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Autism spectrum disorder includes symptoms like anxiety, depressive disorders, and epilepsy because of its impact on
relationships, learning, and employment. Since no confirmed treatment and diagnosis are available, the emphasis is on
improving an individual’s capacities through symptom mitigation. This work investigates autism screening for adults and
toddlers utilizing deep learning. We investigated models for feature prediction and fused these predictions with the original
dataset to be trained with deep long short-term memory (DLSTM). Features are fused from the training and testing sets and
then combined with the original dataset. Data analysis is carried out to detect anomalies and outliers, and a label encoding
technique is utilized to convert the categorical data into numerical values. We hyper-tuned the DLSTM model parameters
to optimize and assess significant outcomes. Experimental analysis and results revealed that the proposed approach worked
better than the other techniques, yielding 99.9% accuracy for toddlers and 99% for adults.
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1. Introduction

Autism spectrum disorder (ASD) is frequently related
to intellectual difficulties because its symptoms usually
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appear in the initial two years of existence (Reddy,
2024). Individuals with ASD can experience behavioral,
cognitive, learning, and interpersonal challenges. Since
there are so many different signs and variations in
their severity, ASD is acknowledged as a spectrum
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disorder (Simeoli et al., 2024). If the chronic illness
is adequately addressed, productivity and symptoms
can be improved. People with autism may exhibit
irregular glances, struggle to understand individuals,
have difficulties comprehending discussions, and have
delayed or discordant facial reactions to words. They
may find it challenging to adapt to social interactions.
Experimental evidence indicates that a person’s genes and
circumstances can have a crucial role in the development
of ASD, even though the precise etiology of the illness
is uncertain (Ahmed et al., 2022; Simeoli et al., 2024;
Atlam et al., 2024). Additionally, it has been discovered
that individuals with autism have a considerably reduced
quantity of neurons in the cerebellum (Baizer, 2024).

The procedure of detecting ASD in toddlers
typically involves two stages. During the first phase,
infants are regularly evaluated for cognitive deficits.
If ASD indicators are detected during a preliminary
diagnostic procedure, more diagnostic testing could
be carried out. This assessment could consist of
hearing screenings, a neurological examination, an
intellectual assessment, behavior observations, and
linguistic assessments (Shrivastava et al., 2024). Adults
who are evaluated for sensory problems, repetitive
behaviors, and communication difficulties may find the
diagnosis to be a little difficult. Timely intervention
is essential for assisting an individual with ASD in
managing impulsivity, attention problems, depression,
and stress. Adequate pharmaceuticals and therapy
regimens can assist these people in developing language,
social, and communication skills and reduce disruptive
behaviors in their everyday lives. According to recent
studies, the New York metropolitan region’s autism rates
among adolescents potentially tripled between 2000 and
2016 (Alqaysi et al., 2022). One in forty-four toddlers
received an ASD diagnosis in 2018 (Alsuliman and
Al-Baity, 2022). Many studies have been done in previous
decades to investigate autism in humans or to suggest
possible treatments for the condition. Eye-gazing motions
can give visual preference trends that help diagnose
autism in people (Bala et al., 2022). Physiological and
sociodemographic characteristics might also be examined
to diagnose autistic patients (Barik et al., 2023).

The knowledge of the illness has also been enhanced
by neuroscience research on white matter microstructural
disintegration (Chaste and Leboyer, 2012). Similarly,
many medical studies and methodologies have examined
autism in human subjects (Francese and Yang, 2022;
Kanhirakadavath and Chandran, 2022). Though earlier
research has provided individual analysis through various
techniques, a thorough examination of toddlers and
adolescents in those studies has yet to be done. An effort
has been put forth to create an effective and profitable way
to recognize ASD patients with impressive ASD diagnosis
precision and productivity. It was done using artificial

intelligence (AI) (Shahamiri and Thabtah, 2020), and
machine learning (ML) (Song and Ying, 2015; Hsu, 2003)
techniques. The goal was to minimize all the drawbacks,
such as the lengthier diagnosis times, higher costs, and
the need for more personnel. Nevertheless, there is
a lack of solid research to comprehensively examine
the advantages and disadvantages of utilizing various
parts of ML techniques to identify indicators associated
with ASD accurately. The present research addressed
several ML techniques for determining ASD to bridge
this knowledge deficit. By addressing many facets of the
application of ML approaches in diagnosing ASD patients
through a supervised methodology, we attempted to close
this discrepancy in our work. The model’s efficiency
was assessed using six ML techniques, including feature
prediction and the LSTM model, each with a distinct set
of performance indicators.

The specific contributions are as follows:

• This study proposes a hyper-tuned DLSTM model
for ASD detection in toddlers and adults by fusing
features provided by ML prediction models later
with the original features matrix for efficient ASD
detection.

• Data are preprocessed by analyzing and converting
the categorical data into numerical values for feature
prediction. The study uses several statistical
measures to assess the performance of the ASD
categorization model.

