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The origin of sampled tissue and characteristics of healthy organs is important for potential abnormality detection in veteri-
nary medicine. Most often such information is given during the sampling process, but in some cases there is a possibility
of mislabeling, especially in the education sector where some microscopic preparations might be made by students without
proper knowledge or the inspected tissues are not of fully known origin. Occasionally, it is possible to determine the affilia-
tion by searching characteristics of the organ in a sample; however, this is not always possible even for a skilled professional
as some tissues vary too little between their counterparts in different species or even in different organs of the same species.
Because of this, an automatic system able to perform such classification in a fraction of a second and with high accuracy
can be helpful in such cases, especially considering the low cost of adding that solution to the current workflow. This paper
presents a new dataset for healthy organ classification based on light microscope imagery containing 25 abstract classes of
different organs of a few species. During the sampling process, 3680 images of healthy tissues were collected. Additionally,
a custom deep learning architecture was created that is able to classify those samples between organs and species with a
validation accuracy reaching 98.34%. Such performance is in some cases higher than that of a human specialist, especially
when some examples have very small visual differences between one another or the classification is made on previously
non-determining regions of the organ. Additionally, the collection of such a dataset provides a great opportunity for further
work containing abnormality detection as it already provides information on the healthy organ description, which can be
used for a deep learning model searching for illnesses or mutations. What is more, such a dataset and the corresponding
artificial neural network constitute one of the first solutions of this kind in veterinary medicine, as most state-of-the-art
papers focus on human medicine.

Keywords: deep learning, artificial intelligence, image augmentation, tissue classification, veterinary medicine.

1. Introduction
Proper classification of the origin of the examined tissue
can be an essential decision factor about the performed
diagnostics and later treatment. In human medicine it
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is less of an issue since all operations are performed
on a single species, which allows for more specialized
knowledge and less possibility for a mistake; however, in
veterinary medicine, the multitude of different species and
high variety of determining characteristics create an issue
in such classifications. It is thus impossible for a single
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human specialist from the field to have exact knowledge
about the differences between all the labeling species,
which requires more focus on proper sample labeling
during the sampling phase. Due to the high amount
of patients, varying standards governing such operations
and the possibility of doctor fatigue there is a potential
for a mistake during that process. Currently, such an
issue is very difficult to spot manually and the diagnosis
may be made based on wrong data, which can mislead
the specialist into incorrect reasoning and later to the
erroneous treatment of the patient. To overcome this issue
many scientists are working on some automated solutions
that may help with an early classification to help find
mislabeled samples and give an alert to the specialist.

Most works however are done only on human
patients and focus only on a few organs with the main
point of finding specific anomalies. Such an example
can be found in the work of Zhang et al. (2018). The
paper addresses the problem of segmenting different
types of liver tissue (parenchyma, viable tumor, and
necrosis) on multi-parameter MR images in patients
with hepatocellular carcinoma (HCC), a common and
deadly form of liver cancer. The authors propose a
patch-based learning scheme that uses a multi-resolution
input, an auto-context design, and a multi-phase training
procedure to improve the performance and efficiency
of the segmentation task. Later they evaluate the
proposed solution on a dataset of 20 patients and compare
it with other CNN-based methods and a benchmark
method that uses manually designed features and random
forest classifiers. The paper shows that the proposed
method achieves better results in terms of detection and
delineation metrics, especially for medium and large-size
anomalies.

Another interesting solution is given by Ker et al.
(2019). The authors propose an automated process to
classify histology slides of brain and breast tissues using
the Google Inception V3 convolutional neural network
(CNN). They report the benefit of transfer learning across
different tissue types, such as brain and breast, to improve
CNN accuracy for rare tumors with limited training data.
For validation of their solution, the authors compare the
CNN performance with human pathologists and other
existing methods and use various metrics such as recall,
precision, F1 score, and activation maps to evaluate the
CNN performance. The ensembled networks achieved
an accuracy of 96% in classifying grade 4 tumors, and
an accuracy of 71% when classifying grade 2 and 3
tumors. The authors suggest that their proposed method
can assist human pathologists in the triage and inspection
of histology slides to expedite medical care, and can also
improve CNN performance in cases where the training
data is limited.

Zahia et al. (2018) propose a novel method
for automatic tissue segmentation in pressure injuries

based on a convolutional neural network (CNN). Their
proposed method classifies different tissue types (necrotic,
granulation and slough) by learning their features from
small image patches. The authors evaluate their method
using various metrics and achieve an overall average
classification accuracy of 92.01% and an average total
weighted Dice similarity coefficient of 91.38%. They also
obtained an average precision per class of 97.31% for
granulation tissue, 96.59% for necrotic tissue, and 77.90%
for slough tissue. The authors claim that the presented
method can handle complex structures in the images and
provide a robust solution for pressure injury assessment.

Khorshed et al. (2020) present a novel deep-learning
framework for multi-tissue cancer classification based on
whole-transcriptome gene expressions. They designed
a new convolutional neural network architecture called
GeneXNet, which is specifically tailored to handle
gene expression data. GeneXNet can learn genomic
signatures that are relevant for cancer diagnosis across
multiple tissue types without requiring any prior gene
feature selection. GeneXNet can also detect genetic
alterations that drive cancer progression and provide
biological insights through visualization techniques. The
authors evaluate GeneXNet on a large dataset of human
samples representing 33 different cancer tumour types
across 26 organ sites. They report that GeneXNet
achieves an impressive classification accuracy of 98.9%.
They also demonstrate how GeneXNet can be used for
transfer learning to build classifiers for tumors that have
insufficient samples to train independently.

Wojtas et al. (2023) created a custom
semantic-segmentation convolutional deep neural
network architecture for malaria detection in veterinary
medicine based on imagery from a light microscope.
The proposed solution allowed for an exact masking
application, which classified the elements into healthy
blood cells, malaria-infected cells and background with
a very high classification accuracy of over 99%. The
custom architecture was also made with a lightweight
computation in mind making it a helpful addition for
the potential clinic, where it would not require huge
computing power to be able to properly function. Rak
et al. (2023) presented an interesting hybrid classifier to
predict an artery disease with a high precision. Their use
of aggregating base classifiers combined with applying
the distributivity equation, resulted in better classification
accuracy and overall performance.

As can be seen, most of the papers from other authors
focus only on humans and specific illnesses, while the
approach presented in our paper focuses on a variety of
animals and a more global selection of abstract classes.

Another important factor is image augmentation. It
is a technique of artificial generation of surrogate data
in order to enlarge the training dataset to improve the
validation accuracy. Some of the techniques include
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simple image transformations like random image rotation,
flips, crops or changing colours. However, some authors
have created more advanced solutions.

Such an example can be found in the work of
Oza et al. (2022). The article covers basic and
advanced augmentation techniques with a focus on
medical imagery, such as geometric transformations,
noise injection, kernel filters, GANs, and others. One
of the interesting examples is pixel-level augmentation,
which is helpful for research in medical imaging fields,
as such images are obtained with different technologies
and imaging modalities and because of that they can be
essentially assorted in pixel intensities. In pixel-level
augmentation, intensities of pixels are perturbed with
random noise and a given probability, also called intensity
variation. Additionally, a pixel-level augmentation
modifies the brightness of an image, e.g., by using gamma
correction, image blurring, and image sharpening.

Another example is given by Abayomi-Alli et al.
(2020). Here the authors propose a novel image
augmentation technique based on a random permutation
of coefficients of within-class principal components
obtained after applying principal component analysis
(PCA). In such a way, after a short pre-training the
augmentation network learns some differences in images
from the training dataset and later generates new images
based on that knowledge. Later those images are included
in the final training dataset, which helps improve the
validation accuracy.

Optimizing the deep learning model for a specific
task is an important addition to a well-designed model
architecture. One of such examples can be found in
the work of Karlupia et al. (2023). They employed
a genetic-algorithm-based optimization for convolutional
neural networks for face recognition. As it is one of
the most active fields of computer vision, creation of a
novel approach with better performance than before is
a difficult task and requires a high amount of creativity
and knowledge. In the presented paper, the focus
was on creating a genetic-based fine-tuning of CNN
hyper-parameters such as the filter size or the numbers
of filters and hidden layers. In such a way, during
the training and optimization processes, the network is
dynamically modified to create a near-perfect architecture
that is both lightweight and has high accuracy. The
authors also performed a series of experiments comparing
their solution with existing CNN models and achieved a
higher detection accuracy of 94.5% with a relatively small
addition of time needed to train the final model.

