.

Fig. 8. Audio SA classification report for the proposed combi-
nation CNN + LSTM + attention.

effectively categorizing different heartbeat patterns with
high accuracy. This underscores the utility of ECG signal
analysis for diagnosing cardiac rhythm abnormalities and
improving cardiovascular health monitoring.

Figure 5 defines the label and counts for the
normal, fusion of paced and normal, premature ventricular
contraction, atrial premature, fusion of ventricular and
normal. The normal remains the highest of all the labels,
while the fusion of ventricular and normal is determined
to be the lowest

In Fig. 6 ECG signal analysis, distinguishing
between different heartbeat categories is crucial. Here,
“normal” heartbeats constitute the majority with 90589
instances, while “fusion of paced and normal” heartbeats
are represented by 8039 instances. In turn “premature
ventricular contraction” occurrences amount to 7236,
followed by “atrial premature” beats with 2779 instances.
Lastly, “fusion of ventricular and normal” beats are
present in 803 instances. These categories delineate
various cardiac rhythm abnormalities, emphasizing
the importance of accurate classification for effective
diagnosis and treatment planning.

Figure 7 shows the classification performance of
ECG heartbeat types, revealing substantial imbalances
across classes. Utilizing a comprehensive confusion
matrix visualization, this study underscores the
importance of addressing class imbalances to enhance the
reliability of ECG-based heartbeat classification systems
in clinical practice.

Table 3 includes various performance metrics such as
true positive (TP), true negative (TN), false positive (FP),
false negative (FN), and accuracy (%) for different ECG
heartbeat classes.

Figure 8 reports classification results for the CNN
+ LSTM + attention model. The graphs comprise the
percentage and estimators. The bar charts represent
the normal, atrial premature, premature ventricular
contraction, fusion of parcel and normal, accuracy ring,
macro average, and weighted average. Figure 9 represents
the ensemble classification report in the form of a matrix.
It resembles the values for the precision, recall, and
F1-score values. The normal, atrial premature, premature
ventricular and normal, accuracy, weighted average, and
macro average values mostly represent the values.

Table 4 presents the performance metrics of different
audio sentiment analysis models, showcasing the superior
performance of the CNN + LSTM + attention model
with exceptionally high accuracy, precision, recall, and F1
score compared with other models.

4.3. Analysis and discussion of MHRFD-DLA re-
sults. A significant parameter that indicates its efficacy
is the accuracy of sentiment analysis and chance element
detection in the proposed multimodal sentiment analysis
version, specially customized for MHRFD-DLA. The
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Table 3. Performance metrics of ECG heartbeat classes.
Class TP TN FP FN Acc (%)
Normal 90589 29144 3596 1470 95.94
Fusion of
paced and
normal

8039 112771 1657 2332 96.80

Premature
ventricular
contraction

7236 112908 2481 2174 96.27

Atrial
premature 5179 114795 1920 2905 96.13

Fusion of
ventricular
and normal

2339 118161 1763 2536 96.55

Table 4. Comparison of audio sentiment analysis models.
Model Accu(%) Prec(%) Recall(%) F1 score(%)
CNN 96.45 96.90 96.45 96.67
LSTM 97.54 97.95 97.54 97.74
CNN+
LSTM 98.43 98.02 98.43 98.22

CNN+LSTM+
attention 99.95 99.95 99.36 99.65

Table 5. Comparative analysis of proposed MHRFD-DLA model with fine-tuned MSA models.
Model Accu (%) Prec (%) Recall (%) F1 score (%)
ASHN 70.6 70.2 82.4 75.8
SSCL 60.8 79.4 74.9 77.1
PM 72.9 70.4 79.4 74.6
SDG4 79.6 73.2 62.3 67.4
MHRFD-DLA 98.4 97.6 95.6 96.6

hybrid version, well-known for its precise blending
of CNNs, LSTMs, and an attention mechanism,
decodes sentiments related to maternal well-being with
outstanding precision. In evaluating sentiment, the model
can remarkably distinguish nuanced emotional aspects
linked to cerebral health, prenatal care, and vitamins.

Figure 10 illustrates an exemplary implementation
of the proposed MHRFD-DLA model. The code snippet
showcases the method of generating text and audio facts,
preprocessing, defining the version architecture, training,
and assessment. Key steps consist of the text and ECG
data, incorporating CNN+LSTM+attention mechanisms,
concatenating modalities, and compiling the version. The
education procedure is conducted on the education facts,
accompanied through evaluation using check data to
compute performance metrics such as accuracy, precision,
recall, and F1-score. This implementation serves as a
practical demonstration of the proposed MHRFD-DLA
model in a multimodal sentiment analysis context.

