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Sepsis is a severe infectious disease with high incidence and mortality rates worldwide. Early diagnosis of sepsis in newly
admitted intensive care unit patients is crucial to reduce mortality and improve patient outcomes. The manual diagnostic
methods heavily rely on subjective clinical experience, while traditional machine learning methods require time-consuming
feature engineering and the performance is limited by the knowledge acquired from scarce datasets. Therefore, to address
the aforementioned issues, this study proposes a novel textual representation method for clinical numerical data, leveraging
pre-trained language models from the field of natural language processing for sepsis prediction. Specifically, this study
innovatively transforms structured clinical numerical data of patients into unstructured textual descriptions. This transfor-
mation reframes sepsis prediction into a text classification task, leveraging the rich prior semantic knowledge embedded in
pre-trained language models to enhance prediction performance. The proposed method is validated using real ICU clinical
data. When employing RoBERTa-base, it achieved an F1 score of 79.03%, which represents an improvement of five per-
centage points compared with commonly used machine learning classifiers. The experiments confirmed that the proposed
method enhances the performance of early sepsis diagnosis and introduces new insights for clinical diagnosis of sepsis.
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1. Introduction
Sepsis is a systemic inflammatory response syndrome
caused by pathogenic microorganisms such as bacteria
invading the body, which can simultaneously affect
multiple organs, leading to organ dysfunction or failure
(Singer et al., 2016; Lelubre and Vincent, 2018; Evans
et al., 2021). The incidence and mortality rates of
sepsis remain high worldwide (Rhee and Klompas, 2020;
Rubens et al., 2020), making it the leading cause
of infection-related deaths globally and the most fatal
condition in Intensive Care Units (ICUs) (Shankar-Hari
et al., 2016; Verdonk et al., 2017). Therefore, accurately
diagnosing sepsis upon a patient’s admission to the ICU is
crucial for reducing mortality rates and improving clinical
outcomes.
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However, the early diagnosis of sepsis remains
challenging (Duncan et al., 2021; Gunsolus et al., 2019).
Manual diagnosis of sepsis heavily relies on the expertise
of clinical professionals, which includes meticulous
observation of patients’ vital signs and comprehensive
analysis of laboratory indicators (Levy et al., 2003;
Angus et al., 2001). Nevertheless, subjective factors
are inevitably introduced in manual diagnostic methods,
leading to variability in the diagnostic accuracy influenced
by differences in medical knowledge. This issue is
particularly pronounced when dealing with critically
ill patients whose conditions are complex and rapidly
changing (Watkins et al., 2022). Therefore, researchers
have also attempted to develop machine learning models
based on objective clinical data to diagnose sepsis
(van der Vegt et al., 2023). For example, Du et al.
(2019) utilized gradient boosting decision trees (GBDTs)
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combined with clinical data, including vital signs and
laboratory indicators, to automatically predict sepsis . In
another study, a sepsis prediction model was developed
using random forests (RFs) based on 20 key predictive
variables (Wang et al., 2021). Similarly, Gao et al. (2024)
utilized RFs to predict mortality among sepsis patients
by selecting 38 features from the MIMIC-IV database.
However, despite avoiding the subjectivity of manual
diagnosis, these existing machine learning methods still
have limitations (Fleuren et al., 2020). On the one hand,
machine learning methods require time-consuming and
labor-intensive feature engineering. On the other hand,
and more importantly, machine learning models can only
acquire knowledge from training sets, resulting in the
performance being limited by the scarcity of training data.

Recently, pre-trained language models (PLMs),
such as bidirectional encoder representations from
transformers (BERTs) (Devlin et al., 2019), have emerged
in the field of natural language processing (NLP). PLMs
acquire prior semantic knowledge from large amounts of
unlabeled corpora through pre-training tasks like masked
language modeling (MLM) and next sentence prediction
(NSP). The acquired knowledge is utilized to enhance
downstream NLP tasks, which can be considered a form
of transfer learning (Li et al., 2020; Coban et al., 2024).
Therefore, it is of interest to know whether this prior
semantic knowledge can be applied to the early diagnosis
of sepsis. Given that the input of a PLM consists of
unstructured text sequences, a transformation method is
needed to convert structured clinical numerical data into
textual descriptions.

