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The fruit fly optimization algorithm (FOA) is a global optimization algorithm inspired by the foraging behavior of a fruit fly
swarm. In this study, a novel stochastic fractal model based fruit fly optimization algorithm is proposed for multiobjective
optimization. A food source generating method based on a stochastic fractal with an adaptive parameter updating strategy
is introduced to improve the convergence performance of the fruit fly optimization algorithm. To deal with multiobjective
optimization problems, the Pareto domination concept is integrated into the selection process of fruit fly optimization
and a novel multiobjective fruit fly optimization algorithm is then developed. Similarly to most of other multiobjective
evolutionary algorithms (MOEAs), an external elitist archive is utilized to preserve the nondominated solutions found so
far during the evolution, and a normalized nearest neighbor distance based density estimation strategy is adopted to keep the
diversity of the external elitist archive. Eighteen benchmarks are used to test the performance of the stochastic fractal based
multiobjective fruit fly optimization algorithm (SFMOFOA). Numerical results show that the SFMOFOA is able to well
converge to the Pareto fronts of the test benchmarks with good distributions. Compared with four state-of-the-art methods,
namely, the non-dominated sorting generic algorithm (NSGA-II), the strength Pareto evolutionary algorithm (SPEA2),
multi-objective particle swarm optimization (MOPSO), and multiobjective self-adaptive differential evolution (MOSADE),
the proposed SFMOFOA has better or competitive multiobjective optimization performance.
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1. Introduction

Multiobjective optimization problems (MOPs) widely
exist in all areas of science, engineering, economics,
finance and technology, where the optimal decisions need
to be made in the presence of trade-offs between two
or even more conflicting objectives. In comparison with
single-objective optimization problems, MOPs are more
difficult to solve as the conflicting objectives must be
optimized simultaneously. Instead of finding a single
optimal solution, the purpose of MOPs is to find a set
of optimal solutions, largely known as the Pareto optimal
set, that are uniformly distributed along the whole Pareto
front. Since most classical optimization algorithms can
only obtain a Pareto optimal solution in one run, to acquire
a Pareto optimal set, these optimization algorithms have to
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be run many times. Consequently, the efficiency of these
optimization algorithms is very low for solving MOPs.

Evolutionary algorithms (EAs) are ideal and already
popular for solving MOPs since the population-based
algorithms can obtain a set of potential solutions in
a single run and are robust to the shape of the
Pareto front and the underlying objective function
characteristics. To obtain the Pareto optimal solutions,
various MOEAs have been proposed over the past few
decades (Zhou et al., 2011). Generally, MOEAs can be
categorized into three groups, namely, dominance-based
methods, scalarization-based methods, and performance
indicator-based approaches (Cheng et al., 2015; Denysiuk
et al., 2015). Among these, dominance-based approaches
such as SPEA2 (Zitzler et al., 2001), NSGA-II (Deb
et al., 2002; Ben Aicha et al., 2013), NSGA-III (Deb
and Jain, 2014), and NSLS (Chen et al., 2015) have been
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probably the most commonly used approaches, which
calculate an individual’s fitness on the basis of the Pareto
dominance relation.

Scalarization-based or weighted aggregation-based
approaches (Ishibuchi et al., 2006; Zhang and Li, 2007;
Liu et al., 2014; Wang et al., 2015; Mei et al.,
2011) have been increasingly popular in recent years
owing to their computational efficiency. These methods
use traditional mathematical techniques to aggregate
multiple objectives into a single parameterized objective
to assign scalar fitness values to population members.
The most representative scalarization-based method is
MOEA/D (Ishibuchi et al., 2006), which has received
increasing attention due to its computational simplicity
and attractive search performance (Denysiuk et al.,
2015; Wang et al., 2015). Meanwhile, indicator-based
approaches (Zitzler and Künzli, 2004; Bader and Zitzler,
2011; Rodrı́guez Villalobos and Coello Coello, 2012;
Menchaca-Mendez and Coello, 2015), as a relatively
recent trend, employ performance indicators for fitness
assignment. More studies about the development and
application of MOEAs are well reviewed by Zhou et al.
(2011) or Eiben and Smith (2015).

Swarm intelligence, which is inspired by nature,
especially biological systems, has become a hot topic
in artificial intelligence in the past decades (Bonabeau
et al., 1999; Bilski and Wojciechowski, 2014). More and
more researchers are interested in this new exciting way of
achieving a form of swarm intelligence, i.e., the emergent
collective intelligence of groups of simple agents, and
various swarm intelligence based optimization algorithms
are proposed such as particle swarm optimization (PSO)
(Kennedy, 2011), artificial bee colony optimization (ABC)
(Karaboga and Akay, 2009), ant colony optimization
(ACO) (Dorigo et al., 1996), the firefly algorithm (Yang,
2010), cuckoo search (Rajabioun, 2011), the grey wolf
optimizer (Mirjalili et al., 2014), etc. Similarly to a social
insect or an animal metaphor in their problem solving,
swarm intelligence based methods have been widely
applied to many aspects in real-world problem solving
and have produced very promising results. Accordingly,
many multiobjective optimization algorithms have been
developed and proposed (Mirjalili et al., 2014).