• Experimental analysis and results revealed that the
proposed approach worked better than the other
techniques, yielding 99.9% accuracy for toddlers
and 99% for adults. The results indicate that this
approach is efficient for ASD detection in toddlers
and adults.

This paper is structured as follows. Section 2
presents the background and relevant works. The
proposed approach for ML and DL models for ASD is
introduced in Section 3. In Section 4, the performance of
our technique is assessed and contrasted with the baseline
methods. The paper is concluded, and future research is
provided in Section 5.

2. Related work
ASD is caused by diseases including anxiety, depressive
disorders, and epilepsy because of its impact on a
person’s social, academic, and professional components.
Since there is no proven cure and identification is
challenging, the goal is to maximize an individual’s
potential through symptom mitigation. Additionally,
enhanced behavior and linguistic growth followed initial
recognition (Shahamiri et al., 2022; Beary et al., 2020;
Omar et al., 2019). Raj and Masood (2020) investigated
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potential applications of ML and DL models for the study
and prediction of ASD issues in toddlers, teens, and
adults. Three distinct publicly accessible nonclinical ASD
datasets are used to assess the proposed methodologies.
Results strongly imply that CNN-based models for
predicting perform more effectively with a better accuracy
of 99.53%, 98.30%, and 96.88% for ASD inspection in
data for adults, toddlers, and teenagers, respectively.

In the work of Farooq et al. (2023), the FL approach
is utilized for the recognition of autism by learning two
distinct machine learning classifiers, LR and SVM, for
the identification of ASD in both toddlers and adults.
Four distinct ASD clinical datasets, comprising over 600
data of impacted adults and children, were acquired from
various repositories to derive variables. For children,
the proposed model diagnosed ASD with an accuracy of
approximately 98%, and for adults, an accuracy of 81%.
The primary objective of Reddy (2024) is to employ a
DL model to identify autism utilizing facial envision data.
The authors accurately diagnosed autism in toddlers using
DL models for feature extraction and binary classification
algorithms. The proposed models were trained using a
dataset of 3014 images of children categorized as autistic
and nonautistic. The models yielded accuracy values of
87.9%, 80.05%, and 84.66%, respectively.

Lu and Perkowski (2021) presented a feasible
method for ASD testing using face images, employing a
VGG16 transfer learning approach. The proposed model
produced a 95% accuracy at an F1-score of 95. Ahmed
et al. (2022) used three AI methods for the early detection
of autism: ML, DL, and a hybrid technique integrating
the two. The first approach classifies characteristics using
NNs: artificial neural networks (ANNs) and feedforward
neural networks (FFNNs). A hybrid method is used to
derive characteristics by combining the powers of the
local binary pattern (LBP) and grey-level co-occurrence
matrix (GLCM) methods. This technique was able
to produce FFNNs and ANNs with an accuracy of
99.8%. The second method relied on deep feature map
retrieval and employed a pre-trained CNN model, such
as GoogleNet and ResNet-18. Exceptional outcomes
of 93.6% and 97.6% were attained by the GoogleNet
and ResNet-18 models, respectively. The third method,
GoogleNet + SVM and ResNet-18 + SVM, combined ML
and DL in a hybrid fashion. Wang et al. (2019) used a
DL classifier in conjunction with innovative feature design
and encoding approaches for testing ASDs. Combining
a strong DL classifier and a deep embedding model for
categorical data, strategies were developed for diagnosing
ASD based on personal and behavioral traits. The
recommended approach outperforms baselines, achieving
99% specificity and sensitivity. Ashok and Gopikrishnan
(2023) used the Internet of medical things (IoMT) to
integrate multiple healthcare devices to improve patient
monitoring and real-time care operations. Casalino et al.

(2023) considered acoustic features of speech to detect
bipolar disorder. They investigated how semisupervised
and supervised learning could be used for mental health
monitoring.

Kanhirakadavath and Chandran (2022) tested the
suitability of vision-tracking data in youngsters to support
earlier autism detection using ML techniques. The
study used graphical gaze tracking scan route images
to predict autism by comparing the efficacy of several
ML algorithms. The authors used a DNN classifier and
three conventional ML models for their empirical tests.
A publicly accessible dataset including 547 visual gaze
tracking scan processes from 328 normally developing
toddlers and 219 autistic children was used in this
research. The DNN model achieved 91.38% specificity,
97% AUC, 90.06% PPV, 93.28% sensitivity, and 94.46%
NPV, outperforming conventional ML techniques on the
populated dataset. Mohanty et al. (2021) presented a
novel method for utilizing a deep algorithm to identify
ASD. The subsequent steps are used to identify ASD. By
explaining ASD symptoms using feature evaluation, the
assessment procedure becomes more efficient. Moreover,
ML algorithms report the ASD class type and evaluation
variables. This study aims to reduce the data density using
principal component analysis (PCA) and classify the ASD
category using DNN.