This study, for the first time, proposes a novel
textual representation method for clinical numerical data,
leveraging PLMs from the field of NLP for sepsis
prediction. Specifically, the main contributions of this
study are as follows:

(i) This study innovatively transforms structured clinical
numerical data of patients into unstructured textual
descriptions based on a template. All numerical data
are transformed into textual descriptions based on
thresholds and filled into text templates to generate
patients’ textual descriptions. It is worth noting that,
the transformation method allows for missing values
in the clinical numerical data, hence avoiding errors
introduced by imputing.

(ii) After obtaining textual descriptions from patients,
this study inputs these descriptions into a PLM
to predict whether the patient has sepsis based on
the representation of the [CLS] token. Thus,
early diagnosis of sepsis is transformed into a text
classification task. Therefore, this method leverages
the prior semantic knowledge embedded in the PLM
to enhance task performance.

(iii) This study also conducts experiments using real
clinical data from ICU to validate the proposed
method. The results indicate that employing
RoBERTa-base for backbone PLM achieves the
highest F1 score at 79.03%. This represents a
significant improvement of five percentage points
compared with the best-performing machine learning
model. Furthermore, t-tests confirm the statistical
significance of these results.

The overall structure of this study takes the form
of six sections. A brief review of the related work
is presented in Section 2. Section 3 deals with the
methodology used in this study. The experimental
results are presented in Section 4, while the discussion is
provided in Section 5. Finally, Section 6 concludes this
study with a summary.

2. Related works
Early research on sepsis primarily employed methods
involving biomarkers or imaging techniques (cf. Faix,
2013; Stubbs et al., 2013). However, these methods
heavily rely on clinical experience, are subjective,
and often lack adequate specificity and sensitivity.
Consequently, current studies on sepsis increasingly
utilize machine learning or deep learning approaches. The
widespread application of PLMs in medical diagnostics
holds promise for their integration into sepsis diagnosis
(Luo et al., 2024; Cichosz, 2023).

2.1. Machine learning. With the advancement
of artificial intelligence technology, more researchers
are endeavoring to build predictive models for sepsis.
These models integrate patients’ clinical data and utilize
algorithms from machine learning or deep learning for
training and optimization to achieve early prediction and
risk assessment of sepsis (Deng et al., 2022; Agnello
et al., 2023; van der Vegt et al., 2023). For example,
van Doorn et al. (2021) conducted a single-center
retrospective cohort study using the XGBoost model
to predict 31-day mortality based on patients’ clinical
data within two hours. Burdick et al. (2020) similarly
employed the XGBoost model, gathering clinical data
from 270,438 patients to construct a predictive model
for sepsis progression within 48 hours. Li et al.
(2021) utilized case data from the MIMIC-III dataset to
establish and compare five machine learning methods:
gradient boosting decision trees (GBDTs), logistic
regression (LR), K-nearest neighbors (KNNs), random
forest (RF), and support vector machine (SVM) for
predicting mortality among sepsis patients. Garcı́a-Gallo
et al. (2020) also used machine learning algorithms
to build a model predicting one-year mortality rate in
sepsis patients based on stochastic gradient boosting



Application of textual representation methods for clinical numerical data . . . 537

(SGB). In addition to machine learning algorithms,
researchers have explored deep learning methods for
sepsis-related diagnostics. Rafiei et al. (2021) designed
an intelligent sepsis prediction model using demographic
data, vital signs, and laboratory test results, employing
long short-term (LSTM) memory networks, convolutional
layers, and fully connected layers. Bedoya et al. (2020)
utilized multi-output Gaussian processes and recursive
neural networks to predict sepsis using data from a tertiary
hospital’s inpatient population. Aşuroğlu and Oğul
(2021) introduced the deep SOFA prediction algorithm
(DSPA), combining features from convolutional neural
networks (CNNs) with random forest (RF) to predict
SOFA scores in sepsis patients. While methods based
on machine learning and deep learning have made
substantial advances compared to traditional approaches,
their semantic knowledge is confined to the training set,
thereby limiting the performance of the models.

2.2. Pre-trained language models. PLMs consisting
of multiple transformer blocks, such as BERT (Devlin
et al., 2019) and ERNIE (Zhang et al., 2019a), can
acquire prior semantic knowledge from large-scale
unlabelled corpora through pretraining phase and apply
this knowledge to downstream tasks. For example,
Sangeetha et al. (2022) found that COVID-19 can be
accurately and efficiently detected and diagnosed using
these PLMs, suggesting these low-cost and readily
available methods as reliable approaches for COVID-19
diagnosis. Dong et al. (2023) proposed a stable and
resource-efficient medical diagnostic system based on
PLMs. Wang et al. (2023) utilized prompt-based PLM
fine-tuning methods to enhance Alzheimer’s disease (AD)
detection. According to the literature review, researchers
have not yet explored the use of PLMs for early sepsis
diagnosis.