Another interesting mathematical model for training
optimization has been made by Yang et al. (2023). In this
paper, a novel algorithm for improving the detection of
small elements on complex backgrounds called the local
gradient contrast method (LGCM) has been proposed. As
in many datasets, the main object is small and the rest

of the image can be cluttered. This creates a problem of
a low signal-to-noise ratio, which drastically reduces the
ability of classical CNN models to robustly detect targets
submerged in such noisy images. The authors present
a novel method that firstly obtains the optimal scale for
each pixel by calculating a multiscale salient map, then a
subblock-based local gradient measure is designed, which
can suppress strong clutter interference and pixel-sized
noise at the same time. Finally, such computed data are
utilized to construct the LGCM, which creates an adaptive
threshold that allows for better feature extraction of small
elements. To test this model the authors performed a series
of experiments which proved that their method yields
superior results in comparison with other state-of-the-art
methods.

In this paper, we present a novel, lightweight
convolutional neural network architecture for organ
classification of many species based on tissue images from
a light microscope. All computations have been made
on a custom-made image dataset containing 25 classes
of abstraction combined with a custom augmentation
pipeline. Such a combination allowed for a very high
validation accuracy.

2. New custom dataset
2.1. Importance of custom data. A good quality
and valid dataset is a necessary factor of the desired
model’s creation. Without specific data about the subject
of interest, designing and training of a machine learning
model is impossible, especially in fields like medical
data processing. In this paper we present a custom
deep learning architecture for gastrointestinal tract tissue
classification for animals, which due to its novelty had no
open access datasets found during the research phase; this
leads to a decision to create a custom one suited for this
task. The so prepared dataset has also lots of advantages
over a generic dataset such as having more control over
the quality and quantity of data, having all needed labels,
etc.

2.2. Overview. Due to the lack of a suitable dataset for
our problem, in the presented work, we have collected our
own dataset. This dataset contains 3680 light microscope
images distributed to over 25 abstract classes. Examples
of such images can be found in Fig. 3. As can be seen,
there is a high variety of photographed tissues that are
scattered in different organs belonging to different animal
species. For the use in this paper, we have selected 25
classes containing around 100 images per class. Some
classes from the collected dataset have been removed due
to the fact that there were some classes with the same
organ just with different coloring, which was unnecessary
for this research.
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The classes in the data collection are the following:

1. Reticulum (c),
2. Stomach—fundus (p),
3. Duodenum (h),
4. Duodenum (p),
5. Ileum—lymphatic nodules (p),
6. Jejunum (h),
7. Caecum (p),
8. Omasum (c),
9. Stomach—pylorus,

10. Colon (h),
11. Colon (p),
12. Oesophagus (p),
13. Sublingual salivary gland (c),
14. Sublingual salivary gland (p),
15. Submandibular salivary gland (h),
16. Submandibular salivary gland (c),
17. Parotid salivary gland (c),
18. Abomasum (c),
19. Pancreas (c),
20. Liver (h),
21. Liver (p),
22. Proventriculus (b),
23. Gizzard (b),
24. Stomach—cardia (p),
25. Rumen (c),

where

• p: pig,
• h: horse,
• c: cow,
• b: bird.

2.3. Data collection process and methodology. The
histological specimens utilized in this study were sourced
from the slide collections of the Department of Histology
and Embryology at the University of Life Sciences in
Lublin. These tissue samples were derived from various
animal species, including cows, horses, pigs, and birds.
The slides were prepared over a span of several years
and have been preserved as demonstration specimens for
veterinary medicine classes. Each specimen was fixed
in 10% formalin, dehydrated in increasing concentrations
of alcohol solution, cleared in xylene, infiltrated with
paraffin, and embedded in paraffin blocks. Subsequently,
these blocks were sectioned into 10-micrometer slices
using a microtome, and these sections were placed
on glass slides. The slides were stained using the
hematoxylin and eosin (H+E) technique. Prior to the

application of the dyes, the slides were rehydrated in a
graded series of alcohol. The slides were then incubated
in hematoxylin (Chempur, Piekary Ślaskie, Poland) for 5
minutes, rinsed in running water, and eosin (Chempur,
Piekary Ślaskie, Poland) was applied for 3 minutes.
Post-staining, sections were rehydrated, cleared in xylene,
and mounted in DPX (Sigma-Aldrich, St. Louise, USA).
The microphotographs utilized in this study were captured
under a Leica DM500 light microscope equipped with a
Leica ICC50W camera and a 10× magnification lens.

For a better deep learning model creation as
a proof of concept, images were taken not only
of the characteristic regions but also of the regions
non-determining for human. In such a way, there was a
possibility to check if the neural network can differentiate
organs in a different way.

All photographed organs are described in more detail
in what follows. The data collection scheme is presented
in Fig. 1 and the abstract classes with example images are
shown in Fig. 2.

The digestive system in animals demonstrates a
specific histological structure that is precisely adapted
to their specific dietary requirements. The following is
a detailed description of individual systems and organs,
highlighting the species-specific differences therein.

2.4. Salivary glands. Salivary glands are compound
acinar (parotid gland), tubuloacinar (sublingual gland)
and acinotubular (submandibular gland) glands. The
parenchyma forms the glandular portions of each gland,
while the supporting connective tissue is referred to as the
stroma (Carubbi et al., 2018).

All salivary glands have a lobular structure and are
surrounded by a connective tissue capsule. The salivaries
histologically are differentiated from one another on the
basis of the parenchyma structure containing different
secretory units with intralobular ducts. Within the
intralobular ducts, intercalated ducts with simple cuboidal
epithelium and striated ducts lined with simple cylindrical
epithelium are distinguished. The glandular portions
of the salivary glands may be mucous (tubular, with
irregular lumen, lined with simple cuboidal epithelium
which constitute cells filled with mucous—poor staining)
or serous (acinar with small lumen, lined with simple
cuboidal epithelium in which cells are filled with zymogen
granules—intensive red staining) or mixed (tubular with
serous demilunes) (Bodes and Martı́nez, 2023; Porcheri
and Mitsiadis, 2019; Bacha Jr and Bacha, 2012).

2.5. Digestive tract. The digestive tract, starting from
the oesophagus and ending with the anus, is tubular and
contains four layers of the histological structure which are
as follows:

(i) the mucous membrane (tunica mucosa), which
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Fig. 1. Dataset creation and evaluation scheme.

includes an epithelial lining that may occur in various
forms as stratified squamous epithelium or simple
columnar epithelium, a supporting lamina propria
and the lamina muscularis;

(ii) the submucous membrane (tunica submucosa) being
a connective tissue layer which may contain
lymphatic follicles, nerve plexi, and submucosal
glands;

(iii) the muscular membrane (tunica muscularis) which
may contain both smooth muscle tissue and striated
skeletal muscle tissue; in most parts of the digestive
tract it is formed by two layers of muscles: internal
circular and external longitudinal;

(iv) the adventitia in extraperitoneal parts of the tract
and serous membrane (tunica serosa) within the
peritoneal cavity,

(cf. Markovits et al., 2013; Mahadevan, 2020; Bodes and
Martı́nez, 2023).

2.6. Oesophagus. The oesophagus is a tubular organ
characterized by its four-layered structure. Microscopic
identification of the oesophagus across different species
requires extensive practice due to the existence of subtle
differences.

The mucosa is covered with stratified squamous
epithelium which may become keratinized in herbivores.
The lamina propria, composed of loose connective tissue,
forms numerous papillae, especially high in cattle. Single

Fig. 2. Defined dataset classes shown with example images.

lymphatic follicles may be present, in particular in pigs
(Bazira, 2023). The lamina muscularis is composed of
smooth muscle cells that run longitudinally or obliquely.
In horses, ruminants and carnivores, this layer consists of
individual bundles of muscle cells that connect with each
other near the stomach to form a continuous layer. In dogs
and pigs, it may be observed only in the caudal part of the
oesophagus (Jones et al., 2022; Voutsinou et al., 2018).

The submucosa consists of loose connective tissue
in which the oesophageal glands can be found. In
dogs they are present throughout the entire length of
the organ; in pigs, they are abundant in cranial part; in
horses, cats and ruminants they can be found only at
the pharyngoesophageal junction. The tunica muscularis
consists of an inner circular layer and an outer longitudinal
layer (Botlagunta and Kedari, 2023). In the rabbits,
carnivores, birds, horses and ruminants, the number of
layers may be higher—from three to even four layers
(pig). In pigs, there are skeletal muscles in one-third of
the oesophagus, mixed muscles in the middle third and
smooth muscles in the caudal third. In horses, two thirds
of the organ contain skeletal muscles and in cats they
may extend up to four-fifths of the oesophagus length
(Shiina et al., 2005; Kuryszko et al., 2019). In ruminants
and dogs, only striated skeletal muscles appear along the
entire length. The adventitia surrounds the oesophagus in
its cervical part, turning into a serous membrane in the
thoracic part (Watson, 1973; Dawood et al., 2022; Shiina
et al., 2005; Jones et al., 2022).
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Fig. 3. Different examples of collected images. In the first row
we can see the cow reticulum, in the second row a pig’s
caecum is presented, the third row belongs to a pig’s
duodenum, the fourth row is a horse liver, the fifth row
is a bird gizzard and the sixth row is a pig’s liver. Some
color shifts are present due to the nature of microscope
imaging and some contamination in photographed sam-
ples.