Garg et al. (2022) suggested a hybrid method that
combines explainable artificial intelligence (XAI) with
DL to detect the most important characteristics for
accurate and timely ASD prognosis. The proposed
framework provides suggestions for expected outcomes
and improved predicting, which will be crucial therapeutic
support for better and earlier predicting ASD features in
toddlers. The proposed model yielded 98% accuracy.
Deng et al. (2022) constructed a spatial-temporal
transducer to diagnose ASD employing time series fMRI.
The imbalance problem has been addressed using a
Gaussian technique. Even though the overall accuracy
attained is much less than that of current techniques, the
study uses two different datasets to verify the robustness
of the model. Transformers are complicated, expensive to
compute, and take a long time to train.

In summary, extensive and varied datasets are
necessary for training both ML and DL models to
guarantee stable results across various ethnic and cultural
contexts, as shown in Table 1. In addition, moral
and comprehension issues need to be considered to
guarantee the appropriate use of these methods for
autism screening. To create efficient and morally
acceptable screening instruments for autism spectrum
disorder, doctors, researchers, and technologists must
work together. In this study, we investigated six ML
methods for feature prediction, and an LSTM model was
used to test the model’s efficacy. Each strategy was
examined using a different set of performance indicators.
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Table 1. Literature review summary.

Study Method Performance Gap
Reddy (2024) DL models Accuracy = 87% Low performance
Farooq et al. (2023) FL Accuracy = 81% for adults Low performance
Lu and Perkowski (2021) VGG16 model Accuracy = 87% Low performance
Raj and Masood (2020) ML and DL models Accuracy = 96.8% No clinical validation

is provided
Kanhirakadavath and Chandran (2022) ML models 91% specificity Low performance

3. Proposed methodology
This section explains the whole procedure of the proposed
approach. The proposed method comprises multiple steps:
obtaining datasets, preprocessing data, and making model
predictions. Figure 1 visualizes the proposed architecture.
The initial stage of the data processing pipeline transforms
textual variables into numerical form using a label encoder
so that ML algorithms can comprehend it. Then, to train
and assess the models’ effectiveness, the dataset is divided
into training and test sets. An important part is selecting
features that maintain model accuracy and complexity.
Features from the training and test sets are then merged
using ML algorithms. This merged feature set trains an
LSTM model for sequential data. Ultimately, the LSTM
model generates predictions that indicate an individual’s
probability of exhibiting traits indicative of autism.

3.1. Dataset selection. This study aims to detect
ASD in adults and toddlers using the LSTM model. The
two distinct datasets used for the investigation regard the
autism assessment for adults and toddlers and are obtained
from Kaggle at https://www.kaggle.com/data
sets/andrewmvd/autism-screening-on-ad
ults. The toddler autism test data includes significant
characteristics for determining tendencies toward autism.
The dataset parameters consist of ten behavioral factors
and additional features. Possible responses to queries
like “Always,” “Usually,” “Sometimes,” and “Never”
are translated to values 1 and 0 because the parameters
vary from A1 to A10. A user with qualities associated
with ASD receives more than three points. The autism
diagnostic dataset for adults contains 704 rows and 21
columns, while the dataset for toddlers has 1054 rows and
19 columns. Both databases share certain characteristics,
such as gender, ethnic background, age, jaundice, etc.
The proposed LSTM is implemented in both datasets to
study ASD in toddlers and adults.

3.2. Data preprocessing. Data preprocessing is
important in statistical analysis and ML to ensure
reliability, effectiveness, and objective outcomes. It
transforms unformatted data into comprehensible data.
Cleaning, integrating, transforming, and validating data
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Fig. 1. Overview of the proposed architecture.

are crucial tasks. It is also essential to properly
comprehend the data, document processes, and use
specific tools to prepare it for analysis or modeling.

Encoding categorical variables. Categorical variables
challenge certain ML techniques. The classification
variable must be transformed into numerical data, which
is crucial for the designed algorithms to function as
intended. The different algorithms work according to the

https://www.kaggle.com/datasets/andrewmvd/autism-screening-on-adults
https://www.kaggle.com/datasets/andrewmvd/autism-screening-on-adults
https://www.kaggle.com/datasets/andrewmvd/autism-screening-on-adults
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coding of the category variables. The dataset associated
with a feature may have several labels in text or numerical
form. This renders the data for humans easier to examine,
but it is incomprehensible for machines (Sharma et al.,
2020). We utilize an encoding that renders these labels
interpretable by machines. Other encoding methods
include hash and one-hot encoding. This study encodes
categorical data using the label encoding technique.