3. Methods
This section first provides a detailed introduction to the
textual representation method of clinical numerical data,
followed by an explanation of how to utilize PLMs for the
diagnosis of sepsis through text classification tasks. The
overall workflow of the proposed method in this study
is illustrated in Fig.1. First, clinical numerical data of
a patient are collected, followed by data cleaning and
preprocessing. Then, the data are transformed into text
descriptions based on thresholds and a text template to
obtain text sequences. Finally, these sequences are input
into a PLM to conduct the text classification task based
on the representation of the [CLS] token, determining
whether or not the patient has sepsis.

3.1. Textual representation of clinical numerical
data. Given that clinical data are structured and cannot

be directly input into a PLM, this study proposes an
innovative transformation method to convert structured
clinical data into unstructured text descriptions. Initially,
intensivists from the First Affiliated Hospital of Anhui
Medical University selected 19 clinical features for
this study, with descriptions provided in Appendix.
The discrete features are listed in the first block of
Table 1, while the second block contains continuous
features. After data cleaning and preprocessing, a
representation of a patient’s clinical data is shown in
Fig. 2. Subsequently, for continuous features, different
descriptions are formulated based on thresholds. For
instance, if the threshold for APACHE II score is 20, then
the description for APACHE II for the patient in Fig. 2
would be “APACHE II high risk”. For discrete features,
descriptions are based on their categorical values. For
example, if a patient received analgesic treatment, it
is directly described as “Received analgesic treatment.”
The whole rules for transforming numerical clinical data
of the 19 features into text descriptions are listed in
Table 1. Then, each textual description corresponding to
a feature is input into a template to obtain the patient’s
textual representation. This template, illustrated in Fig. 2,
begins with “A patient”, followed by sequentially filling
in feature descriptions. It is worth noting that this method
does not require handling missing values. If data for
a certain feature are missing for a patient, the template
remains unfilled for that feature. Through these steps,
an unstructured text sequence for inputting into PLM is
generated.

3.2. Implementing text classification for sep-
sis diagnosis. After obtaining the unstructured textual
description for a patient, this study employs a PLM to
perform the text classification task to determine whether
the patient has sepsis.1 Assuming a patient’s textual
description with length n, we have

X = {x1, . . . , xn}. (1)

The input for the PLM are acquired through the following
steps:

(i) Following the conventions of BERT and other PLMs,
a [CLS] token is added to the beginning and a
[SEP] token to the end of X . The [CLS] token
is used for subsequent text classification tasks. Thus,
the text description sequence is re-represented as

Xs = {[CLS], x1, . . . , xn,[SEP]}. (2)

(ii) The characters cannot be directly input into a PLM.
Therefore, the sequences need to be vectorized.

1This study utilizes discriminative PLM models such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019), ERNIE (Zhang et
al., 2019; Sun et al., 2019; 2020; 2021), XLNet (Yang et al., 2019), and
ELECTRA (Clark et al., 2020)
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Table 1. Clinical numerical data transformation rules.
Variables Rules Textual description
Sex 0 Female

1 Male
Rehydration test 1 Received rehydration test
Analgesic treatment 1 Received rehydration test
APACHEII > 20 APACHEII high risk

≤ 20 APACHEII low risk
SOFA > 10 SOFA high risk

≤ 10 SOFA low risk
Heart > 100 Tachycardia

< 60 Bradycardia
else Normal heart rate

Sbp and Dbp Sbp ≥ 180 or Dbp ≥ 110 Stage 3 hypertension
Sbp ≥ 160 or Dbp ≥ 100 Stage 2 hypertension
Sbp ≥ 140 or Dbp ≥ 90 Stage 1 hypertension

else Normal blood pressure
Breath > 20 Tachypnea

< 12 Bradypnea
else Normal respiration

SpO2 ≥ 95 Normal oxygenation
else Hypoxemia

ALB > 55 Hyperalbuminemia
< 35 Hypoalbuminemia
else Normal albumin level

NA > 145 Hypernatremia
< 135 Hyponatremia

else Normal sodium level
CL > 105 Hyperchloremia

< 95 Hypochloremia
else Normal chloride level

LAC > 2.2 Hyperlactatemia
< 0.5 Hypolactatemia
else Normal lactate level

BUN > 7.1 Hyperuremia
< 2.5 Hypouremia
else Normal BUN level

PO2 > 100 Hyperoxemia
< 75 Hypooxemia
else Normal PO2 level

HB Female: > 160 Hyperhemoglobinemia
< 120 Hypohemoglobinemia
else Normal hemoglobin level