Figure 11 illustrates that the model architecture
is a multimodal neural network designed for sentiment

analysis and health risk detection tasks. It incorporates
textual and ECG data, processing them through
embedding, convolutional, LSTM, and attention layers
to extract relevant features. With a final dense layer
for classification, the model predicts one of three
classes: ‘healthy’, ‘at risk’, or ‘uncertain’, providing a
comprehensive approach to analysing diverse data types
for healthcare applications.

In Fig. 12, true positives (TP) represent correctly
identified healthy cases, true negatives (TN) denote
accurately recognized at-risk instances, false positives
(FP) indicate misclassifications of at-risk or uncertain
cases as healthy, and false negatives (FN) signify
misclassifications of at-risk cases as healthy or uncertain.

The bar plot of Fig. 13 illustrates the distribution
of sentiment analysis classes in the proposed multifaceted
emotion analysis model. It showcases the counts of
‘healthy’, ‘at risk’, and ‘uncertain’ classes, providing
insights into the distribution of maternal health risk levels
and emotional states within the analyzed data.

In Table 5, the proposed MHRFD-DLA model
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Fig. 9. Ensemble classification report for all models.

Fig. 10. Implementation sample of the proposed MHRFD-DLA
model.

Fig. 11. Multimodal health risk analyzer model.

outperforms other fine-tuned MSA models throughout all
metrics, with notably higher accuracy, precision, recall,
and F1-score Its superior performance underscores its
effectiveness in multimodal sentiment analysis tasks.

Figure 14 displays performance assessment of
proposed multimodal sentiment analysis models with
various excellent fine-tuned models. Each plot
affords metrics which include accuracy, precision,
and F1-rating. Notably, the proposed MHRFD-DLA
version demonstrates advanced performance throughout
all evaluated metrics, showcasing its effectiveness in
sentiment analysis responsibilities.

Figure 15 presents a performance evaluation of
various fine-tuned multimodal sentiment analysis models
using bar plots for accuracy, precision, recall, and
F1-score. The proposed MHRFD-DLA model excels
across all metrics, demonstrating its robustness for
sentiment analysis applications. The model includes
1,037,587 trainable parameters and 8 hidden layers,
comprising CNN, LSTM, dense, and 2 attention layers.
These attention layers enhance the model’s ability to focus
on relevant features and patterns. With a learning rate
of 0.001, the model was trained for 100 epochs, showing
minimal improvement after around 73 epochs.

Figure 16 illustrates the computational time
comparison among various maternal health risk
prediction models, including ASHN, SSCL, PM,
SDG4, and MHRFD-DLA. Each model is represented by
a distinct color, showcasing the computational efficiency
of MHRFD-DLA compared with others. MHRFD-DLA
demonstrates significantly lower computational time,
denoted by the shorter vertical line, indicating its potential
for efficient real-time deployment in maternal healthcare
settings. Specifically, ASHN takes 1778.57 seconds,
SSCL takes 2546.72 seconds, PM takes 1567.16 seconds,
SDG4 takes 2298.32 seconds, and MHRFD-DLA takes
only 959.24 seconds.

5. Future research directions
Below prospective directions of extending the presented
results are listed:

(i) Future research should advance multimodal fusion
techniques for better integration of text, images,
videos, and user metrics.

(ii) Methods are to be developed for fine-grained
emotion analysis to capture subtle emotional nuances
and changes.

(iii) More efforts are needed towards cross-domain
generalization to enhance model performance
across various social media platforms and improve
interpretability.
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Fig. 12. Confusion matrix for multifaceted emotion analysis.

Fig. 13. Distribution of classes for multifaceted emotion analy-
sis.

Fig. 14. Individual performance evaluation of the proposed
MHRFD-DLA models with various fine-tuned multi-
modal approaches.

(iv) Focus on real-time monitoring and longitudinal
analysis for tracking health trends is expected.

(v) Ethical considerations and biases to improve public
health interventions and maternal and child health
outcomes globally should be addressed.

6. Conclusion and significance
The proposed maternal health risk factor detection
constitutes a significant advancement in social network
multimodal sentiment analysis for maternal health.
By effectively handling the complexities of dynamic
user-generated content and multiple data modalities,
MHRFD-DLA offers a superior understanding of
maternal health sentiments compared with traditional
methods. This approach enhances risk factor detection
and enables timely interventions by analyzing sentiments
related to prenatal care, nutrition, and mental well-being.
MHRFD-DLA is a valuable tool for shaping public
health policies and improving maternal and child health
outcomes globally. Simulation results demonstrate its
effectiveness, with 98.4% accuracy, 97.6% precision,
95.6% recall, and an F1-score of 96.6%.
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