Label encoder. A numerical label input is made possible
in an ML model using label encoding. A label encoder
uses numbers to assign a value to each label, replacing
the values of each label in the dataset. When they have
divergent priorities, the labels can be employed. This step
is crucial in the data preparation process for supervised
learning methods (Sharma et al., 2020). Usually, this
technique replaces each value in a category column with
a number between 0 and N − 1. In this study, a label
encoder assigns a value of 0 to 1 or 2 to each categorical
variable. This makes it possible to avoid overfitting and
aids in determining how generalizable the predictions are.
Initially, the dataset for toddlers and adults is split into two
sets: 20% for testing and 80% for training. The training
set size is determined as

Ntrain = round(N × train ratio), (1)

while the test set size is selected as

Ntest = N −Ntrain. (2)

3.3. ML-based feature prediction and fusion.
Selecting a subset of pertinent features from an initial set
of features to enhance model performance and minimize
overfitting is known as feature prediction. The objective
is to eliminate redundant or less contributing features,
leaving just the most informative features for prediction.
Feature prediction is essential to increase the predictive
accuracy, decrease the computational challenge, and
improve the model interpretability. This study utilized
multiple ML models as feature prediction techniques,
such as RF, LR, XGB, KNN, DT, and gradient boosting,
to enhance the performance of the proposed LSTM model
for autism toddlers and adult screening.

Random forest (RF). Numerous decision trees are
combined using an ensemble learning technique called
the random forest to create a more precise and reliable
framework. It belongs to the class of tree-based
models and is an extremely popular model for regression
and classification applications (Al Duhayyim et al.,
2023). Using a random feature choice, random forest
models build several decision trees independently, each
trained on bootstrapped dataset samples. The model
is less likely to overfit than individual trees because it
aggregates predictions from individual trees by majority

voting or averaging, which lowers variance and improves
generalization performance (Mohammad et al., 2022).

Logistic regression (LR). It is a fundamental
classification approach used to model the probability of
a binary outcome based on many predictor variables.
The probability of a case falling into a particular class
is calculated using a logistic function. Despite its name,
it is a linear model that takes a linear combination of
input features and assigns a logistic (or sigmoid) operator.
Binary task classification benefits greatly from the
interpretability, computational efficiency, and suitability
of LR (Hosmer Jr et al., 2013).

Extreme gradient boosting (XGB). It is a powerful
ensemble learning method based on gradient boosting.
Gradient descent is used to maximize the weak learners;
usually, decision trees are constructed one after the
other. Rapid processing on structured/tabular data,
efficiency, and scalability are well-known attributes of
XGBoost (Chen and Guestrin, 2016). It has built-in
functionality for handling missing values and uses
regularization techniques to avoid overfitting.

k-Nearest neighbors (KNN). It is an effective supervised
training method for applications requiring classification.
It finds the k-nearest observations from a particular
query point in the training set to produce predictions.
From there, it predicts its neighbors’ average value (for
regression) or a majority class (for classification) (Zhang
and Zhou, 2005). Because kNN relies on retaining the
entire training dataset, it can be extremely costly for
massive amounts of data, despite its ease of use and
comprehension.

Decision tree (DT). These are supervised learning
algorithms that create regions in the feature area by
making decisions based on the supplied characteristic
values. The tree finds which attributes best separate the
data at each node by optimizing a chosen criterion, such
as data acquisition or Gini impurity. This process iterates
back and forth unless an end condition is satisfied, such
as reaching a maximum depth or a minimum amount of
samples per leaf. Decision trees are widely used in many
different sectors because of their ease of understanding
and ability to handle numerical and categorical data.

Gradient boosting (GB). It constructs a sequence of
weak learners, usually decision trees, sequentially. Fitting
each new model to the negative gradient of the loss
value, the ensemble’s predictions reduce the loss function.
By adding new models that fix mistakes caused by the
older ones, gradient boosting iteratively enhances the
model’s performance. It is frequently utilized in machine
learning contests and practical applications due to its
strong predicted accuracy, resilience to overfitting, and
capacity to manage intricate datasets.
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3.4. Deep long short-term memory. The growing
slope and disappearing problem can be resolved using
memory blocks rather than standard recurrent neural
network (RNN) units (Amin et al., 2021). The main
distinction between LSTM and RNN is that LSTM
incorporates the cell state to preserve the long-term states.
An LSTM network can retrieve and link previous data to
present information (Chen, 2016). Three distinct gates are
used in the architecture of long short-term memory: the
input, forget, and output gates. The cell’s new and prior
states are designated by nt and nt−1, respectively, while
the current and previous outputs are indicated by ot and
ot−1, respectively. The current input is indicated by ct.

The following equations provide the rules for the
LSTM’s input gate. In

Lt = σ(Di · [vt−1, pt] + gi) (3)

the input gate is represented by gi, and the preceding
outputs, vt−1 and pt, are passed through the sigmoid layer
for deciding which portion of the information needs to be
added.

After transferring the old information, pt−1, and the
current information, ct, by the tanh layer using the input
gate ai,

Ut = tanh(Di · [pt−1, ct] + ai) (4)

is utilized to obtain the updated information Ut . Equation

Ct = ht(St−1) + jtst (5)

integrates the information of long-term memory St−1 into
St and the present state of information Ct . The sigmoid
output is denoted by Di, while St means the tanh output.
Di represents the weight metrics, and ai represents the
LSTM’s input gate. Using the dot product of the input
information Jt and the current state of information st and
sigmoid layer, the forget gate of the LSTM then enables
the particular transmission of the data.