2.7. Stomach. The anatomical structure of the
stomach exhibits considerable variations in structure
across different animal species, which is primarily due to
the specific nutritional requirements of each species. In
carnivores the stomach lining is composed of a glandular
mucosa. Herbivorous species feature an additional
nonglandular region which is particularly well-developed
in ruminants. It constitutes the lining of all forestomachs.
Upon histological examination, the glandular region of
the stomach can be further classified into three distinct
areas: the cardiac, the fundic and the pyloric gland region
(Suganuma et al., 1981; Zahariev et al., 2010).

The mucosa of the glandular region is lined with
simple cylindrical epithelium. Underneath, there is a
lamina propria composed of loose connective tissue, with
lymphatic follicles and gastric glands (Doyama et al.,
2021). The lamina muscularis comprises smooth muscle
cells concentrated in two layers: an inner circular and
an outer longitudinal layer. In carnivorous animals,
a subglandular layer made of regular dense connective
tissue is present. The mucous membrane forms gastric
folds, which increase the surface area of the stomach and,
by stretching, allow its volume to expand when filled with
food (Bazira, 2023; Hogben et al., 1974).

The submucosa is composed of loose connective
tissue with numerous collagen fibres. The tunica
muscularis comprises three layers of smooth muscle cells:
an inner oblique layer, a middle circular layer, and an
external longitudinal layer. The serous membrane is
composed of a mesothelium lying on the loose connective
tissue (Hogben et al., 1974; Zahariev et al., 2010).

The non-glandular region of the mucosa, within the
single-chambered stomach, is present in horses and pigs.
It is lined with stratified squamous epithelium which
may be keratinized to varying degrees. In ruminants
the nonglandular portion extends to form forestomachs:
rumen, reticulum and omasum (Hewetson and Tallon,
2021). Their histological structure is similar due to
the presence of mucosa lined with stratified squamous
epithelium, submucosa with connective tissue stroma,
two-layered tunica muscularis with smooth muscles and
serosa covered with mesothelium (Kararli, 1995; Amorim
et al., 2016; Friedland et al., 1971; Ghoshal and Bal,
1989).

The ruminal mucosa and submucosa form a
small tongue-shaped papillae. There is no lamina
muscularis and the lamina propria merge with submucosa
forming propria-submucosa protruding into the ruminal
papillae. The reticulum has a similar structure with
propria-submucosa covered with stratified squamous
epithelium. These layers form a reticular papillae with
muscularis mucosa located only in the upper part of
the papillae. The omasum is characterized by a long
omasal laminae formed of mucosa, submucosa and tunica
muscularis which sends parts of muscles from a circular
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layer to the laminae. The lamina muscularis is present and
forms a thick layer beneath the lamina propria. Lamina
muscularis and tunica muscularis merge at the top of large
laminae forming a muscular marginal shaft (Lechner-Doll
et al., 1995; Stieger-Vanegas and McKenzie, 2021; Sellers
and Stevens, 1966; Chungath, 1981; Markovits et al.,
2013).

The avian stomach contains a proventriculus and
a gizzard. The proventriculus is lined with a simple
columnar epithelium that protrudes into the lamina
propria of the mucosa, forming surface tubular glands.
Within the submucosa, there are proper glands arranged
in glandular buds. The tunica muscularis contain inner
and outer longitudinal layers and a middle circular layers
of smooth muscles. Serosa contains mesothelium and
connective tissue (Hristov, 2020).

The gizzard comprises thick tunica muscularis with
smooth muscles arranged in an alternating circular and
longitudinal pattern, enveloped by a layer of tendon
sheath that refers to the submucosa. The luminal
side is characterized by a mucous membrane covered
with simple cuboidal epithelium which forms tubular
glands protruding to lamina propria. The secretion from
these glands forms a gastric cuticule (Kuryszko et al.,
2019; Catroxo et al., 1997; Al-Juboory et al., 2017;
Taki-El-Deen, 2017).

2.8. Intestines. The intestine, an integral component
of the digestive system, exhibits a unique histological
structure tailored to its specific role in digestion. It is
divided into two main sections: the small intestine and the
large intestine. The small intestine is further subdivided
into the duodenum, jejunum, and ileum, while the large
intestine comprises the colon, cecum, and rectum (Bodes
and Martı́nez, 2023; Lingeman and Garner, 1972).

The mucosa of the intestines typically comprises a
simple columnar epithelium, lamina propria and lamina
muscularis. These layers form finger-like projections
called villi. The villus contains a connective tissue core
with blood vessels, lymphatic capillary-lacteal in the
center and longitudinally oriented smooth muscle cells.
The length and thickness of the intestinal villi vary across
species, with dogs having the longest and thinnest villi,
ruminants having short and thin villi, and horses and
pigs exhibiting intermediate forms. Within the lamina
propria, there are simple tubular intestinal glands. In this
layer, single lymphatic follicles can be found (Chivers and
Hladik, 1980; McQuilken, 2021).

The epithelium of the mucosa contains enterocytes,
characterized by a presence of microvilli demonstrated as
a brush border under the light microscope. There are also
numerous goblet cells within the epithelium (Jones et al.,
2022; Hostetter and Uzal, 2022).

The submucosa is composed of loose connective
tissue. It may also contain single lymphatic follicles.

When speaking about the duodenum, duodenal glands can
be also found specific only to this section, which are of the
intestine and in the case of ileum-aggregated lymphatic
follicles that descend there from the mucous membrane.

The tunica muscularis contains inner circular and
outer longitudinal layers of smooth muscles, while the
serous membrane covers the entire small intestine, except
for the extraperitoneal section of the duodenum which is
lined with adventitia

The structure of the large intestine is strictly adapted
to the function it performs. The structure of its layers is
similar to that of the small intestine, albeit with several
distinguishing features. In the large intestines, there are
no villi and the mucosal surface is smooth (Angelou et al.,
2023; Badawi et al., 1998).

The mucous membrane is lined with a simple
columnar epithelium and contains a thick lamina propria
with a large number of intestinal glands in goblet cells.
The glands formed by an invaginated mucosa may disrupt
the lamina muscularis and extend to the submucosa.

The structure of the tunica muscularis is similar to
that in small intestines. Additionally, in horses and pigs,
the outer longitudinal layer in the cecum and colon forms
large and flat muscle bands with elastic fibres, the taenia
ceci and taenia coli.

In the final section of the rectum the intestinal crypts
disappear and the simple stratified columnar epithelium
is replaced by a stratified squamous epithelium which
keratinizes in the anus. The lamina propria of the mucous
membrane houses lymphatic tissue, lymphatic follicles
and anal glands (Sheahan and Jervis, 1976; Kotzé et al.,
2010).

2.9. Liver. The liver is covered by the peritoneum
beneath which a fibrous capsule is located. Connective
tissue strands extend into the liver dividing it into liver
lobules. The amount of interlobular connective tissue
is minimal in horses, ruminants, carnivores, rodents,
and certain birds, while it is abundant in pigs, camels,
turkeys, ducks, and geese. In every animal species,
there are expanded areas of interlobular connective tissue
supporting branches of the hepatic artery, branches of the
portal vein and a bile duct lined with simple cuboidal
epithelium. These three structures form a liver triad in
a portal area (Eberlova et al., 2020).

Within the hepatic lobule, there are hepatocytes
arranged in radial rows extending from the central vein.
Between the bars of hepatocytes, there are sinusoid
capillaries which lead the blood into the central vein. The
hepatocytes surface form a bile canaliculi where the bile
is secreted and transported to the bile ducts in the portal
areas (Lidbury et al., 2017; Banzato et al., 2015).
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2.10. Pancreas. The pancreas is a tubulo-acinar,
lobulated gland with both exocrine and endocrine parts. It
is encased in a serous membrane, beneath which there is a
thin connective tissue capsule. From this capsule, strands
of connective tissue penetrate the parenchyma, dividing it
into lobules (Newman et al., 2006).