Male: > 175 Hyperhemoglobinemia
< 130 Hypohemoglobinemia
else Normal hemoglobin level

CR Female: > 80 Hypercreatinemia
< 44 Hypocreatinemia
else Normal creatinine level

Male: > 104 Hypercreatinemia
< 59 Hypocreatinemia
else Normal creatinine level

BMI > 23.9 High BMI
< 18.5 Low BMI

else Normal BMI
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Fig. 1. Flowchart of the method proposed in this study. Clinical numerical data are transformed into textual descriptions, which are
then inputted into a PLM to obtain the classification result indicating whether the patient has sepsis.

Fig. 2. Method for transforming structured clinical numerical data into unstructured textual descriptions. Textual descriptions are
obtained for each feature, and then the patient description based on a template is constructed.

Specifically, the Xs is mapped into Es as the
following equation:

Es = {e([CLS]), e(x1), . . . , e(xn), e([SEP])}.
(3)

The vectorized sequence Es can be input into a PLM
to obtain representations for each token.

For the output generated by pre-trained models,
the representation of [CLS], which is regarded as
a sentence-level feature, is used to predict the text
classification. Specifically, as shown in Fig. 3, the
sentence-level category probabilities for token [CLS] can
be obtained through

pc = softmax(Wcrc + bc), (4)

where Wc represents the sentence-level classifier matrix,
rc denotes the column of Wc, and bc stands for the bias of

the classifier. Then, the category can be obtained by

yc = argmax(pc). (5)

The loss function for this task is

loss =
1

N

N∑

i=1

(yc · log(σ(pc))

+ (1 − yc) · log(1− σ(pc)),

(6)

where N is the number of samples, each sample xc has a
binary label yc ∈ {0, 1}, and the goal of this study is to
predict the probability of each sample as pc ∈ [0, 1]. The
sigmoid function

σ(x) =
1

1 + e−x
(7)

transforms any real number x into a probability in the
range [0, 1], and log denotes the natural logarithm. The
training objective is to minimize the loss function.
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Fig. 3. Text classification using the pre-trained model.

4. Experiments and results
In this section, the dataset used, implementation
environment, evaluation metrics, hyperparameters, and
experimental results will be detailed.2

4.1. Dataset. In this study, the datasets we used
were all from a program in collaboration with the First
Affiliated Hospital of the Anhui Medical University for
Critical Care Sepsis. The data are all from actual ICU
clinical environments, and they are authentic and reliable.
There were 620 cases in total, which included both sepsis
and non-sepsis patients. The baseline analysis of the data
is given in Table 2, and we know that P < 0.05 indicates
statistical significance (Di Leo and Sardanelli, 2020), but
we appropriately relaxed the p-value in order to avoid
exclusion of key characteristic variables. Finally, we
divided the dataset into training and test sets in a ratio of
7:3.

4.2. Implementation environment. For the training
and deployment of the PLMs, we utilized the following
computational resources: Python 3.7, PaddlePaddle
2.4.0, and PaddleNLP 2.4.2; the hardware configuration
included a 4-core CPU, 32GB RAM, V100 GPU with
32GB video memory, and 100 GB HDD.

4.3. Evaluation metrics. For evaluation, this study
employed several metrics including accuracy, precision,
recall, F1 score, the area under the curve (AUC), and both
macro-F1 and micro-F1 for assessing multi-category text
classification tasks (Perez-Melo and Kibria, 2020; Cabot
and Ross, 2023). Accuracy measures the proportion
of correctly classified samples out of the total samples.
Precision signifies the ratio of true positive cases correctly
classified as positive among all samples classified as

2The source code for verifying this method can be obtained at
https://github.com/bubudai/paper_code.git.

positive, while recall indicates the ratio of true positive
cases correctly identified as positive among all actual
positive cases. AUC represents the area under the ROC
curve, quantifying the model’s discriminatory capability
(Srinivasu et al., 2024). The F1-score is calculated as