The probability of deleting the linked data by the
final cell is given by

bt = σ(Df · [pt−1, ut] + af ). (6)

The weight matrix is represented by Df , the offset is af ,
and the sigmoid function is σ.

The inputs in

Tt = σ(Do · [ot−1, pt] + ao), (7)

F t = Tt tanh(Nt). (8)

establish that the states required for the continuation
through the previous and current outputs, ot−1 and pt,
respectively, are described by the output gate Tt of the
LSTM. The decision vector of the condition that transmits
new information Nt by the tanh layer is multiplied and
acquired by the final output Ft. Here ao denotes the bias

Algorithm 1. Pseudo code for autism detection on
toddlers and adult data.

1: Input: Autism Data
2: Output: Autism predicting
3: function CreateandprepareAutismDataset():
4: De = Data Encoding
5: LE = label encoder
6: DS = X train, x test, , Y train, Y test
7: function CreateMLModel:
8: Fs = feature prediction (train and test set)
9: Cfs = Combined selected features

10: return Return (x, y)
11: function ModelTrain(x, y):
12: LSTM = Create LSTM Model
13: return model
14: function ASDPrediction (model):
15: Em ← Evaluation metrics
16: Return (ASD Predictions)

of the LSTM of the output gate and Do is its weighted
matrix (Islam et al., 2020).

The three gates in the framework are the output,
forget, and input gates. The first gate, known as a forget
gate (ht), takes the current input, ct, and the previous
output, ot−1, from the prior state, Pt−1, using a sigmoid
function of σ. Once the previous data has been added,
the input gate employs the tanh layer and the sigmoid
function σ to receive input information Jt. The input gate
provides the data, which are then fed into the output gate,
which computes all the data and outputs the current state,
where the output is retained, using the sigmoid function σ.

Algorithm 1 uses a multi-step procedure to examine
ASD using toddler and adult data. The framework
provided enhances autism diagnosis in toddlers and adults
more easily using ML techniques. It starts with data on
autism as inputs and produces projections of traits linked
to autism. An autism dataset is created, split into training
and test sets, and processed with a label encoder as the
initial data preprocessing stage. The CreateMLModel
function then picks features and merges features from
both sets. In the ModelTrain function, an LSTM model is
then trained using the combined feature vectors. Finally,
the ASDPrediction function uses metrics to assess the
training model and returns predictions on ASD features
(Yes/No). The method synchronizes operations, such
as data preparation, model development, training, and
prediction, to determine autism symptoms from the data
input.

4. Results and discussion
This section provides extensive details on how the toddler
and adult dataset is used to identify autism using the
DL model. 20% of the dataset is used for testing and
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80% for training. This model makes learning from
the provided dataset easier by using the characteristics
of the DL classifier. Moreover, statistical measures
are used to assess the efficacy of this strategy. This
part summarizes and evaluates the test findings and
provides an in-depth, insightful data analysis. This
study assesses the framework’s efficacy using extensive
evaluation criteria, each offering valuable perspectives
on the model’s operation. The first metric, accuracy, is
typically used as the standard to evaluate performance. It
is computed as the part of accurately recognized samples
based on the total sample amount.

Accuracy is the ratio of all positive predictions the
model produces to effectively precise projections,

Accuracy =
TP + TN

TP + TN + FP + FN
. (9)

It is a crucial assessment metric utilized in performance
evaluation.

Precision indicates how the model predicts the
positive class,

Precision =
TP

TP + FP
. (10)

It represents the accuracy of the model and the degree of
confidence in its ability to produce good predictions. This
value is shown proportionately in Equation 10, facilitating
comprehension of the metric basic equation.

Recall, also called sensitivity, is an evaluation metric
that centers on the ratio of every positive instance to the
percentage of precise positive predictions. It is defined as

Recall =
TP

TN + FN
. (11)

The appropriately identified F1 score functions
as an equilibrium of recall and precision because it
can effectively communicate the essence of a balanced
performance. Combining these two metrics yields the
F1-score, a popular estimate of model performance that
is especially useful for evaluation,

F1-score = 2× Precision× Recall
Precision + Recall

. (12)

One significant and unique indicator used in the
evaluation process is the confusion matrix (CM), which
is carefully designed to provide precise data regarding
the efficacy of the classification model. This essential
tool illustrates the model’s efficacy by comparing the
anticipated and actual data. The matrix section labels,
which show the actual class designations, correspond
to the columns. The correctly recognized samples
are arranged along the diagonal, while the incorrectly
categorized cases are situated on the diagonal portions.
The CM values are an essential tool for assessment that
can highlight the advantages and disadvantages of the
model. They also provide insightful data that improves
the model and produces favorable outcomes.

Table 2. DLSTM model results on different machine learning-
based feature prediction techniques. FP: feature prediction.