The pancreatic parenchyma separated into distinct
lobules comprises an exocrine part with a tubuloacinar
secretory units with pyramidal cells and a small lumen.
The tubular portion is more prominent in ruminants. The
intercalated excretory ducts initiate directly within the
glandular portions forming a centroacinar cells. The
intralobular ducts are continued by interlobular ducts,
pancreatic and accessory pancreatic ducts until they reach
the duodenum (Longnecker and Thompson, 2023).

The endocrine part of the pancreas is composed of
clusters of endrocrine cells, forming the pancreatic islets.
Numerous sinusoid capillaries and a network of reticular
fibres are present between these cells (Tsuchitani et al.,
2016).

2.11. State of the art of AI in histology. The
subtle differences and intricate details distinguishing
individual organs of the digestive system, as well as
the challenges associated with species diversity, pose
significant difficulties for laboratory personnel, novice
doctors, students, scientific institutions, and learners.
Identification of specific structures is often complicated
by the inherent individual differences in living organisms,
which may deviate from the idealized representations
found in textbooks or articles. This discrepancy can lead
to frustration and extended periods of uncertainty during
the identification process. Furthermore, the described
identification possibilities are often quite subjective, such
as the assessment of whether intestinal villi are long and
narrow or shorter and thicker. The physiology of living
animals means that structures often exhibit characteristics
that lie somewhere between the features typically assigned
to a given organ or species. In such instances, individuals
often reach an impasse, lacking additional tools to aid
interpretation or resort to probabilistic judgments that
carry a high risk of error. The artificial intelligence tool
proposed in this article represents an initial attempt to
develop a resource that can assist both novices grappling
with interpretative dilemmas in the realm of histology
and professionals seeking to expedite their workflow.
Often, novices lack access to mentors who can answer
troublesome questions, a common scenario in small
diagnostic facilities. Professionals, on the other hand, can
use this tool to significantly reduce their working time and
cross-verify their results in case of doubt.

The current state of research on artificial intelligence
(AI) in histology and histopathology is quite promising.
AI methods have significantly enhanced our ability
to extract quantitative information from digital

histopathology images. These methods are expected
to reduce the workload for human experts, improve the
objectivity and consistency of pathology reports, and
have a clinical impact by extracting hidden information
from routinely available data

The field of histology and histopathology is
witnessing promising advancements with the integration
of AI. The available AI methodologies have substantially
augmented our capacity to extract quantitative data from
digital histopathology images. These methodologies
are anticipated to alleviate the workload of human
experts, enhance the objectivity and consistency of
pathology reports, and make a clinical impact by
extracting concealed information from routinely available
data. In the realm of veterinary medicine, including
histology, the application of AI is rapidly evolving.
Most AI applications in veterinary medicine are
predominantly academic, with a few commercial products
as exceptions. Some commercially available products
in veterinary medicine encompass automated analysis
of x-ray radiographs (Basran, 2024). They are also
focusing on employing radiomics-based research, and
data-driven analysis of medical images, for a variety of
companion animal cancers (Rakha et al., 2021). Given
the accelerating pace of this technology, it is expected
that various forms of AI will be adopted in veterinary
applications.

In conclusion, while AI holds substantial promise in
the field of veterinary histopathology, challenges remain
to be addressed (Ezanno et al., 2021). First of all, there
is a problem with the high price of such solutions, as
the current technologies are provided to the users as
physical devices with software hard-coded inside them.
Such a solution is more profitable to creators as the user
has no control over the equipment and has zero upgrade
possibilities and it makes the price much higher. Also,
it creates an accessibility problem because such devices
need to be manufactured, sent and placed in a specialized
room. Such devices are often very slow and have old
hardware, which reduces the time and money benefit.
Additionally, it requires changing human specialists’
behavior in performing a diagnosis or classification as
it adds more steps including use of the machine. The
presented solution is purely software-based, so that it
reduces the need for additional equipment, and allows
the user to quickly add such a solution to the current
pipeline. Also, if the hardware is too slow, it can be
easily upgraded in the future without the need of buying
the program again. All updates can also be done via the
Internet, which is much faster and safer than upgrading
the physical device. What is more, this paper focuses
on lightweight AI, which can be quickly evaluated, and
allows for more examinations at the same time.
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3. Image augmentation and balancing
The custom dataset has been made with the focus on a
balance of the abstract classes and included most of the
photographed samples to allow the network to predict
the tissue origin based on the majority of the visible
structures. However, due to the time restrictions, the
number of images per class was around 100 images.
Such an amount is good to create a basic understanding
of the characteristics differences but due, to a high
amount of detected classes, it is not enough to ensure
high validation accuracy. Because of that, this paper
presents an augmentation algorithm that enriches the
training dataset with modified samples, which then allows
for better training and evaluation. The proposed image
augmentation is presented as Algorithm 2, where img1
is an input image, lab1 is an input label, img res is
the processed image resolution and ψ is the number of
repetitions. For our final network, ψ, has been set to
200 and img res to 256×256. As the given images are
from light-microscopy made on a white background, all
the images have been inverted so the MaxPooling layers
from the model architecture can properly detect important
features instead of the background. During the research it
was found that some basic transformations like horizontal
and vertical flips, as well as random rotations help to deal
with the low number of samples; however, to achieve
the full accuracy, some color jitter transformations were
needed to reduce the bias made by different lighting or
coloring of the samples. Some more transformations
changing the shape or generating new data should be
avoided to reduce the error made by augmentation and
allow the network to learn valid characteristics instead of
the fake ones.

First, we need to define a bicubic interpolation

f(x, y) =

3∑

i=0

3∑

j=0

aijx
iyj. (1)

Next we define an image resize algorithm,

resize(img1, w, h) =

w−1∑

i=0

h−1∑

j=0

(
3∑

k=0

3∑

l=0

aklx
kyl

)
,

(2)
where img1 is the original image,w and h are respectively
the desired width and height, x and y are the normalized
coordinates of the point in the original image, and akl
are the coefficients that depend on the pixel values and
derivatives at the four corners of the 4×4 grid. This
equation applies the bicubic interpolation formula to each
pixel of the resized image defined in (1).

Now we need to define an image rotation equation
[
x′

y′

] [
cos θ − sin θ
sin θ cos θ

] [
x
y

]
, (3)

where (x, y) are the original coordinates of a point in the
image, (x′, y′) are the rotated coordinates of the same
point, and θ is the angle of rotation in radians. In order
to convert the angle from degrees into radians, we can use
the equation

θ =
π

180
× d, (4)

where d is a desired degree. Now we can create a function
to apply (3) and (4) on an image:

rotate(img1, d)

=

[
cos( π

180 × d) − sin( π
180 × d)

sin( π
180 × d) cos( π

180 × d)
]
×
[
x− x0
y − y0

]

+

[
x0
y0

]
,

(5)

where (x0, y0) are the coordinates of the center of
rotation, which are (0, 0) in our case. This equation is
based on the fact that to rotate an image around a point
other than the origin, we need to first translate the image
so that the center of rotation coincides with the origin,
then apply the rotation matrix, and then translate the
image back to its original position.

For most image color transformations, we have first
to convert the RGB to the hue-saturation-lightness (HSL)
representation:

rgb hsl(img1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R′ = R
255 ,

G′ = G
255 ,

B′ = B
255 ,

M = max(R′, G′, B′),
m = min(R′, G′, B′),
C =M −m,
L = M+m

2 ,

S =

{
0 if C = 0,

C
1−|2L−1| otherwise,

H =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if C = 0

60◦ × (G
′−B′
C mod 6) if M = R′,

60◦ × (B
′−R′
C + 2) if M = G′,

60◦ × (R
′−G′
C + 4) if M = B′,

(6)

where R is red, G is green, B is blue, M is the maximal
value, m is the minimal value, C is chroma, L is
luminance, S is saturation on H is hue.

To change saturation first, we have to define what the
saturation is, i.e.,

S =
max(R,G,B)−min(R,G,B)

max(R,G,B) + min(R,G,B)
, (7)

where S is the saturation,R is red channel,G is the green
channel and B is the blue component of the image. This
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formula is based on the HSL color model. Now, if we
want to change the image saturation, we can multiply the
S component by some multiplier x,

S′ = x× S. (8)

Now, to get the final RGB values, we need to convert the
image back from HSL to RGB:

hsl rgb(img1)

=

⎧
⎪⎨

⎪⎩

R′ = L+ S′(L− 0.5)(1− |2L− 1|),
G′ = L+ S′(L− 0.5)(1− |2L− 1|),
B′ = L+ S′(L − 0.5)(1− |2L− 1|),

(9)

where L is the lightness, and R′, G′, and B′ are the new
red, green, and blue components. The final saturation
equation can be then defined as

change saturation(img1, f)

=

⎧
⎪⎨

⎪⎩

img2 = rgb hsl(img1),

img2.S = img2.S × f,
img2 = hsl rgb(img2).