F1 = 2× precision × recall
precision + recall

. (8)

Micro-F1 calculates the overall precision and recall
by aggregating the confusion matrices of all classes
and subsequently derives the F1-score. It is suitable
for handling datasets with class imbalance as it assigns
equal weight to each class. By contrast, macro-F1
computes the arithmetic mean of F1-scores across all
classes without considering the class distribution, making
it suitable for balanced datasets. In this study, genuine
ICU clinical data with balanced sample sizes across
classes, as depicted in Table 2, were utilized. Therefore, to
impartially assess the performance of PLMs in multi-class
classification tasks, macro-F1 was chosen as the primary
evaluation metric. Macro-F1 effectively measures model
classification accuracy across all classes, independent of
any class distribution, thereby accurately reflecting the
model’s overall performance in the task.

4.4. Hyperparameters. The hyperparameters for
the model were determined through a trial-and-error
approach. To mitigate overfitting and enhance the model’s
generalization capabilities, we implemented an early
stopping strategy during training. This strategy involves
monitoring the model’s performance on a validation set
and halting the training process when the performance
stagnates or begins to decline. This approach prevents the
model from becoming overly complex and thus overfitting
to the training data. The final set of hyperparameters
selected is the one that yields the best performance
metrics. Table 3 provides a comprehensive list of all the
hyperparameters used.

4.5. Experiment results. In this section, we
present three aspects of our experimental findings.
Firstly, we discuss the performance of machine learning
models in a controlled experiment for classification.
Subsequently, we provide detailed insights into the text
classification predictions of prominent PLMs on the
complete dataset, including the loss functions observed
during training. Lastly, we analyze the outcomes of
conducted statistical tests. Additionally, experiments
conducted with varying sample sizes (75%, 50%, and
25%) will be comprehensively detailed in subsequent
sections.

4.5.1. Results of machine learning models. This
study compares the performance of various common

https://github.com/bubudai/paper_code.git
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Table 2. Baseline analysis data.
Variables Total (n = 620) Non-sepsis (n = 310) Sepsis (n = 310) p-Value
Sex, n(%) 0.740
0 234 (37.7) 115 (37.1) 119 (38.4)
1 386 (62.3) 195 (62.9) 191 (61.6)
APACHEII, median[IQR] 19.0 [13.0,24.0] 16.0 [10.0,22.8] 20.4 [16.0,26.0] 0.001
SOFA, median[IQR] 6.0 [4.0,9.0] 5.1 [3.3,8.0] 7.0 [5.0,10.0] 0.001
Heart, median[IQR] 104.0 [82.0,124.0] 93.0 [76.0,112.0] 115.0 [96.0,132.0] 0.001
Sbp, median[IQR] 108.0 [88.0,131.0] 120.0 [100.0,147.0] 98.0 [80.0,120.0] 0.001
Dbp, median[IQR] 61.0 [51.0,76.0] 67.0 [56.0,80.0] 57.0 [46.0,70.0] 0.001
Breath, median[IQR] 20.0 [15.0,26.0] 18.0 [14.0,23.0] 23.0 [17.0,30.0] 0.001
SPO2, median[IQR] 96.0 [92.0,99.0] 97.0 [94.0,99.0] 95.0 [90.0,98.0] 0.001
Rehydration test, n(%) 0.001
0 476 (76.8) 286 (92.3) 190 (61.3)
1 144 (23.2) 24 (7.7) 120 (38.7)
Analgesic treatment, n(%) 0.518
0 278 (44.8) 135 (43.5) 143 (46.1)
1 342 (55.2) 175 (56.5) 167 (53.9)
alb, median[IQR] 31.4 [27.8,34.5] 32.8 [29.4,36.3] 29.9 [26.0,32.8] 0.001
na, median[IQR] 139.0 [135.9,142.0] 139.3 [136.9,142.0] 138.7 [134.8,142.4] 0.052
cl, median[IQR] 104.0 [99.8,108] 104.4 [100.4,108.1] 103.4 [99.0,108.0] 0.173
lac, median[IQR] 2.2 [1.3,4.5] 1.7 [1.1,3.0] 3.1 [1.8,5.0] 0.001
hb, median[IQR] 106.0 [88.0,127.0] 110.0 [90.0,128.0] 102.0 [87.0,126.0] 0.143
bun, median[IQR] 9.6 [6.2,15.9] 7.3 [5.3,13.5] 12.1 [8.0,17.9] 0.001
cr, median[IQR] 87.3 [61.3,156.2] 73.9 [54.3,112.0] 114.0 [70.6,199.3] 0.001
po2, median[IQR] 100.0 [71.2,135.0] 111.0 [81.0,151.0] 88.0 [65.0,122.6] 0.001
bmi, median[IQR] 22.6 [20.4,24.5] 22.8 [20.8,24.5] 22.5 [20.1,24.5] 0.141