Models Accuracy Recall F1-
score

RF based FP + LSTM 99 99 991
LR based FP + LSTM 99 98 99
XGB based FP + LSTM 100 99.9 99.9
KNN based FP + LSTM 97 95 97
DT based FP + LSTM 98 97 98
GB based FP + LSTM 96 95 97

4.1. Results for the toddler autism dataset. The
outcomes of an LSTM model using several ML-based
feature prediction methods are displayed in Table 2
for autism detection in toddlers. The XGB classifier
performed exceptionally well overall, achieving a score
of 99.9% for all optimizing parameters. As a result,
the XGB successfully classified every data point. The
RF and LR techniques also yielded positive results, with
an accuracy score of 99%. The KNN, DT, and GB
models were nevertheless able to correctly categorize a
significant amount of the data, although having slightly
lower accuracy ratings. This demonstrates that ML-based
feature prediction approaches might improve the overall
performance of LSTM models. The XGB method was the
most effective in this case, although RF and LR might also
function well as feature prediction models.

Figure 2 represented the CM of an LSTM model
using several ML-based feature prediction methods. The
findings of an algorithm used to divide observations into
two classes are displayed in the CM. The classes that
the method anticipated are represented in each matrix
column, while the actual classes of the information points
are represented in the rows. Figure 2(a) demonstrates
that the anticipated proportions are represented by the
Class labels 0 and 1. For class 0, 129 instances were
projected correctly, and 292 were diagnosed accurately
for Class 1. Figure 2(b) represents the anticipated
proportions for Classes 0 and 1. 129 instances were
projected correctly, and 290 for Class 1 were detected
accurately. Similarly, Figure 2(c) represents the XGB
classifier CM; for Class 0, 129 autism cases are predicted
accurately, while 293 autism cases are diagnosed correctly
for Class 1. Figure 2(d) indicates the CM of the KNN
model. For Classes 0 and 1, 129 and 290 autism cases are
diagnosed accurately. Figures 2(a) and (f) demonstrate the
CM of DT and GB. For Classes 0 and 1, 129 and 286 cases
are predicted correctly for DT, and 129 and 279 autism
cases are diagnosed for Classes 0 and 1, respectively, for
GB.

Figure 3 represented the receiver operating
characteristic (ROC-AU C) curves of an LSTM model
using several ML-based feature prediction methods on
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(a) RF-FP + LSTM -CM (b) LR-FP + LSTM -CM (c) XGB-FP + LSTM -CM

(d) KNN-FP + LSTM -CM (e) DT-FP + LSTM-CM (f) GB-FP + LSTM -CM

Fig. 2. Results for the toddler dataset: LSTM CM based on RF prediction (a), CM of LSTM based on LR feature prediction (b),
confusion matrix LSTM based on XGB prediction (c), LSTM CM on KNN based prediction (d), DT based prediction of LSTM CM
(e), LSTM CM based on GB feature prediction of toddler screening dataset (f).

(a) RF-FP + LSTM-ROC AUC (b) LR-FP + LSTM-ROC AUC (c) XGB-FP + LSTM-ROC AUC

(d) KNN-FP + LSTM-ROC AUC (e) DT-FP + LSTM-ROC AUC (f) GB-FP + LSTM-ROC AUC

Fig. 3. ROC-AUC curves on the toddler screening dataset.

the toddler autism screening dataset. The percentage of
negative instances mistakenly categorized as positive is
known as the false positive rate (FPR), and the x-axis
on each ROC curve represents it. The true positive rate
(TPR) is represented on the y-axis as the percentage of
positive instances is accurately categorized as positive.
The FPR and TPR conflict for various categorization

criteria is displayed on the ROC curve.
Figure 4 shows the accuracy curves of many ML

models on the toddler screening dataset. Based on the
graphs, models such as RF and more trees assist them
in understanding complex patterns in the data, which
improves accuracy. The accuracy stability of RF, even
when there are fewer trees, shows how effective it is
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at quickly identifying important patterns in data. GB
and XGBoost systems increase accuracy as the number
of trees increases, suggesting that they may comprehend
intricate data patterns; however, overfitting is possible. On
the other hand, compared with other models, classifiers
such as LR, DT, and KNN exhibit poorer accuracy,
indicating that they have difficulty learning complex data
structures.

Figure 5 shows the loss curves of the LSTM model
based on ML feature prediction techniques on the toddler
screening dataset. Since more trees can detect more
complex data structures, models with more trees have
lower losses. RF maintains a steady loss even with fewer
trees, demonstrating its quick learning of significant data
structures. With more trees, both GB and XGBoost
continue to increase their loss performance, indicating
that they can understand increasingly more complicated
patterns, though there is a chance of overfitting. In
contrast, classifiers with lower losses, such as DT, KNNs,
and LR, suggest that these models have a harder time
understanding complicated data patterns than others.