(10)

To change the brightness we use a simple equation

change brightness(img1, f)

=

⎧
⎪⎨

⎪⎩

R′ = min(max(R× f, 0), 255),
G′ = min(max(G× f, 0), 255),
B′ = min(max(B × f, 0), 255),

(11)

where R′, G′, B′ are the new red, green, blue component
values and f is a multiplier.

One possible way to change the contrast of a 2D
image is to apply a linear transformation to the pixel
values, such that the minimum and maximum values in the
input image are mapped to the desired values in the output
image. For example, if we want to map the input range
[a, b] to the output range [c, d], we can use the following
formula:

y =
d− c
b − a(x − a) + c, (12)

where x is the input pixel value and y is the output pixel
value. This formula can be applied to each channel of
an RGB image separately, or to a single channel of a
grayscale or HSV image. This method is also known as
contrast stretching or histogram stretching. A possible

equation for this method is

change contrast(img, f)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[aR, bR] = [min(R),max(R)],

[aG, bG] = [min(G),max(G)],

[aB, bB] = [min(B),max(B)],

[cR, dR] = [aR, bR]× f,
[cG, dG] = [aG, bG]× f,
[cB, dB ] = [aB , bB]× f,
R′ = dR−cR

bR−aR
× (R − aR) + cR,

G′ = dG−cG
bG−aG

× (G− aG) + cG,

B′ = dB−cB
bB−aB

× (B − aB) + cB,

(13)

where R, G, and B are the original RGB values, R′, G′,
and B′ are the new RGB values, and [aR, bR], [aG, bG],
and [aB, bB] are the input ranges for each channel, and
[cR, dR], [cG, dG], and [cB, dB] are the output ranges for
each channel.

The hue component is changed as

H ′ = (H + θ) mod 1, (14)

where θ is a value by which the hue is shifted. Now the
whole process of changing the hue of an RGB image is

change hue(img1, f)

=

⎧
⎪⎨

⎪⎩

img2 = rgb hsl(img1),

img2.H = (img2.H + f) mod 1,

img2 = hsl rgb(img2).

(15)

To flip a 2D image horizontally, we have to reverse
the order of the pixels in each row of the image. This
can be done by applying a transformation matrix to the
coordinates of each pixel. The transformation matrix for
horizontal flipping is

Hor =

⎡

⎣
−1 0 w
0 1 0
0 0 1

⎤

⎦ , (16)

where w is the image width. This matrix will multiply
each pixel coordinate (y) by −1 and then add w to the
result, effectively moving the pixel to the opposite side of
the image. The y coordinate will remain unchanged. For
example, if the image has a width of 10 pixels and we
want to flip the pixel at (3, 4), we get

⎡

⎣
−1 0 10
0 1 0
0 0 1

⎤

⎦

⎡

⎣
3
4
1

⎤

⎦

⎡

⎣
−3 + 10
4 + 0
1 + 0

⎤

⎦

⎡

⎣
7
4
1

⎤

⎦ . (17)

As a result, the pixel at (3, 4) will be moved to
(7, 4). Thus, we can flip the entire image horizontally.
Accordingly,

flip horizontal(img1) = apply(img1,Hor), (18)
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where
apply(img1,m) = img1 ×m, (19)

and m is an applied matrix.
To flip a 2D image vertically, we have to reverse the

order of the pixels in each column of the image. This
can be done by applying a transformation matrix to the
coordinates of each pixel. The transformation matrix for
vertical flipping is

Ver =

⎡

⎣
1 0 0
0 −1 h
0 0 1

⎤

⎦ , (20)

where h is the image height. This matrix will multiply
each pixel coordinate (y) by −1 and then add h to the
result, effectively moving the pixel to the opposite side of
the image. The x coordinate will remain unchanged. For
example, if the image has a height of 10 pixels and we
want to flip the pixel at (3, 4), we get

⎡

⎣
1 0 0
0 −1 10
0 0 1

⎤

⎦

⎡

⎣
3
4
1

⎤

⎦

⎡

⎣
3 + 0
−4 + 10
1 + 0

⎤

⎦

⎡

⎣
3
6
1

⎤

⎦ . (21)

Therefore the pixel at (3, 4) will be moved to (3, 6).
In this way, we can flip the entire image vertically,

flip vertical(img1) = apply(img1,Ver). (22)

In our paper, we have used a random float generator
named the Mersenne Twister algorithm. It is a
pseudorandom number generator developed by Makoto
Matsumoto and Takuji Nishimura in 1997. It is based
on a matrix linear recurrence over a finite binary field.
It can produce high-quality pseudorandom numbers that
pass many statistical tests of randomness.

A pseudocode for the Mersenne Twister algorithm
is presented as Algorithm 1. Here, ⊕ is the bitwise
XOR operation, � and � are the bitwise right and left
shift operations, respectively, and ∧ is the bitwise AND
operation. The constants N , M , R, A, U , D, S, B, T ,
C, and L are chosen based on the word size (32 or 64
bits) and the Mersenne prime. The masks UPPER MASK
and LOWER MASK are derived from R. To generate
a random float in the range [0, 1), we can divide the
output of ExtractNumber by the maximum possible
value, which is either 232 − 1 or 264 − 1, depending on
the word size. Alternatively, we can use the output bits
directly as the binary representation of a floating-point
number, as long as we avoid generating zero or one.

In such way a function random float(a, b) can be
written as follows:

random float(a, b)

=
ExactNumber()

(232 − 1)
× (a− b) + a .

(23)

4. Proposed solution
The manual way of classification organs based on
microscope imagery can be difficult and time consuming.
To deal with this issue, this paper presents a lightweight
deep learning solution allowing for accurate and quick
classification of tissues origin. Presented solution can
be found in Fig. 4. The architecture is based on a
convolutional neural network architecture. To improve
the data flow and reduce the negative impact of a
large number of layers on signal decay, the architecture
includes usage of residual connections, which strengthens
the signal adding extra information for the later layers.
Additionally, batch and layer normalization layers are
added in empirically set positions in order to normalize
the signal. Such combination allows for addition of more
neuron layers, which improves the final understanding of
the problem by the network. As an activation function,
the rectified linear-unit (ReLU) has been chosen as it is
computationally lightweight and gives enough complexity
for achieving high accuracy. Its defining equation is

y′ = max(0, y). (24)

For the last layer, we have used the softmax
activation function

σ(zi) =
ezi

∑K
j=1 e

zj
, i = 1, 2, . . . ,K. (25)

Algorithm 1. Mersenne Twister algorithm for random
float generation.

Initialize an array MT [0 . . .N − 1] with a seed
index← N
EXTRACT NUMBER
if index ≥ N then

TWIST
end if
y ←MT [index]
y ← y ⊕ ((y � U) ∧D)
y ← y ⊕ ((y � S) ∧B)
y ← y ⊕ ((y � T ) ∧ C)
y ← y ⊕ (y � L)
index← index+ 1
RETURN y
TWIST
for i from 0 to N − 1 do
x← (MT [i] ∧ UPPER MASK) + (MT [(i+ 1)
mod N ] ∧ LOWER MASK)
xA ← x� 1
if x is odd then
xA ← xA ⊕A

end if
MT [i]←MT [(i+M) mod N ]⊕ xA

end for
index← 0
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To keep the neural network small enough for quick
training and evaluation the number of residual blocks has
been kept at three, each one ending with a MaxPooling
layer. The number of convolutional layers per residual
block has been also reduced in comparison with popular
models like ResNet50 or DenseNet. Such a modification
allowed for better accuracy achieved in a smaller number
of epochs on the given dataset as there was a smaller
number of weights to optimize. For the training a modified
NAdam algorithm was introduced that includes vector
clamping in order to improve training stability.