The fruit fly optimization algorithm (FOA), proposed
by Pan (2011), is a global optimization algorithm inspired
by the foraging behavior of the fruit fly. Compared with
other swarm intelligence based algorithms, the FOA has
advantages of being easy to understand, involving fewer
control parameters, and the simplicity of computational
process (Pan, 2011; 2012). As a novel optimization
algorithm, the FOA has gained much attention and
has been successfully applied in many single objective
optimization problems in recent years, including annual
power load forecasting (Pan, 2012), analysis of the
service satisfaction in web auction logistics service (Li

et al., 2013), PID controller tuning (Lin, 2013; Li
et al., 2012), neural network training (Sheng and Bao,
2013), the multidimensional knapsack problem (Chen
et al., 2013), the joint replenishment problem (Wang
et al., 2013), medical image classification (Wang et al.,
2015), the homogeneous fuzzy series-parallel redundancy
allocation problem (Mousavi et al., 2016), gasification
process optimization (Shen et al., 2016), and parameter
identification (Niu et al., 2015). Moreover, to enhance the
convergence performance, a number of improved FOAs
have also been proposed (Yuan et al., 2014; 2015, Shan et
al., 2013; Pan et al., 2014; Mitić et al., 2015; Wu et al.,
2015). However, so far not much work on MOPs has been
reported in the literature.

In this paper, an improved fruit fly optimization
algorithm based on a stochastic fractal for multi-objective
optimization, which is referred to as the SFMOFOA, is
proposed. To improve the search efficiency of the FOA, a
new food source generating method based on a stochastic
fractal is proposed, and an adaptive parameter updating
strategy is introduced to dynamically adjust the search
range. To solve multiobjective optimization problems,
the Pareto domination concept is integrated with the
FOA’s selection process and a novel multiobjective FOA
is then developed. Similarly to most of existing MOEAs,
an external elitist archive is utilized in the proposed
SFMOFOA to preserve the nondominated solutions found
so far during the evolution process. To let the elitists in
the archive to be uniformly distributed along the whole
Pareto front, a normalized nearest neighbor distance
based density estimation strategy is adopted. Eighteen
benchmark MOPs are used to evaluate the effectiveness of
the proposed method. Compared with four state-of-the-art
methods, namely, NSGA-II (Deb et al., 2002), SPEA2
(Zitzler et al., 2001), MOPSO (Coello et al., 2004), and
MOSADE (Wang et al., 2010), the numerical results
indicate that the proposed SFMOFOA is able to obtain a
better or competitive convergence performance.

The rest of this paper is organized as follows. In
Section 2, some basic concepts of MOPs are briefly
proposed. The basic FOA is introduced in Section 3.
Thereafter, the detailed descriptions of the framework
of the SFMOFOA algorithm are proposed in Section 4.
The experimental design and numerical comparisons are
illustrated in Section 5. Finally, Section 6 gives the
concluding remarks.

2. Basic concepts of MOPs

With no loss of generality, consider the general
multiobjective optimization problems which are
mathematically described as follows:
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Minimize

F (x) = [f1(x), f2(x), . . . , fk(x)], x ∈ R
n,

subject to

gi(x) ≤ 0, i = 1, 2, . . . ,m,

hi(x) = 0, j = 1, 2, . . . , p,

(1)

where F (x) is the objective vector to be optimized,
and k is the number of objective functions, gi(x) (i =
1, 2, . . . ,m) are the set of inequality constraints,
hj(x) (j = 1, 2, . . . , p) are the set of equality constraints.
The elements of the vector x = (x1, x2, . . . , xn) are
the decision variables, and the symbol R

n represents
the n-dimensional Euclidean space. The multiobjective
optimization problem is to determine a particular set
of solutions, which yield the optimum values for all
the objective functions satisfying all the inequality and
equality constraints.

To better understand multiobjective optimization, the
basic Pareto concepts of dominance, the Pareto optimal
set (PS) and the Pareto front (PF) are defined as follows
(Van Veldhuizen and Lamont, 1998).

Definition 1. (Concept of dominance) A vector u =
(u1, u2, . . . , uk) is said to dominate v = (v1, v2, . . . , vk)
(which is denoted by u ≺ v) if ∀i ∈ {1, 2, . . . , k}, ui ≤
vi ∧ ∃i ∈ {1, 2, . . . , k} : ui < vi.

Definition 2. (Pareto optimal solution) A point x∗ ∈ Ω is
Pareto optimal if no other x ∈ Ω satisfies F (x) ≺ F (x∗).

Definition 3. (Pareto optimal set) For a given MOP
F (x), the Pareto optimal set P ∗ is defined as P ∗ = {x ∈
Ω|�x′ ∈ Ω : F (x′) ≺ F (x)}.

Definition 4. (Pareto front) For a given MOP F (x) and a
Pareto optimal set P ∗, the Pareto front PF ∗ is defined in
the objective space as PF ∗ = {F (x)|x ∈ P ∗}.

Most MOPs may have many or even infinitely many
Pareto optimal solutions. Generally, the main goals of
MOEAs are: (i) to find a set of approximate solutions
that are as close as possible to the true Pareto front, and
(ii) to keep the obtained solutions to be spread along the
whole Pareto front as uniformly as possible. In this paper,
a novel normal cloud model based multiobjective fruit fly
optimization algorithm is proposed to solve the MOPs.

3. Basic fruit fly optimization algorithm

The FOA is a method for searching global optimum based
on the food foraging behavior of fruit flies (Pan, 2011),
which live in the temperate and tropical climate zones,
and which are superior to other species in osphresis and
vision. When a fruit fly decides to go for hunting,
it will fly randomly to find the location guided by a
particular odor. While in searching, a fruit fly also sends

and receives information from its neighbors and makes
a comparison with the current best location and fitness
(Yuan et al., 2015). The food finding process of the fruit
fly is as follows: firstly, it smells the food source by
using olfactory sensors, and flies towards that location;
secondly, after it gets close to the food location, the
sensitive vision is also used for finding food and other
fruit flies’ flocking location, and then it flies in that
direction. According to the food finding procedure of the
fruit fly swarm, the FOA can be divided into three parts,
namely, the initialization of parameters and the population
location, the osphresis-based search and the vision-based
search phase.