4.2. Results for the adults autism dataset. The
outcomes of an LSTM model using several ML-based
feature prediction methods using an adult autism
screening dataset are displayed in Table 3. It demonstrates
that every feature prediction strategy attained high
accuracy, obtaining a success rate of at least 96. An
impeccable precision score of 1.00 was attained with
RF, LR, DT, and GB. This indicates that all of the
affirmative cases were appropriately detected. 98% of the
positive results were accurately identified by XGB, with
a precision of 98. With a precision of 98, the lowest of
all, KNN correctly detected 98% of the positive outcomes.
With a recall rating of 98, DT and GB were the most
accurate in identifying 98% of the positive real instances.
With a recall of 97, RF, LR, and XGB accurately classified
97% of the real positive cases. With a recall of 92, the
lowest of all the networks, KNN accurately detected 92%
of the real positive results. With an optimal F1-score
of 99, DT demonstrated a good balance between recall
and precision. With an F1-score of 98, RF, LR, and
XGB demonstrated a good balance between precision and
recall. With its F1-score of 95, KNN performed the least
well among the approaches in balancing precision and
recall.

Figure 6 represented the CM of an LSTM model
using several ML-based feature prediction methods on the
adult autism screening dataset. Figure 6(a) demonstrates
that the class represents the anticipated proportions labels
0 and 1 for RF. For Class 0, 201 instances were projected
correctly, and 79 were diagnosed accurately for Class 1.
Figure 6(b) represents the anticipated proportions for LR
classes 0 and 1. 201 instances were projected correctly,
and 78 for Class 1 were detected accurately. Similarly,

Table 3. LSTM model results on different machine learning-
based prediction techniques. FP: feature prediction.

Models Accuracy Recall F1-
score

RF based FP + LSTM 99 97 98
LR based FP + LSTM 98 96 98
XGB based FP + LSTM 99 98 98
KNN based FP + LSTM 97 92 95
DT based FP + LSTM 99 98 99
GB based FP + LSTM 96 85 92

Fig. 6(b) represents the XGB classifier CM; for Class 0,
200 autism cases are predicted accurately, while 80 autism
cases are diagnosed correctly for Class 1. Figure 6(d)
indicates the CM of the KNN model. For Classes 0
and 1, 154 and 53 autism cases are diagnosed accurately.
Figures 6(a) and (f) demonstrate the CM of DT and GB,
respectively. For Classes 0 and 1, 155 and 56 cases are
predicted correctly for DT, and 155 and 49 autism cases
are diagnosed for Classes 0 and 1, respectively, for GB.

Figure 7 represented the receiver operating
characteristic (ROC-AU C) curves of an LSTM model
using several ML-based feature prediction methods
(RF, LR, XGB, KNN, DT and GB) on the adult autism
screening dataset.

Figure 8 shows the accuracy graphs of ML
techniques on the adult screening dataset. Test and
training statistics indicate that the RF model is the
most accurate, demonstrating strong learning without
overfitting. On the other hand, the LR model learned
poorly, as it had the lowest accuracy across both sets.
Although the DT model overfits the training sample but
performs average on the test data, the XGB Classifier
model exhibits significant training accuracy but poor test
accuracy, indicating overfitting. Finally, the GB model
performs well on both datasets, suggesting effective
training and avoiding overfitting.

Figure 9 shows the loss curves of ML models on
the adult screening dataset. The loss curve of RF is
linear and continuously dropping, demonstrating effective
training and minimal overfitting. The straight but less
steep curve for LR suggests that it might not be as
effective. The curve of the XGB shows a tendency toward
overfitting; it is similar to the RF curve but has some minor
oscillations. The GB curve, comparable to that of RF but
with larger variations, indicates effective training with a
greater danger of overfitting. In contrast, KNN and DT
tense curves reflect inferior learning.

4.3. Comparative analysis and discussion. Table 4
compared the proposed approach with existing
techniques (Reddy, 2024; Rasul et al., 2024; Lu and
Perkowski, 2021). The study by Reddy (2024) has an
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(a) RF-FP + LSTM-accuracy curve (b) LR-FP + LSTM-accuracy curve (c) XGB-FP + LSTM-accuracy curve

(d) KNN-FP + LSTM-accuracy curve (e) DT-FP + LSTM-accuracy curve (f) GB-FP + LSTM-accuracy curve

Fig. 4. Train and test accuracy curves on the toddler screening dataset.

(a) RF-FP + LSTM-loss curve (b) LR-FP + LSTM-loss curve (c) XGB-FP + LSTM-loss curve

(d) KNN-FP + LSTM-loss curve (e) DT-FP + LSTM-loss curve (f) GB-FP + LSTM-loss curve

Fig. 5. LSTM train and test loss curves on the toddler screening dataset.

accuracy of 88.33% on the toddler ASD dataset, and that
by Rasul et al. (2024) has 98.85% accuracy on the toddler
dataset. In contrast, Lu and Perkowski (2021) report
96.67% accuracy for the adult dataset and 95% on the
toddler dataset, whereas the proposed method achieved
100% for the toddler dataset and 99.0% for an adult
dataset. The proposed technique performs better in this

context than the base paper, indicating that our technique
is superior in ASD detection.