Algorithm 2. Image augmentation algorithm.
Require: img1, lab1, img res, ψ

1: img1 := 255− img1
2: img1 := resize(img1, img res, img res) (2)
3: output list := []
4: if ψ > 1 then
5: i := 0
6: for i < ψ do
7: img2 := img1
8: STAGE I - Image rotation
9: β := random float(0, 1)

10: if β > 0.3 then
11: α := random float(−30, 30) (23)
12: img2 := rotate(img2, α) (5)
13: end if
14: STAGE II - Color Jitter
15: α1 := random float(0.8, 1.2)
16: α2 := random float(0.8, 1.2)
17: α3 := random float(0.8, 1.2)
18: α4 := random float(−0.1, 0.1)
19: img2 := change saturation(img2, α1) (10)
20: img2 := change brightness(img2, α2) (11)
21: img2 := change contrast(img2, α3) (13)
22: img2 := change hue(img2, α4) (15)
23: β := random float(0, 1)
24: STAGE III - Image flipping
25: if β > 0.5 then
26: img2 := flip horizontal(img2) (18)
27: end if
28: β := random float(0, 1)
29: if β > 0.5 then
30: img2 := flip vertical(img2) (22)
31: end if
32: img2 := img2/255.0 {Normalization}
33: output list.append(img2, lab1)
34: end for
35: end if
36: img1 := img1/255.0 {Normalization}
37: output list.append(img1, lab1)
38: return output list {Returns output batch of

augmented images}

4.1. Backpropagation. Backpropagation is a method
of training artificial neural networks by adjusting the
weights of the connections in the network based on the
error between the desired output and the actual output.

The algorithm can be written as follows.

Input data:
X = input data matrix of size n× d,
Y = output data matrix of size n× k,
f = activation function (e.g., sigmoid, ReLU, etc.),
L = loss function (e.g., mean squared error, etc.),

()

MeanBackward0
------------------------------
self          : [saved tensor]
self_sym_sizes:        (1, 25)

self
(1, 25)

AddmmBackward0
--------------------------------
alpha           :              1
beta            :              1
mat1            : [saved tensor]
mat1_sym_sizes  :       (1, 512)
mat1_sym_strides:       (512, 1)
mat2            : [saved tensor]
mat2_sym_sizes  :      (512, 25)
mat2_sym_strides:       (1, 512)

mat1
(1, 512)

mat2
(512, 25)

AccumulateGrad

linear.bias
(25)

ViewBackward0
------------------------------
self_sym_sizes: (1, 512, 1, 1)

AdaptiveMaxPool2DBackward0
--------------------------
result1: [saved tensor]
self   : [saved tensor]

result1
(1, 512, 1, 1)

self
(1, 512, 16, 16)

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 512, 16, 16)

AddBackward0
------------
alpha: 1

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 512, 16, 16)

result1
(512)

result2
(512)

running_mean
(512)

running_var
(512)

layers.3.1.bn2.weight
(512)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 512, 16, 16)

layers.3.1.conv2.weight
(512, 512, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 512, 16, 16)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 512, 16, 16)

result1
(512)

result2
(512)

running_mean
(512)

running_var
(512)

layers.3.1.bn1.weight
(512)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 512, 16, 16)

layers.3.1.conv1.weight
(512, 512, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 512, 16, 16)

AddBackward0
------------
alpha: 1

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 512, 16, 16)

result1
(512)

result2
(512)

running_mean
(512)

running_var
(512)

layers.3.0.bn2.weight
(512)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 512, 16, 16)

layers.3.0.conv2.weight
(512, 512, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 512, 16, 16)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 512, 16, 16)

result1
(512)

result2
(512)

running_mean
(512)

running_var
(512)

layers.3.0.bn1.weight
(512)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (2, 2)
transposed        :          False
weight            : [saved tensor]

input
(1, 256, 32, 32)

layers.3.0.conv1.weight
(512, 256, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 256, 32, 32)

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (0, 0)
stride            :         (2, 2)
transposed        :          False
weight            : [saved tensor]

AddBackward0
------------
alpha: 1

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 256, 32, 32)

result1
(256)

result2
(256)

running_mean
(256)

running_var
(256)

layers.2.3.bn2.weight
(256)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 256, 32, 32)

layers.2.3.conv2.weight
(256, 256, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 256, 32, 32)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 256, 32, 32)

result1
(256)

result2
(256)

running_mean
(256)

running_var
(256)

layers.2.3.bn1.weight
(256)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 256, 32, 32)

layers.2.3.conv1.weight
(256, 256, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 256, 32, 32)

AddBackward0
------------
alpha: 1

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 256, 32, 32)

result1
(256)

result2
(256)

running_mean
(256)

running_var
(256)

layers.2.2.bn2.weight
(256)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 256, 32, 32)

layers.2.2.conv2.weight
(256, 256, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 256, 32, 32)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 256, 32, 32)

result1
(256)

result2
(256)

running_mean
(256)

running_var
(256)

layers.2.2.bn1.weight
(256)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 256, 32, 32)

layers.2.2.conv1.weight
(256, 256, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 256, 32, 32)

AddBackward0
------------
alpha: 1

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 256, 32, 32)

result1
(256)

result2
(256)

running_mean
(256)

running_var
(256)

layers.2.1.bn2.weight
(256)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 256, 32, 32)

layers.2.1.conv2.weight
(256, 256, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 256, 32, 32)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 256, 32, 32)

result1
(256)

result2
(256)

running_mean
(256)

running_var
(256)

layers.2.1.bn1.weight
(256)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 256, 32, 32)

layers.2.1.conv1.weight
(256, 256, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 256, 32, 32)

AddBackward0
------------
alpha: 1

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 256, 32, 32)

result1
(256)

result2
(256)

running_mean
(256)

running_var
(256)

layers.2.0.bn2.weight
(256)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 256, 32, 32)

layers.2.0.conv2.weight
(256, 256, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 256, 32, 32)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 256, 32, 32)

result1
(256)

result2
(256)

running_mean
(256)

running_var
(256)

layers.2.0.bn1.weight
(256)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (2, 2)
transposed        :          False
weight            : [saved tensor]

input
(1, 128, 64, 64)

layers.2.0.conv1.weight
(256, 128, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 128, 64, 64)

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (0, 0)
stride            :         (2, 2)
transposed        :          False
weight            : [saved tensor]

AddBackward0
------------
alpha: 1

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 128, 64, 64)

result1
(128)

result2
(128)

running_mean
(128)

running_var
(128)

layers.1.1.bn2.weight
(128)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 128, 64, 64)

layers.1.1.conv2.weight
(128, 128, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 128, 64, 64)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 128, 64, 64)

result1
(128)

result2
(128)

running_mean
(128)

running_var
(128)

layers.1.1.bn1.weight
(128)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 128, 64, 64)

layers.1.1.conv1.weight
(128, 128, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 128, 64, 64)

AddBackward0
------------
alpha: 1

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 128, 64, 64)

result1
(128)

result2
(128)

running_mean
(128)

running_var
(128)

layers.1.0.bn2.weight
(128)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 128, 64, 64)

layers.1.0.conv2.weight
(128, 128, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 128, 64, 64)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 128, 64, 64)

result1
(128)

result2
(128)

running_mean
(128)

running_var
(128)

layers.1.0.bn1.weight
(128)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (2, 2)
transposed        :          False
weight            : [saved tensor]

input
(1, 64, 128, 128)

layers.1.0.conv1.weight
(128, 64, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 64, 128, 128)

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (0, 0)
stride            :         (2, 2)
transposed        :          False
weight            : [saved tensor]

AddBackward0
------------
alpha: 1

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 64, 128, 128)

result1
(64)

result2
(64)

running_mean
(64)

running_var
(64)

layers.0.1.bn2.weight
(64)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 64, 128, 128)

layers.0.1.conv2.weight
(64, 64, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 64, 128, 128)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 64, 128, 128)

result1
(64)

result2
(64)

running_mean
(64)

running_var
(64)

layers.0.1.bn1.weight
(64)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 64, 128, 128)

layers.0.1.conv1.weight
(64, 64, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 64, 128, 128)

AddBackward0
------------
alpha: 1

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 64, 128, 128)

result1
(64)

result2
(64)

running_mean
(64)

running_var
(64)

layers.0.0.bn2.weight
(64)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 64, 128, 128)

layers.0.0.conv2.weight
(64, 64, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 64, 128, 128)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 64, 128, 128)

result1
(64)

result2
(64)

running_mean
(64)

running_var
(64)

layers.0.0.bn1.weight
(64)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (2, 2)
transposed        :          False
weight            : [saved tensor]

input
(1, 64, 256, 256)

layers.0.0.conv1.weight
(64, 64, 3, 3)

AccumulateGrad

ReluBackward0
----------------------
result: [saved tensor]

result
(1, 64, 256, 256)

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (0, 0)
stride            :         (2, 2)
transposed        :          False
weight            : [saved tensor]

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 64, 256, 256)

result1
(64)

result2
(64)

running_mean
(64)

running_var
(64)

bn1.weight
(64)