Table 3. Hyperparameters.
Parameters Value
Maximal length 256
Batch size 64
Learning rate 2e-5
Epoch 20
Optimizer AdamW

machine learning models in the sepsis prediction task,
including support vector machines (SVMs), multi-layer
perceptrons (MLPs), k-nearest neighbors (KNNs),
XGBoost, decision trees, and random forests (RF). The
results, presented in Table 4, show that the accuracy of all
models ranges between 65% and 75%, with the random
forest model achieving the highest F1 score of 74.42%.
ROC curve plots, depicted in Fig. 4, further illustrate the
performance of each model across different classification
thresholds, demonstrating that common machine learning
approaches have some potential for sepsis prediction, but
there is room for improvement.

4.5.2. Results of PLMs. This study evaluates the
performance of various PLMs in the sepsis prediction
task, including ERNIE, XLNet, ELECTRA, BERT,

and RoBERTa. The results, presented in Table 5,
show that all pre-trained models achieve excellent
classification performance, with F1 scores generally
above 75%. Notably, the RoBERTa-base model achieves
the highest macro-F1 score of 79.03%, significantly
outperforming the best result obtained by common
machine learning models. Additionally, we analyze the
loss functions observed during the training process of
different pre-trained models, presented in Fig. 5, to better
understand their training dynamics and performance.

4.5.3. Results of t-tests. To thoroughly validate the
superiority of our proposed method, we meticulously
designed ten sets of experiments, each applied to both
exceptional pre-trained models and traditional machine
learning models. Upon completion of the experiments,
we conducted a detailed t-test statistical analysis on the
collected data. As depicted in Fig. 6, the t-statistic
was remarkably high at 19.10, and the p-value was
significantly below the 0.05 (Di Leo and Sardanelli, 2020)
threshold (p-value = 2.13e-13). These results clearly
indicate a highly significant difference in F1 scores
between the RoBERTa-base model and the random forest
model, providing us with ample justification to reject the
null hypothesis H0 (which posits no significant difference
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Table 4. Classification results of various machine learning models.
Machine models Accuracy Precision Recall F1 score AUC
SVM 74.71 77.50 70.46 73.81 75.04
MLP 71.26 73.17 68.18 70.59 73.83
KNN 71.26 72.09 70.46 71.26 72.07
XGBoost 72.41 73.81 70.46 72.09 78.46
Decision Tree 65.52 66.67 63.64 65.12 63.44
Random Forest 74.71 76.19 72.73 74.42 76.04
Logistic Regression 70.12 72.50 65.91 69.05 73.54

Table 5. Classification results of various PLMs.
Pre-trained models Micro-F1 Macro-F1
ERNIE-1.0-large-zh-cw 75.20 75.15
ERNIE-2.0-base-en 76.36 76.32
ERNIE-3.0-base-zh 75.68 75.66
ERNIE-3.0-nano-zh 76.55 76.55
ERNIE-3.0-mini-zh 77.54 77.52
ERNIE-3.0-micro-zh 76.88 76.87
ERNIE-3.0-medium-zh 76.01 76.01
chinese-XLNet-base 75.68 75.62
chinese-XLNet-mid 76.88 76.88
chinese-XLNet-large 75.20 75.11
chinese-ELECTRA-base 76.68 76.67
chinese-ELECTRA-small 75.27 75.26
BERT-base-chinese 76.68 76.68
BERT-wwm-chinese 75.40 75.38
RoBERTa-large 77.51 77.51
RoBERTa-base 79.03 79.03

Fig. 4. ROC curves of various machine learning models.

between the two groups). Consequently, we opt to accept
the alternative hypothesis H1 (which posits a significant
difference between the two groups), signifying that the
text classification approach based on pre-trained models
does indeed outperform traditional machine learning

methods in the task of sepsis prediction.