This study utilized the toddler and adult ASD
datasets for autism diagnosis using different ML models
for feature prediction. Issues with data quality hinder the
development of ML models for autism screening because
it is hard to find varied and well-annotated datasets.
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(a) RF-based FP +LSTM-CM (b) LR-based FP + LSTM-CM (c) XGB-based FP + LSTM-CM

(d) KNN-based FP + LSTM-CM (e) DT-based FP + LSTM-CM (f) GB-based FP + LSTM-CM

Fig. 6. Confusion metrics on the adult dataset.

(a) RF-based FP + LSTM-ROC AUC (b) LR-based FP + LSTM-ROC AUC (c) XGB-based FP + LSTM-ROC AUC

(d) KNN-based FP + LSTM-ROC AUC (e) DT-based FP + LSTM-ROC AUC (f) GB-based FP + LSTM-ROC AUC

Fig. 7. ROC-AUC curve on the adult screening dataset.

Accurate data labeling is arbitrary and
time-consuming; it necessitates professional diagnosis
and multidisciplinary reviews, which adds to the
process complexity. To guarantee efficient absorption,
accessibility, and efficacy, engineers, doctors, and
stakeholders must collaborate to integrate ML techniques
into clinical processes. Clinicians need further training

to evaluate and interpret algorithmic findings within the
larger diagnostic process. This highlights the significance
of interdisciplinary methods in healthcare technology.

This study focuses on the feature fusion method for
enhancing the performance of the proposed LSTM model.
Machine learning models (RFLR, XGB, KNN, DT and
GB) for feature fusion provide a strong and adaptable
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(a) RF-based FP + LSTM-accuracy curve (b) LR-based FP + LSTM-accuracy curve

(c) XGB-based FP + LSTM-accuracy curve (d) KNN-based FP + LSTM-accuracy curve

(e) DT-based FP + LSTM-accuracy curve (f) GB-based FP + LSTM-accuracy curve

Fig. 8. Train and test accuracy on the adult screening dataset.

framework for combining data from several modalities or
sources (training and testing set) to enhance performance.
Features are fused from the training and testing sets
(feature prediction), and these predicted features are
combined with the original dataset features and generate
a new combined feature matrix. The study demonstrates
the exceptional effectiveness of the proposed LSTM
model on the autism dataset, assessing its efficacy using
optimization indicators essential for statistical analysis.
The effectiveness, standardization potential, and relevance
of DL models are examined through statistical analysis.
Architectural features and parameter counts impact model
complexity and are essential for identifying patterns and

correlations in data. In complex models, regularization
must be done correctly to reduce overfitting. To ensure
that model performance stays robust, strategies such as
regularizing the loss function and introducing penalty
components can minimize intricacy while preventing
overfitting. The study uses the LSTM model with
six different ML models as feature prediction to tackle
ASD issues. The experiment results indicate that the
proposed LSTM architecture functions more accurately
and efficiently than conventional DL techniques for
detecting ASD.



Autism spectrum disorder detection in toddlers and adults using deep learning 643

(a) RF-based FP + LSTM-loss curve (b) LR-based FP + LSTM-loss curve (c) XGB-based FP + LSTM-loss curve

(d) KNN-based FP + LSTM-loss curve (e) DT-based FP + LSTM-loss curve (f) GB-based FP + LSTM-loss curve

Fig. 9. LSTM train and test loss curve on the adult screening dataset.

Table 4. Comparison of the proposed model with the existing
studies.

Model Accuracy Accuracy
(toddlers) (adult)

EfficientBO 88.33% NA
ANN 98.85% 96.67%
VGG16 95% NA
Proposed model 99.9% 99.0%

5. Conclusion
Autism monitoring and detection is the procedure of
identifying individuals at risk for ASD based on specific
behaviors, developmental structures, and other traits.
Using appropriate algorithms to evaluate various data
sources, AI has demonstrated high potential for autism
screening and diagnosis. To identify ASD in adults
and toddlers, this study used ML techniques for feature
prediction, and the LSTM model was trained. As
part of the analysis, data visualization is done to find
patterns in the data, and then ML models are used to
conduct a thorough investigation. Two datasets were used
to evaluate six ML frameworks, and several statistical
parameters were used to assess the model effectiveness.
Furthermore, several AI techniques have been offered to
eliminate bias from the algorithm.

For the toddler dataset, the LSTM model performs
better with the XGB classifier as the feature predictor,
yielding 100% accuracy. In contrast, for the adult ASD

dataset, RF, XGB, and DT perform better as feature
predictors. It is found that the proposed study advances
the previous studies based on empirical and comparative
analyses. In the future, we want to use larger datasets and
selfsupervised learning for the classification and learning
of important patterns. Furthermore, we want to expand on
our work by applying DL models that can simultaneously
learn features, categorization, and clustering measures.
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