3.1. Initialization. The main parameters of the FOA
are the maximum iteration number T , the population
size NP, and the range of the random flight distance Rf .
The fruit fly swarm location (Xaxis, Yaxis) is randomly
initialized in the search space as:

Xaxis = rand × (UB-LB) + LB, (2)

Yaxis = rand × (UB-LB) + LB, (3)

where ‘rand’ is a random function which returns a value
from the uniform distribution on the interval [0, 1], UB
and LB are the upper and lower bounds of the fruit fly
swarm location in the two-dimensional searching space,
respectively.

3.2. Osphresis-based search. In the osphresis-based
searching phase, a population of NP food sources is
generated randomly around the current fruit fly swarm
location. First, a random flight direction is chosen and
the distance for an individual fruit fly to find food is given
by

Xi = Xaxis + ξ ×Rf , (4)

Yi = Yaxis + ξ ×Rf , (5)

where i = 1, 2, . . . ,NP, ξ is a random function which
returns a value in the range of [−1, 1].

Then, for each individual calculate the distance of the
food location to the origin (Disti), and further calculate
the smell concentration judgment value (Si). The value of
Si is the reciprocal of the distance of food location to the
origin, that is,

Disti =
√
X2

i + Y 2
i , (6)

Si =
1

Disti
(7)

Finally, calculate the smell concentration (Smelli)
of the individual fruit fly location by substituting
the smell concentration judgment value (Si) into the
smell concentration judgment function (or called fitness
function):

Smelli = Fitness(Si) (8)
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3.3. Vision-based search. In the vision-based
searching phase, the FOA carries out a greedy selection
procedure. Firstly, find an individual with the maximum
smell concentration (the maximum value of Smell) among
the fruit fly swarm. This can be represented as:

[bestSmell,bestIndex] = min(Smell). (9)

Then, compare the current maximum smell
concentration value (bestSmell) with the value in history
(smellBest). If bestSmell < smellBest, update smellBest
with bestSmell and the fruit fly swarm flies towards that
location with the maximum smell concentration value by
using vision as below:

smellBest = bestSmell, (10)

Xaxis = X(bestIndex), (11)

Yaxis = Y (bestIndex). (12)

The osphresis-based searching phase and the
vision-based searching phase are repeated, until the smell
concentration has no improvement any more, or the
number of iteration reaches the maximum number.

4. Stochastic fractal based multiobjective
FOA

The core idea that distinguishes the FOA from other
swarm intelligence based optimization algorithms is
the expression of smell concentration judgment value.
However, it can be observed from (6) and (7) that the value
of Disti varies in a large range while the corresponding
value of Si is very small. Therefore, the original FOA can
only solve problems that have optimal solutions in a small
vicinity of the origin (Niu et al., 2015). The reason why
the original FOA is only able to find solutions close to the
origin and cannot solve complex optimization problems
(Wu et al., 2015b). To overcome this shortcoming of
the FOA, a new food source generating method based
on stochastic fractals is proposed in this section. In
the following, the stochastic fractal based the FOA is
developed and adopted to the multiobjective optimization
problems by combining the concept of Pareto dominance
with the external elitist archive strategy.

4.1. Random fractals. The concept of a fractal
was first proposed by Mandelbrot (1983). A fractal
is a natural phenomenon or a mathematical set that
exhibits a repeating pattern that displays at every scale.
It need not exhibit exactly the same structure at all
scales, but the same type of structures must appear on
all scales (Vicsek and Gould, 1989). Some stochastic
method can provide a better model for naturally occurring
fractals than sets obtained in a nonrandom way (Voss,
1991). For example, random fractals can be diffused

by modifying the iteration process via stochastic rules
(Vicsek and Gould, 1989; Witten and Sander, 1983). The
characteristic of selfsimilarity and randomness displayed
by the procedure of diffusion of random fractals is
suitable for the optimizer and it has been applied to some
optimization algorithms, such as the stochastic fractal
search (SFS) algorithm (Salimi, 2015), the penalty guided
stochastic fractal search (PSFS) approach (Mellal and Zio,
2016) and the decremental differential stochastic fractal
evolutionary algorithm (dDSF-EA) (Awad et al., 2016).
Some random fractals, such as the clusters describing
a bacterial colony, can be generated by a physically
motivated model called diffusion limited aggregation
(DLA) (Witten and Sander, 1983). To simulate the
diffusion process, a mathematical algorithm like the
random walk can be employed. In the fractal search, the
Levy flight and the Gaussian walk are commonly used
to model the DLA growth (Salimi, 2015). The Gaussian
walk based stochastic fractal can be described as follows:

Xq
i = Gaussian(Xi, |β × BP|)

+ (γ × BP − γ′ ×Xi),
(13)

β =
log(g)

g
, (14)

where q is the number of particles acquired from the
diffusion of the main particle, g is the number of
iterations, Gaussian(xi, |BP|) is the Gaussian distribution,
BP is mentioned as the position of the best point, γ and
γ′ are random parameters between 0 and 1. The particle
diffusion with random different positions is shown in
Fig. 1.

Xi

...

Diffusion

Xi1

Xi2
Xi3 Xi4

Xi5
Xi6Xiq

Fig. 1. Process of diffusing a particle.

4.2. Position update based on a stochastic fractal.
From Eqns. (6) and (7), it can be observed that the
basic fruit fly optimization algorithm uses the uniformly
distributed random location method to update the position
of all fruit flies. This method has its advantages of simple
calculation, but it is not an effective search method. The
random fractal displays a certain degree of selfsimilarity
but need not exhibit exactly the same structure at all
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scales (Yamaguchi et al., 1997). That is to say, it has
both tendentiousness and randomness which are more
beneficial for improving the search efficiency. Therefore,
a new position update mechanism based on the diffusion
process of stochastic fractal is proposed to enhance the
search efficiency of the FOA.