4.5.4. Results of experiments with varied sample
sizes. In this section, the robustness of the model was
further validated by reducing the training set sample size.
In the study PLMs were trained using 75%, 50%, and 25%
of the training data, respectively, and their performance on
the appropriate evaluated test set. As shown in Table 6,
even with only 25% of the training set, PLMs maintained
an F1 score of 72% or higher, approaching or even
surpassing the performance of most common machine
learning classifiers on the full training set. These findings
clearly demonstrate that PLMs continue to perform well
when faced with reduced data volumes, highlighting their
superiority and robustness in handling limited data.

5. Discussion
In this section, we will engage in a thorough discussion of
the experimental results of our study and highlight some
limitations.

5.1. Comparison of different machine learn-
ing models. In Section 4.5.1, Table 4 and Fig. 4
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Fig. 5. Comparison of training losses for PLMs in text classification tasks.

various commonly used machine learning models were
evaluated for their performance in predicting sepsis.
The experimental results indicate that these models
exhibit some capability in sepsis prediction, but the
overall performance still requires an improvement. The
RF model achieved the best performance among all
models, with an F1 score of 74.42%, highlighting
its effectiveness in feature selection and classification.
However, the performance of other models was also
relatively close, ranging between 65% and 75%. This
suggests that commonly used machine learning models
still have limitations in sepsis prediction tasks. These
limitations primarily arise from the dependence of
machine learning models on training datasets, with their
performance being influenced by the dataset size and
distribution. In sepsis prediction tasks, data often exhibit
complexity and scarcity, posing challenges for model
training and prediction. Furthermore, improving model
performance depends on effective feature engineering,
which requires manual selection and design of features,
thereby increasing the difficulty and cost of model
development.

5.2. Comparison of different PLMs. In Section 4.5.2,
Table 5 and Fig. 5, we evaluated the performance
of various PLMs in sepsis classification tasks.
The experimental results demonstrate outstanding
performance of PLMs in classification. F1 scores
generally exceeded 75%, indicating that PLMs effectively

leverage their pretraining to enhance the accuracy of
sepsis prediction. Among them, the RoBERTa-base
model achieved the best performance among all models,
with an F1 score of 79.03%, a five-percentage-point
improvement over commonly used machine learning
models. Its superior performance is primarily attributed
to advanced pretraining mechanisms and rich semantic
knowledge. RoBERTa enhances BERT’s MLM
pretraining task with a dynamic masking mechanism,
effectively capturing contextual word information.
Moreover, RoBERTa benefits from longer training
times and larger datasets, further enhancing its semantic
understanding and model generalization capabilities.

5.3. Comparison of the performance of t-tests. In
Section 4.5.3, Fig. 6, we evaluated the performance of
RFs and RoBERTa-base in a sepsis diagnosis task across
ten trials. T -tests were conducted on the experimental
results, revealing that the RoBERTa-base model achieved
significantly higher F1 scores compared with the RF
model, with a t-value of 19.10 and a p-value much
lower than the significance level of 0.05. This statistical
significance indicates that the performance improvement
of the RoBERTa-base model is not merely incidental but
reflects substantive differences. The heightened statistical
significance may be attributed to its deep learning
architecture and advantages derived from large-scale
pretraining. Compared with traditional machine learning
models, RoBERTa-base can capture more intricate



544 W. Zhang et al.

Table 6. Performance of PLMs with different training set sizes.
Sample size 75 Percent training set 50 Percent training set 25 Percent training set
Pre-trained models Macro-F1 Macro-F1 Macro-F1
ERNIE-1.0-large-zh-cw 74.70 74.03 72.52
ERNIE-2.0-base-en 74.54 72.49 72.69
ERNIE-3.0-base-zh 73.82 73.82 72.33
ERNIE-3.0-nano-zh 77.62 72.92 72.44
ERNIE-3.0-mini-zh 75.47 75.60 72.89
ERNIE-3.0-micro-zh 75.27 74.91 73.27
ERNIE-3.0-medium-zh 76.11 76.25 72.34
chinese-XLNet-base 74.47 76.44 70.99
chinese-XLNet-mid 75.74 77.42 72.87
chinese-XLNet-large 74.69 72.97 72.00
chinese-ELECTRA-base 77.03 74.53 74.41
chinese-ELECTRA-small 74.73 74.71 72.26
BERT-base-chinese 75.32 75.21 72.22
BERT-wwm-chinese 75.27 76.23 72.18
RoBERTa-large 73.66 73.66 72.10
RoBERTa-base 77.06 76.00 73.74

Fig. 6. T-tests of f1 scores between RoBERTa-base and random
forest models.

nonlinear relationships and, through extensive pretraining
on text data, learn richer feature representations. This
deep feature extraction capability enables RoBERTa-base
to more accurately identify patterns and biomarkers
associated with sepsis when processing clinical text
data, demonstrating its potential superiority in clinical
applications.