AccumulateGrad

ConvolutionBackward0
----------------------------------
bias_sym_sizes_opt:           (0,)
dilation          :         (1, 1)
groups            :              1
input             : [saved tensor]
output_padding    :         (0, 0)
padding           :         (1, 1)
stride            :         (1, 1)
transposed        :          False
weight            : [saved tensor]

input
(1, 3, 256, 256)

conv1.weight
(64, 3, 3, 3)

AccumulateGrad

AccumulateGrad

bn1.bias
(64)

AccumulateGrad

layers.0.0.bn1.bias
(64)

AccumulateGrad

layers.0.0.bn2.bias
(64)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 64, 128, 128)

result1
(64)

result2
(64)

running_mean
(64)

running_var
(64)

layers.0.0.shortcut.1.weight
(64)

AccumulateGrad

layers.0.0.shortcut.0.weight
(64, 64, 1, 1)

AccumulateGrad

AccumulateGrad

layers.0.0.shortcut.1.bias
(64)

AccumulateGrad

layers.0.1.bn1.bias
(64)

AccumulateGrad

layers.0.1.bn2.bias
(64)

AccumulateGrad

layers.1.0.bn1.bias
(128)

AccumulateGrad

layers.1.0.bn2.bias
(128)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 128, 64, 64)

result1
(128)

result2
(128)

running_mean
(128)

running_var
(128)

layers.1.0.shortcut.1.weight
(128)

AccumulateGrad

layers.1.0.shortcut.0.weight
(128, 64, 1, 1)

AccumulateGrad

AccumulateGrad

layers.1.0.shortcut.1.bias
(128)

AccumulateGrad

layers.1.1.bn1.bias
(128)

AccumulateGrad

layers.1.1.bn2.bias
(128)

AccumulateGrad

layers.2.0.bn1.bias
(256)

AccumulateGrad

layers.2.0.bn2.bias
(256)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 256, 32, 32)

result1
(256)

result2
(256)

running_mean
(256)

running_var
(256)

layers.2.0.shortcut.1.weight
(256)

AccumulateGrad

layers.2.0.shortcut.0.weight
(256, 128, 1, 1)

AccumulateGrad

AccumulateGrad

layers.2.0.shortcut.1.bias
(256)

AccumulateGrad

layers.2.1.bn1.bias
(256)

AccumulateGrad

layers.2.1.bn2.bias
(256)

AccumulateGrad

layers.2.2.bn1.bias
(256)

AccumulateGrad

layers.2.2.bn2.bias
(256)

AccumulateGrad

layers.2.3.bn1.bias
(256)

AccumulateGrad

layers.2.3.bn2.bias
(256)

AccumulateGrad

layers.3.0.bn1.bias
(512)

AccumulateGrad

layers.3.0.bn2.bias
(512)

NativeBatchNormBackward0
----------------------------
eps         :          1e-05
input       : [saved tensor]
result1     : [saved tensor]
result2     : [saved tensor]
running_mean: [saved tensor]
running_var : [saved tensor]
training    :           True
weight      : [saved tensor]

input
(1, 512, 16, 16)

result1
(512)

result2
(512)

running_mean
(512)

running_var
(512)

layers.3.0.shortcut.1.weight
(512)

AccumulateGrad

layers.3.0.shortcut.0.weight
(512, 256, 1, 1)

AccumulateGrad

AccumulateGrad

layers.3.0.shortcut.1.bias
(512)

AccumulateGrad

layers.3.1.bn1.bias
(512)

AccumulateGrad

layers.3.1.bn2.bias
(512)

TBackward0

AccumulateGrad

linear.weight
(25, 512)

Fig. 4. Proposed deep neural network architecture.
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W (1), . . . ,W (m) = weight matrices
of consecutive layers,

b(1), . . . , b(m) = bias vectors
of consecutive layers.

Forward pass:

Z(1) = XW (1) + b(1),

A(1) = f(Z(1)),

Z(2) = A(1)W (2) + b(2),

A(2) = f(Z(2)),

...

Z(m) = A(m−1)W (m) + b(m),

A(m) = f(Z(m)),

Ŷ = A(m).

Backward pass:

E = L(Y, Ŷ ),

dZ(m) = f ′(Z(m))× E,
dW (m) = A(m−1)T dZ(m),

db(m) = dZ(m),

dA(m−1) = dZ(m)W (m)T ,

dZ(m−1) = f ′(Z(m−1))× dA(m−1),

dW (m−1) = A(m−2)T dZ(m−1),

db(m−1) = dZ(m−1),

dA(m−2) = dZ(m−1)W (m−1)T ,

...

dZ(1) = f ′(Z(1))× dA(1),

dW (1) = XTdZ(1),

db(1) = dZ(1).

Update weights and biases:

W (i) :=W (i) − lr × dW (i),

b(i) := b(i) − lr × db(i),
for i = 1, 2, . . . ,m,

(26)

where lr is the learning rate, a hyper-parameter that
controls how much the weights and biases are updated in
each iteration. The algorithm can be repeated until the
loss function reaches a minimum or a desired accuracy is
achieved.

4.2. NAdam training algorithm. In order to improve
the model’s performance in terms of final accuracy, as
well as the training times, we have used a slightly
customized NAdam training algorithm on top of the

classical backpropagation with parameters with a learning
rate of 0.0001 and logarithmic decay, β1 = 0.925, β2 =
0.998. The NAdam formula can be described as follows:

zt = β1zt−1 + (1 − β1)pt, (27)

kt = β2kt−1 + (1− β2)p2t , (28)

where p is the current gradient of an error function and β1
and β2 are constant hyper-parameters. The values of zt
and kt are used for calculation of the correlations marked
as ẑt and k̂t according to

ẑt = (1 − β1)pt + β1
t+1
zt, (29)

k̂t =
kt

1− βt
2

. (30)

Finally, using the previously calculated correlations,
the final formula can be defined as

wt = wt−1 − LR ẑt√
β2t + ε

, (31)

where ε is a small constant, w are model weights and LR
is the learning rate.

In the presented modification, however, the weights’
update equation has been changed to include clamping for
the weights’ change vector in order to reduce the overflow
and improve the network stability. The modified equation
is:

wt = wt−1 − LR× clamp
( ẑt√

β2t + ε
,−φ, φ

)
, (32)

where φ has been empirically set to be initially 1.586 and
with a decay connected to the learning rate.

The applied loss function used in the presented
training was the mean squared logarithmic error

L(y, ŷ) =
1

N

N∑

i=0

(log(yi + 1)− log(ŷi + 1))2. (33)

Due to its nature, it gave the best results for the given
problem. The training process is also described as
Algorithm 3.

4.3. Used hardware and performance. In this paper
all computations including training have been performed
on a 2023 Apple MacBook Pro with the following
configuration:

• CPU: Apple M2 Max 12c,

• GPU: Apple M2 Max 38c,

• RAM: 96 GB.
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Algorithm 3. NAdam training process.
1: Random weights generation,
2: while global error value ε < error value do
3: Shuffle the training set TS,
4: for each mini-batch inside TS do
5: Step = Step + 1,
6: Calculate gradient vector p on the mini-batch,
7: Update vector z using (27),
8: Update vector k using (28),
9: Rescale vector ẑ using (29),

10: Rescale vector k̂ using (30),
11: Update weights ŵt using (32).
12: end for
13: Compute global error ε,
14: end while

Table 1. Comparison of different batch sizes and training times
per epoch.

Batch size Time per epoch
8 29 s/epoch

16 26 s/epoch
32 27 s/epoch

Table 2. Comparison between different batch sizes and infer-
ence time per batch.

Batch size Time per batch
2 1 s/batch
4 2 s/batch
8 4 s/batch
16 6 s/batch
32 11 s/batch
64 22 s/batch

The final training took around 35 minutes and
yielded a validation accuracy of 98.34%. Table 1 presents
training times for different batch sizes. As can be seen,
the best performance can be found with a batch size of 16,
which was used in the final training. In Table 2 we can see
inference times for different numbers of images. Here we
can see a trend where more images per batch to some point
are faster to process due to memory bandwidth. There
also can be seen that on used hardware the analysis is
very quick allowing the doctor to perform many checks
per session.

5. Results
After around 35 minutes of training the proposed solution
reached its peak validation accuracy of 98.34%, F1 of
0.9847, 0.9878 precision and 0.9852 recall, using 85:15
split ratio for the training and validation sets. It is a very
high score, especially considering that many of the images
were contained in regions that were not characteristic

Fig. 5. Confusion matrix for network evaluation on validation
data.

to the specific organ and also that there is no visible
difference for a human specialist between the same organ
from different species. The proposed solution however
was able to differentiate them correctly in mostcases.
The confusion matrices are shown in Fig. 5. As can be
seen, the solution has a strong understanding of the given
problem and mistakes are very uncommon.