According to the investigation by Salimi (2015), the
Gaussian walk is more promising to obtain a better global
final result. Therefore, here the Gaussian walk is used to
update the fruit fly’s positions as shown in (14),

X
′
ij =

⎧
⎪⎨
⎪⎩

Gaussian(Xbj , δ) + (γ ×Xr1j

−γ′ ×Xr2j), if j = d,

Xij , otherwise.

(15)

where i = 1, 2, . . . ,NP, j = 1, 2, . . . , n, Xb is the
best position of the current population, Xr1 and Xr2

are randomly selected individuals from the fruit fly
population, d is a random integer in the range of [1, n], the
standard deviation δ is used to represent the search range.

In order to guarantee a global search, a large search
range is desirable and may be necessary in the early search
stage. With the evolution of the swarm, especially in a
late search stage, a small search radius is appropriate for
the local exploitation and solution refining. Therefore,
an adaptive strategy of δ that dynamically varies with
iterations is adopted to balance the global exploration and
local exploitation as below:

δ =
∣∣∣ log(t+ 1)

tα
× (Xi −Xb)

∣∣∣, (16)

where t is the iteration, α > 0 is a positive integer and
α = 2 is used here.

Moreover, similarly to Yuan et al. (2014) or Pan et al.
(2014), the smell concentration judgment value is not used
and the fitness is evaluated directly in the decision space
to avoid the limitations of the original definition of smell
concentration judgement.

4.3. Pareto dominance selection mechanism. A
fundamental problem in multiobjective optimization is
to compare candidate solutions. To adopt and develop
the basic FOA to multiobjective optimization, it needs to
modify the dominance selection mechanism since there
are two or more conflicting objective functions to be
evaluated and compared simultaneously. Generally, there
are three approaches to compare two of conflicting
multiobjective solutions, i.e., dominance-based
methods, scalarization-based methods, and performance
indicator-based methods. Here, the selection operation
is based on the concept of Pareto dominance, the most
popular selection mechanism in MOEAs.

For the fruit fly i in the population, once a new food
source (solution X

′
i ) is generated, there will be a choice

between the current solution Xi and the new solution

X
′
i . According to the Pareto dominance relation, there

are three possibilities:
(i) Xi dominates X

′
i ,

(ii) Xi is dominated by X
′
i ,

(iii) Xi and X
′
i are nondominated with each other.

Based on the above three possibilities, the dominance
selection mechanism can be defined as

Xi(t+ 1)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Xi(t) if Xi(t) ≺ X
′
i(t),

X
′
i(t) if X

′
i(t) ≺ Xi(t),

LC(Xi(t), X
′
i(t)) if Xi(t) ⊀ X

′
i(t)

∧X
′
i(t) ⊀ Xi(t).

(17)

where LC(Xi(t), X
′
i(t)) indicates the less crowded one

between Xi(t) and X
′
i(t) with respect to the external

elitist archive. The crowding degree estimation method
will be discussed in the next subsection.

4.4. Update the external archive. Many MOEAs
(Zitzler et al., 2001; Deb et al., 2002; Deb and Jain,
2014) have shown that it is necessary to apply an
external archive to retain nondominated solutions because
a nondominated solution in the current iteration is not
always a nondominated solution in later evolutions. In the
proposed algorithm, an external elitist archive is therefore
used to keep the nondominated solutions found so far
during evolution. Initially, the external elitist archive is
empty, and it will be updated when new nondominated
solutions are generated at each of iterations. There
are three cases when comparing a newly generated
nondominated solution with the individuals in the current
archive, namely,

(i) If the new solution is dominated by any individual in
the external archive, the new solution is rejected.

(ii) If the new solution dominates some individuals of the
archive, then the dominated individuals are replaced
by the new solution.

(iii) If the new solution is mutually non-dominated with
the individuals in the archive, then it joins in the
archive.

The pseudocode of external elitist archive updating
is shown in Algorithm 1.

When the population of the external archive
exceeds its maximum capacity, the diversity maintenance
strategy (Zitzler et al., 2001; Deb et al., 2002) is
used to keep the external archive at its maximum
size. There are two representative diversity maintenance
strategies in the EMO community, i.e., the crowding
distance-based strategy in NSGA-II and the k-nearest
neighbor distance-based strategy in SPEA2. The
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Algorithm 1. External elitist archive updating.

1: if X
′
i(t) dominate Xi(t) or X

′
i(t) and Xi(t) are

nondominated then
2: if X

′
i(t) is dominated by an individual(s) of the

external archive then
3: Reject X

′
i(t) enter the archive

4: else if X
′
i(t) dominates some individual(s) of the

archive then
5: Remove the dominated individuals and X

′
i(t)

enters the archive
6: else
7: X

′
i(t) joins in the archive

8: end if
9: end if

crowding distance is an ideal measure for bi-objective
optimization problem, but it is not so effective on
optimization problems with three or more objectives. On
the contrary, the nearest neighbor distance estimation
strategy is a very effective diversity measure for problems
with three and many objectives. However, the original
nearest neighbor distance cannot accurately reflect the
crowding degree of a problem whose Pareto front is
composed of multiple parts and the covered ranges
of different parts are significantly different in one or
more objective(s). To overcome the above mentioned
disadvantage, in this paper, the values of each objective
function are normalized before calculating the distance
from each solution to elements in the external archive,

f ′
ij =

fij
fmax
j − fmin

j

. (18)

where i = 1, 2, . . . , N, j = 1, 2, . . . , k, fij is the original
objective function value, f ′

ij is the normalized objective
function value, fmax

j and fmin
j are the maximum and

minimum objective function values of objective j,N is
the number of external archive individuals, and k is the
number of objective functions.