5.4. Comparison of the performance of experi-
ments with varied sample sizes. In Table 6 of Section
4.5.4, we trained PLMs using varying proportions of
training data (75%, 50%, and 25%) and evaluated
their performance on the corresponding test sets. The

results indicate that even with only 25% of the training
data, PLMs achieved F1 scores consistently above 72%,
approaching or even surpassing the performance of
machine learning models trained on the entire training
set. This suggests that PLMs maintain strong performance
with limited data, demonstrating robustness. The
resilience of PLMs to sample size limitations is primarily
attributed to their rich semantic knowledge acquired
through pretraining on large-scale datasets. Even with
reduced training data, PLMs leverage their pretrained
semantic knowledge effectively for sepsis prediction.
Additionally, having been exposed to diverse textual data
during pretraining, PLMs exhibit strong generalization
capabilities, adapting well to variations across different
datasets.

5.5. Limitations and shortcomings. This study
extensively analyzed and compared the performance of
different PLMs in early sepsis diagnosis tasks. However,
our research still has some limitations. We focused on
discriminative PLMs from the BERT series and did not
compare them with generative language models like GPT
(generative pretrained transformer) and GLM (generative
language model). Considering the higher computational
demands of large language models (LLMs), we plan to
incorporate them into early sepsis diagnosis tasks using
CoT (chain of thought) technology in future work.

6. Conclusions
In this study, we explored the potential of leveraging
PLMs for sepsis diagnosis. Given that PLMs
accept unstructured text sequences as input, our
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study innovatively proposes a method to transform
structured clinical numerical data into unstructured textual
representations. This transformation reframes sepsis
prediction as a text classification task, utilizing the rich
a priori semantic knowledge embedded in PLMs to
enhance predictive performance. The study validates this
novel approach using real ICU clinical data. Results
show that employing RoBERTa-base as the backbone
PLM yields the highest F1 score of 79.03%, marking a
significant improvement of five percentage points over
the best-performing common machine learning model.
Moreover, t-tests confirm the statistical significance of
these findings. In conclusion, this study advances our
understanding of using PLMs for sepsis prediction. Future
research will further explore the application of LLMs in
this domain. By integrating LLMs, we aim to capitalize on
their robust semantic comprehension (Brown et al., 2020)
and reasoning capabilities (Wei et al., 2022) to improve
the accuracy and efficiency of early sepsis diagnosis.
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Appendix
Detailed description of abbreviated features

SEX: The gender of the patient.
Rehydration test: Whether the patient received
rehydration therapy.
Analgesic treatment: Whether the patient received
analgesia.
APACHEII: Acute Physiology and Chronic Health
Evaluation II score at the time of ICU admission, used to
assess the severity of illness and prognosis.
SOFA: Sequential Organ Failure Assessment score at
the time of ICU admission, used to assess the severity of
organ dysfunction.
Heart: The patient’s heart rate. Unit: beats per minute
(bpm).
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Sbp and Dbp: The patient’s systolic and diastolic blood
pressure. Unit: mmHg.
Breath: The patient’s respiratory rate. Unit: breaths per
minute (bpm).
SpO2: The patient’s peripheral oxygen saturation. Unit:
%.
ALB: Serum albumin concentration at the time of ICU
admission. Unit: g/L.
NA: Serum sodium ion concentration at the time of ICU
admission. Unit: mmol/L.
CL: Serum chloride ion concentration at the time of ICU
admission. Unit: mmol/L.

LAC: Serum lactate concentration at the time of ICU
admission. Unit: mmol/L.
BUN: Serum urea nitrogen concentration at the time of
ICU admission. Unit: mmol/L.
PO2: Arterial oxygen partial pressure at the time of ICU
admission. Unit: mmHg.
HB: Hemoglobin concentration at the time of ICU
admission. Unit: g/L.
CR: Serum creatinine concentration at the time of ICU
admission. Unit: μmol/L
BMI: The patient’s body mass index, used to assess
weight status.
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