5.1. Comparison with the state of the art. To validate
our results, a comparison between the presented model
and other similar state-of-the-art papers has been made,
cf. Table 3. As we can see, the direct comparison is not
possible as the majority of models are based on much
fewer abstract classes and only from one species–Human;
however it is still important to compare the accuracy of
such models to have a better understanding of the quality
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Fig. 6. Ileum of a pig with mucous membrane (1), submu-
cous membrane (2), muscular membrane (3), intestinal
villi (4), intestinal glands (5) and lymphatic follicle (6)
(H+E). Objective magnification: 10×.

Fig. 7. Sublingual salivary gland of a pig with secretory sections
(1), intercalated duct (2) and and striated duct (3) (H+E).
Objective magnification: 10×.

Fig. 8. Liver of a pig with interlobular connective tissue (1),
liver lobule (2), portal area with liver triad (3) (H+E).
Objective magnification: 10×.

of our work. One of the best architectures from our table
is made by Khorshed et al. (2020). Their accuracy is a
little higher than our model, but they had fewer classes
and all images came from human patients, which creates
a simpler problem than multi-species classification with
a large number of variables. Another interesting paper is
that by Ker et al. (2019), where tissue tumor detection was
investigated using Google’s inception model. Although
they used a transfer learning method for an initial weight
setup and a known, high performance deep learning
model, their accuracy was smaller than ours, reaching
96%. A similar solution was also proposed by Zahia et al.

Fig. 9. Sublingual salivary gland of a cow with secretory sec-
tions (1), intercalated and striated ducts (2) (H+E). Ob-
jective magnification: 10×.

Fig. 10. Gizzard with simple tubular glands (1), mucous mem-
brane (2), submucous membrane (3), muscular mem-
brane (4) (H+E). Objective magnification: 10×.

Fig. 11. Duodenum of a pig with intestinal villi (1), simple
columnar epithelium with goblet cells (2), intestinal
glands (3), duodenal glands (4) (H+E). Objective mag-
nification: 40×.

(2018), where a custom convolutional neural network
for tissue pressure injuries was presented. Their model
reached a peak accuracy of 92.01% on the employed
dataset, which is much smaller than in our solution.
Another work by Fragoso-Garcia et al. (2023) achieved
a good accuracy of 95%, however their number of
abstract classes was smaller. Finally, Vang et al. (2018)
presented an interesting model for tissue analysis using
a convolutional neural network and reached a validation
accuracy of 87.5%.

To test the proposed model more fairly in comparison
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Fig. 12. Liver of a pig with hepatocytes (1), portal area with
liver triad (2), venous vessel (3), interlobular connec-
tive tissue (4), liver lobule (5) (H+E). Objective magni-
fication: 10x.

Fig. 13. Mucous membrane of the stomach (fundus) of a pig
with simple columnar epithelium (1), gastric glands (2),
lamina propria of mucosa (3) (H+E). Objective magni-
fication: 40×.

Fig. 14. Two upper images presents colon of a horse and the
lower two images presents the colon of a pig. As we
can see, there are very little visual differences between
those two species, making it difficult to correctly differ-
entiate them. Our proposed neural network, however,
is able to correctly classify them. Objective magnifica-
tion: 40×.

with other popular models, we trained models ResNet50
and Vit16 on the presented dataset. After 35 minutes
of training, ResNet50 achieved an accuracy of 97.24%
which is worse by a little amount; however, Vit16 could
not achieve good results on these data having only an
accuracy of 13.81%. All models were trained with a batch
size of 16, the same image size and augmentation. More
information can be found in Table 3. As can be seen,
our model has similar training times and memory usage
per epoch in comparison with ResNet50; however, even
with that disadvantage, during the same training time it
converges much faster creating a better performing model
for this usage. Vit16, however, has much higher memory
usage and performs much slower in terms of the training
time per epoch. On this dataset it also achieves the worse
accuracy.

In conclusion, although the current state-of-the-art
papers present some interesting solution for tissue
analysis, the vast majority of them has a small, specialized
field in which they work (mostly cancer or injuries
detection) with a low number of abstract classes and also
work only on one species, mostly human. Such works
are valid for medicine; however, our method is a new and
novel addition to veterinary medicine, which is not yet
common. What is more, our results are outstanding and
can compete not only in veterinary medicine but also in
human one in terms of performance and accuracy.

5.2. Comparison between human specialists and the
proposed solution. In order to classify the sample in
Fig. 6, human specialists focus mostly on a region with
intestinal villi marked as 4, intestinal glands (5) and
lymphatic follicles (6), which are characteristic to this
organ. The proposed solution in this case focuses its
attention on similar regions. In both the samples, showed
in Figs. 7 and 9, human specialists classify the origin of
the sample by looking at the ratios of the listed elements,
as depending on the species those are different. By
analyzing the network’s attention map it can be concluded
that in these examples the proposed solution has a similar
approach as well. In Figs. 8 and 12 the traditional
method focuses on the listed structures and the presence
of hepatocytes, which are characteristic to the liver. In
these examples, however, the proposed solution, although
focusing on some of the marked regions, adds its own
places of attention in order to correctly differentiate the
origin of samples. In Fig. 10 specialists focus on the
overall shape of the structure with the emphasis on simple
tubular glands (1). The proposed solution, however,
focuses its attention mostly on the muscular membrane (4)
and the submucous membrane (3). In the example, paid
11 human specialists focus mostly on all listed elements
with special attention paid to duodenal glands (4), which
are characteristic to duodenum. In this case the proposed
solution has a similar approach as well. Finally in Fig. 13
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Table 3. Comparison between the presented model and other
popular models in terms of training times and memory
usage.
Model Memory Time per epoch
Our 4.06 GB 26 s/epoch
ResNet50 3.4 GB 25 s/epoch
Vit16 6.22 GB 63 s/epoch

Table 4. Comparison between the presented model and other
similar papers.

Model Year Accuracy
Ours (Animals) 2023 98.34%
Ker et al. (2019) (Human) 2019 96.00%
Zahia et al. (2018) (Human) 2018 92.01%
Khorshed et al. (2020) (Human) 2020 98.90%
Vang et al. (2018) (Human) 2018 87.50%
Fragoso-Garcia et al. (2023) 2023 95.00%
ResNet50 (Animals) 2024 97.24%
Vit16 (Animals) 2024 13.81%

all listed elements are necessary for classification but the
importance is mostly set to gastric glands (2), which are
characteristic to the stomach. The proposed solution has
also similar areas of focus.

6. Conclusion
The final presented network reached a high accuracy
on the validation data, especially taking account of the
high similarity of the tissues between different organs
of various species making it sometimes impossible to
correctly classify even for a trained professional. Because
of that, the proposed deep learning solution can be treated
as a successful attempt to solve the presented problem.
This paper also presents a well-functioning pipeline of
data augmentation without losing any important data and
providing misleading samples. In such a way, the final
network was able to reach a much higher accuracy than
on the original dataset. What is also important, this work
ensures the quality of the dataset by creating a custom
one with the focus on the balance between classes, high
quality of images and photographing regions ambiguous
for humans, which allowed a deep learning solution to
work also on such data. Another fact is that there were
no public datasets containing such a variety of classes for
animal tissue origin detection, which was the main focus
of the presented work. Because of this, the paper is one of
the first such works in the public domain. The presented
model can also be a useful addition to the education
sector as a helper for students during learning differences
between organs and tissues, especially when working with
freshly collected samples without prior knowledge about
the exact origin. In the current state of the work, the
accuracy of the presented architecture is high and provides

good results even in very difficult scenarios; however, at
this moment there is a limited number of abstract classes,
which could not be enough for a full diagnosis. The model
is also lightweight. However, although it can run even
on low performance computers, more work could be done
to make it even less resource intensive to allow for more
mobile inference.

7. Future possibilities
In the future, there is a possibility to create an extended
dataset by photographing more samples per available
classes and also by adding new categories. In such a way,
the network would be even more useful and have a better
understanding of the analyzed problem. There is also a
possibility to improve the data augmentation pipeline and
fine-tune the deep learning architecture to improve the
final accuracy even more. Another possibility is to create
a new dataset focused on different regions of the body or
to include a semantic segmentation architecture for adding
more information for the user about the evaluated tissue.

Another important possibility is to use the presented
dataset as a template for a neural network model able
to detect abnormalities in photographed tissues based on
the healthy data collected in this paper. Such work can
be very helpful in pathology classification and detection.
However, without the knowledge of a healthy tissue image
it will not work properly making the presented work an
important step in finding a solution for such a problem.
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