4.5. Constraint handling. For optimization problems
with constraints, several methods have been proposed
in the last few decades (Michalewicz and Schoenauer,
1996; Fonseca and Fleming, 1998; Asafuddoula et al.,
2015). The penalty-function approach is one of the
most frequently used approaches for constraint handling.
However, the choice of an appropriate penalty factor(s)
is problem dependent and nontrivial. To overcome the
drawbacks of penalty-function method, some researchers
have suggested the use of multiobjective optimization to
handle constraints in EAs (Fonseca and Fleming, 1998;
Aguirre et al., 2004). The feasibility-first scheme is
another type of the constraint handling approach where
a feasible solution is always preferred over an infeasible

solution. The common forms of preference rules are
the following: (i) any feasible solution is preferred over
an infeasible solution, (ii) among two feasible solutions,
the one with a better objective is preferred, and (iii)
among two infeasible solutions, the one with a lowest
constraint violation is preferred (Deb et al., 2002; Deb,
2000). Moreover, Fletcher’s filter has been recently used
as a general methodology to handle constraints in EAs
(Rafajłowicz and Rafajłowicz, 2012; Rafajłowicz, 2013).

In this paper, a concept of sequence constrained
domination is used to handle constrained MOPs by means
of an improved feasibility-first scheme (Asafuddoula
et al., 2015) and the dominance selection mechanism. A
solution i is said to constrainedly dominate a solution j if
one of the following conditions holds:

(i) Solution i is feasible and Solution j is not.

(ii) Solutions i and j are feasible and Solution i
dominates Solution j.

(iii) Solutions i and j are both infeasible, but Solution i
has more satisfied constraints or has a smaller overall
constraint violation when the two solutions have the
same number of satisfied constraints.

The principle of sequence constrained domination
is that any feasible solution has a better rank than any
infeasible solution and all feasible solutions are ranked
according to their nondomination level based on the
objective function values. For two infeasible solutions,
there are only two situations: (a) the solution with a larger
number of satisfied constraints has a better rank, or (b)
if both have the same number of satisfied constraints, the
solution with a smaller overall constraint violation has a
better rank. It should be noted that the objective functions
are only evaluated if the solution satisfies all specified
constraints in this feasibility-first scheme. Therefore, the
computational efficiency can be improved.

4.6. Procedure of the SFMOFOA. By integrating
the stochastic fractal based solution generation strategy,
the Pareto dominance selection mechanism, the external
elitist archive update scheme, the normalized nearest
distance based crowding degree estimation, and the
sequence constraint handling method, the computational
procedure of the proposed SFMOFOA is outlined in
Algorithm 2. According to the FOA procedure, the
best individual in every iteration is chosen as the swarm
location that is used to generate a new food source.
Unfortunately, it is difficult to identify which solution
is the best one for a MOP since all the nondominated
solutions in a Pareto optimal solution set are identical in
the sense of Pareto optimality. But when considering the
spread of the nondominated solutions, it is desirable to
have a good spread of the solutions which converge to
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Algorithm 2. Stochastic fractal based multi-objective
fruit fly optimization algorithm.
Require: NP, T , size of archive A

1: Initialize the population randomly in the search space

2: for i = 1 : NP do
3: Evaluate the constraints and objective functions of

Xi(0)
4: Update the external elitist archive A
5: end for
6: Set the iteration counter t = 1
7: while t < T or the stop criterion is not satisfied do
8: Adaptively adjust δ according to (15)
9: Choose the least crowded one as the candidate

Xb(t) from the elitist archive
10: for i = 1 : NP do
11: Generate a new solution X

′
i(t) based on (14)

12: Dominance or constraint-dominance selection
between X

′
i(t) and Xi(t)

13: if X
′
i(t) is is feasible and X

′
i(t) dominate Xi(t)

or both are nondominated then
14: Update the external elitist archive A
15: end if
16: end for
17: while the size of archive > the given size do
18: Calculate the normalized nearest neighbor

distance
19: Remove the most crowded one from the archive
20: end while
21: t = t+ 1
22: end while
23: return The archive population A

the Pareto optimal set, and the least crowded individual
in the external elitist archive can be chosen as the best
individual. Therefore, the individual with the largest
normalized nearest distance in the external elitist archive
is always chosen and used to generate new solutions by
the stochastic fractal. Obviously, the convergence and
diversity are both highlighted by adopting the external
elitist archive strategy and least crowded candidate
approach.

5. Numerical analysis

In order to verify the performance of the proposed
SFMOFOA, a total of eighteen benchmark functions are
considered, including eleven bi-objective minimization
problems: Schaffer, Kursawe, Fonseca, ConstrEx,
Srinivas and Tanaka (Deb et al., 2002), ZDT1, ZDT2,
ZDT3, ZDT4 and ZDT6 (Zitzler et al., 2000), and seven
tri-objective minimization problems: DTLZ1, DTZL2,
DTZL2, DTLZ4, DTLZ5, DTLZ6 and DTLZ7 (Deb
et al., 2005). Among them, ConstrEx, Srinivas and Tanaka

are constrained optimization problems. Optimization
results from the SFMOFOA are compared with four
state-of-the-art MOEAs, namely, NSGA-II (Deb et al.,
2002), SPEA2 (Zitzler et al., 2001), MOPSO (Coello
et al., 2004), and MOSADE (Wang et al., 2010). To
avoid randomness, each function is optimized over 30
independent runs. For fair comparison, a total of 30
different initial populations were considered, starting from
which each algorithm was run 30 times, and the relevant
overall performance was then compared.

5.1. Quality indicators. To demonstrate the
effectiveness of an algorithm for solving MOPs,
appropriate quality indicators should be chosen. There
are three goals in multiobjective optimization: (i)
convergence to the Pareto optimal set, (ii) maintenance of
diversity in solutions of the Pareto optimal set and (iii) a
maximal distribution bound of the Pareto optimal set. In
this paper, the following three classic quality indicators
are used to evaluate the performance of the MOEAs to be
compared.

Generational distance (GD). The concept of
generational distance was introduced by Van Veldhuizen
and Lamont (Voss, 1991) to measure how far the elements
are in the obtained set of nondominated vectors (P ) from
those in the true Pareto optimal set (P ∗). It is defined as

GD =
1

|P |
√∑

X∈P

mindist(X,P ∗)2, (19)

where mindist(X,P ∗) is the minimum Euclidean distance
(measured in the objective space) between a solution X
and the solutions in P ∗. A smaller value of the GD
demonstrates a better convergence to the Pareto front.

Spread (�): This indicator (Falconer, 1986; Wang et al.,
2010) is to measure the extent of spread archived among
the obtained non-dominated solutions. A smaller value
of � indicates a better distribution and diversity of the
nondominated solutions. This indicator is defined as

� =

m∑
i=1

d(Ei,Ω) +
∑

X∈Ω

|d(X,Ω)− d̄|
m∑
i=1

d(Ei,Ω) + (|Ω| −m)d̄
, (20)

where Ω is a set of solutions, (Ei, . . . , Em) are m extreme
solutions in the Pareto optimal set, m is the number of
objectives and

d(X,Ω) = min
Y ∈Ω,Y �=X

||F (X)− F (Y )||, (21)

d̄ =
1

Ω

∑
X∈Ω

d(X,Ω). (22)
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Hypervolume (HV). This indicator calculates the volume
(in the objective space) covered by members of a
nondominated set of solutions Ω for problems where
all objectives are to be minimized (Coello, 2006).
Mathematically, for each solution Xi ∈ Ω, a hypercube
vi is constructed with a reference point W and the
solution Xi as the diagonal corners of the hypercube.
The reference point can be found simply by constructing
a vector of worst objective function values. Thereafter,
a union of all hypercubes is found and its hypervolume
(HV) is calculated to be:

HV = ∪|Ω|
i=1 vi (23)

Algorithms with larger HV values are desirable.
Since the calculation of the HV is related to the reference
point, in our experiments, the HV value of a set of
solutions is normalized by a reference set of Pareto
optimal solutions with the same reference point. After
normalization, the HV values are confined to [0, 1].

5.2. Parameter setting. The population size for
all the compared algorithms is NP = 100, and all
algorithms with an archive have the same archive size
of 100 for fair comparison. The maximum generations
was set to 250 for bi-objective MOPs, 500 for test
problems with more than two objectives. For fair
performance comparison, all the algorithms used equal
maximum number of function evaluations (max NFEs).
Other parameter settings of the compared algorithms
are determined according to their original references.
The source code of NSGA-II and MOPSO is available
at delta.cs.cinvestav.mx/˜ccoello/EMOO/.
The implementation of the SPEA2 is available at
www.tik.ee.ethz.ch/pisa.

5.3. Experimental results and comparisons. The
results of the GD, � and HV indicators are presented
in Tables 1, 2 and 3, respectively. The mean values
and standard deviation values over all independent runs
are calculated. The results in Table 1 are summarized
as “w/l/n”, which stands for “win/lose/non-convergence”.
For example, “14/1/3” in the fourth column means the
SFMOFOA is significantly better than NSGA-II in 14
tested problems, but significantly worse in 1 tested
problem, and NSGA-II did not converge in 3 tested
problems. The results in Tables 2 and 3 are also
summarized as “w/l”, which means that the SFMOFOA is
significantly better than and worse than the corresponding
competitor on w and l problems, respectively. In order to
facilitate observation, the best entries are marked in bold,
and the non-convergence results are marked in italic.

As it can be seen from Table 1, the SFMOFOA
obtains better GD results than NSGA-II, SPEA2 and
MOPSO for all of the test problems except Srinivas.

When it is compared with MOSADE, the SFMOFOA also
obtains better results for all problems except Fonseca,
Srinivas, ZDT4 and DTLZ7. It should be noticed that, for
all problems, the SFMOFOA and MOSADE can converge
to the optimal Pareto, while MOPSO cannot converge
to the optimal Pareto for the seven problems of ZDT1,
ZDT2, ZDT3, ZDT4, DLTZ1, DTLZ3 and DTLZ5, also,
NSGA-II is not able to find the right Pareto optimal set for
the problems of DTLZ2, DTLZ3 and DTLZ6, and SPEA2
cannot converge to the Pareto fronts for the problems of
Kursawe, ZDT4, DTLZ1, DTLZ3, DTLZ5 and DTLZ7.
That is to say, for the vast majority of the test problems,
the SFMOFOA has better convergence performance
when compared with MOSADE, NSGA-II, SPEA2 and
MOPSO. To further demonstrate the performance of
different algorithms, the graphical illustration of the
nondominated solutions for the two problems of Kursawe
and ZDT4 obtained by the SFMOFOA, NSGA-II, SPEA2,
MOPSO and MOSADE in the objective space are shown
in Figs. 2 and 3, respectively. It is clear from
Figs. 2 and 3 that the SFMOFOA, NSGA-II and
MOSADE can approximate the Pareto fronts of the two
problems, but the SFMOFOA and MOSADE generally
got better convergence performance than NSGA-II.
However, SPEA2 is unable to approach the Pareto fronts
for either of the two problems, and MOPSO cannot
converge to the Pareto optimal solutions for the problem
of ZDT4 in the current maximum function evaluations.
Obviously, the graphical demonstrations are consistent
with the statistic results in Table 1.

The results obtained from the spread indicator given
in Table 2 show that the SFMOFOA is generally better
than NSGA-II and MOPSO concerning the diversity
of the obtained non-dominated solutions. MOSADE,
however, with a crowding entropy-based diversity
maintenance strategy, provides better spread values
than the SFMOFOA for the bi-objective problems, but
the SFMOFOA obtains six better values in the seven
tri-objective problems (the set of DTLZ problems). That
is to say, for the spread indicator, the SFMOFOA loses
for the bi-objective problems but wins for the tri-objective
problems compared with MOSADE. As the SFMOFOA
adopts an improved diversity maintenance strategy based
on the normalized nearest neighbor distance, it is expected
that the SFMOFOA has better spread performance
compared with SPEA2, especially for problems with
Pareto front composed of multiple non-identical parts and
different orders of magnitude of objective function values.
But it is surprising from Table 2 that SPEA2 obtains eight
better spread values than the SFMOFOA. However, when
carefully observing Table 1 it can be found that the better
spread of SPEA2 for four of them is based on the fact that
those nondominated solutions obtained by SPEA2 are not
well converged to the true Pareto fronts compared with
those solutions given by the SFMOFOA.

delta.cs.cinvestav.mx/~ccoello/EMOO/
www.tik.ee.ethz.ch/pisa.
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Table 1. Comparison results of the SFMOFOA and other MOEAs based on the GD.
FUN SFMOFOA MOSADE NSGA-II SPEA2 MOPSO

Schaffer 2.35E-04 ± 8.25E-06 2.00E-03 ± 1.13E-04 2.16E-03 ± 2.10E-04 2.12E-03 ± 2.11E-04 2.93E-02 ± 1.56E-02
Kursaw 2.39E-04 ± 1.78E-05 2.44E-03 ± 2.64E-03 2.90E-03 ± 2.36E-04 7.16E-01 ± 1.25E-02 3.01E-02 ± 1.74E-03
Fonseca 1.26E-03 ± 1.85E-04 1.24E-03 ± 7.07E-05 2.57E-03 ± 2.01E-04 1.86E-03 ± 1.07E-04 2.14E-02 ± 7.42E-03

ConstrEx 5.19E-04 ± 2.23E-05 4.81E-03 ± 3.74E-04 5.13E-03 ± 2.48E-04 4.82E-03 ± 3.77E-04 4.54E-03 ± 6.86E-04
Srinivas 4.43E-02 ± 1.08E-02 2.00E-03 ± 2.02E-04 3.71E-03 ± 5.10E-04 2.11E-03 ± 4.75E-04 2.76E-03 ± 2.08E-04
Tanaka 6.35E-04 ± 1.19E-04 3.74E-03 ± 3.79E-04 4.05E-03 ± 4.35E-04 3.82E-03 ± 4.91E-04 5.09E-03 ± 4.56E-04
ZDT1 2.06E-04 ± 5.57E-05 1.25E-03 ± 9.76E-05 1.34E-03 ± 1.41E-04 8.61E-03 ± 2.60E-03 1.86E-01 ± 7.74E-02
ZDT2 1.57E-04 ± 2.94E-05 9.81E-04 ± 4.91E-05 9.81E-04 ± 6.41E-04 2.48E-02 ± 1.61E-02 5.24E-01 ± 2.97E-01
ZDT3 2.61E-04 ± 3.61E-05 2.16E-03 ± 2.00E-04 2.48E-03 ± 1.27E-04 9.72E-03 ± 5.23E-03 4.34E-01 ± 6.49E-02
ZDT4 2.73E-03 ± 1.59E-03 1.20E-03 ± 8.37E-05 5.16E-02 ± 1.33E-03 9.25E-01 ± 4.28E-01 -
ZDT6 7.87E-04 ± 3.62E-05 2.62E-03 ± 1.10E-04 6.08E-03 ± 6.08E-03 1.93E-02 ± 1.40E-03 5.21E-02 ± 2.50E-02

DTLZ1 4.94E-04 ± 1.88E-05 5.25E-03 ± 1.57E-04 2.71E-02 ± 6.65E-02 9.03E-01 ± 7.69E-01 2.14E-01 ± 1.56E-01
DTLZ2 5.49E-04 ± 1.63E-05 5.33E-03 ± 1.74E-04 1.02E-01 ± 1.06E-01 2.81E-02 ± 1.25E-02 9.13E-02 ± 2.69E-02
DTLZ3 5.82E-04 ± 6.14E-05 6.46E-03 ± 3.33E-04 5.09E-01 ± 8.10E-01 8.13E-01 ± 1.22E+00 -
DTLZ4 5.68E-04 ± 3.93E-05 4.77E-03 ± 2.74E-04 1.06E-02 ± 7.98E-02 1.73E-02 ± 9.91E-02 4.26E-02 ± 1.33E-02
DTLZ5 4.60E-04 ± 2.19E-05 3.77E-03 ± 3.15E-04 4.80E-03 ± 4.04E-04 4.76E-01 ± 1.22E-01 -
DTLZ6 4.47E-04 ± 2.54E-05 3.89E-03 ± 2.01E-04 4.54E-01 ± 2.02E-04 4.30E-03 ± 4.41E-04 1.41E-02 ± 8.77E-02
DTLZ7 3.38E-03 ± 2.42E-04 2.37E-03 ± 1.30E-03 2.81E-02 ± 1.82E-02 1.49E-01 ± 6.93E-02 9.88E-02 ± 3.61E-03
w/l/n -/-/- 14/1/3 14/1/3 11/1/6 10/1/7

Table 2. Comparison results of the SFMOFOA and other MOEAs based on �.
FUN SFMOFOA MOSADE NSGA-II SPEA2 MOPSO

Schaffer 1.79E-01 ± 9.62E-03 1.35E-01 ± 1.88E-02 2.92E-01 ± 2.13E-02 2.75E-01 ± 2.57E-02 7.26E-01 ± 1.35E-01
Kursaw 1.67E-01 ± 1.38E-02 2.82E-01 ± 2.10E-02 4.34E-01 ± 1.98E-02 2.86E-01 ± 1.15E-02 3.76E-01 ± 1.67E-02
Fonseca 3.11E-01 ± 1.25E-02 1.16E-01 ± 6.57E-03 3.77E-01 ± 2.52E-02 1.77E-01 ± 1.11E-01 6.50E-01 ± 3.12E-01

ConstrEx 3.04E-01 ± 1.57E-02 3.55E-01 ± 5.80E-02 5.49E-01 ± 2.72E-02 4.28E-01 ± 1.23E-02 9.43E-01 ± 3.67E-01
Srinivas 2.06E-01 ± 1.40E-02 1.01E-01 ± 9.38E-03 3.87E-01 ± 2.51E-02 1.01E-01 ± 1.91E-02 6.66E-01 ± 7.22E-02
Tanaka 9.89E-01 ± 3.58E-02 7.53E-01 ± 2.99E-02 8.23E-01 ± 2.87E-02 7.84E-01 ± 3.00E-02 7.94E-01 ± 5.10E-02
ZDT1 3.29E-01 ± 2.78E-02 1.32E-01 ± 5.69E-03 5.04E-01 ± 3.93E-02 2.96E-01 ± 1.09E-01 2.94E-01 ± 1.70E-02
ZDT2 3.23E-01 ± 4.95E-02 1.21E-01 ± 7.94E-03 4.88E-01 ± 2.77E-02 5.05E-01 ± 1.84E-01 2.88E-01 ± 1.76E-02
ZDT3 9.00E-01 ± 6.26E-02 4.38E-01 ± 8.08E-03 5.90E-01 ± 3.04E-02 5.03E-01 ± 9.73E-02 6.18E-01 ± 3.50E-02
ZDT4 9.45E-01 ± 9.09E-02 1.18E-01 ± 5.86E-03 3.75E-01 ± 2.44E-02 7.28E-01 ± 5.15E-01 3.24E-01 ± 3.30E-02
ZDT6 2.41E-01 ± 2.82E-02 1.33E-01 ± 9.83E-03 4.86E-01 ± 3.61E-02 2.49E-01 ± 4.97E-02 1.12E+00 ± 1.73E-01

DTLZ1 2.10E-01 ± 2.07E-02 6.38E-01 ± 3.05E-02 9.19E-01 ± 6.61E-02 3.02E-01 ± 2.49E-01 7.08E-01 ± 7.89E-02
DTLZ2 2.05E-01 ± 2.24E-02 6.13E-01 ± 3.67E-02 8.31E-01 ± 6.84E-02 2.47E-01 ± 3.52E-02 9.36E-01 ± 3.17E-01
DTLZ3 2.16E-01 ± 2.11E-02 5.86E-01 ± 3.00E-02 9.56E-01 ± 1.78E-01 3.18E-01 ± 2.37E-01 -
DTLZ4 2.30E-01 ± 2.63E-02 8.32E-01 ± 1.09E-01 7.79E-01 ± 7.81E-02 2.56E-01 ± 7.56E-02 1.50E+00 ± 3.31E-01
DTLZ5 3.45E-01 ± 4.24E-02 4.24E-01 ± 2.21E-02 7.11E-01 ± 7.80E-02 2.98E-01 ± 1.84E-02 5.41E-01 ± 5.58E-01
DTLZ6 3.64E-01 ± 3.52E-02 4.26E-01 ± 4.75E-02 1.09E+00 ± 1.83E-01 5.08E-01 ± 9.22E-02 -
DTLZ7 4.97E-01 ± 4.36E-02 8.55E-01 ± 3.86E-02 1.01E+00 ± 5.06E-02 3.98E-01 ± 7.03E-02 8.22E-01 ± 8.97E-02
w/l -/- 8/10 17/1 10/8 17/1

To further investigate the aforementioned pheno-
menon, the non-dominated solutions for the problems of
ConstrEx and DTLZ2 obtained by the five algorithms
in the objective space are shown in Figs. 4 and 5,
respectively. As can be seen from Fig. 4, the Pareto
front for ConstrEx is composed of two parts. The left
part covers the vast majority of the range of the second
objective function values and the slope is very steep in

the shape. In contrast, the right part is very flat and
only covers a very limited range of the second objective
function values. Moreover, the two parts have different
orders of magnitude of objective function values. It can
be observed that the non-dominated solutions obtained
by the SFMOFOA are nearly uniformly distributed along
the whole Pareto front as the objective functions were
normalized prior to the calculation of the distances of
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Table 3. Comparison results of the SFMOFOA and other MOEAs based on the HV.
FUN SFMOFOA MOSADE NSGA-II SPEA2 MOPSO

Schaffer 9.97E-01 ± 5.27E-05 9.97E-01 ± 4.46E-05 9.97E-01 ± 1.04E-04 9.97E-01 ± 1.13E-04 9.96E-01 ± 2.10E-03
Kursaw 9.95E-01 ± 6.83E-04 9.89E-01 ± 2.45E-03 7.86E-01 ± 3.63E-04 8.24E-01 ± 2.20E-04 9.89E-01 ± 1.10E-03
Fonseca 9.98E-01 ± 8.14E-04 9.88E-01 ± 1.59E-04 9.80E-01 ± 1.03E+01 9.85E-01 ± 4.72E-04 9.55E-01 ± 2.07E-02

ConstrEx 9.93E-01 ± 6.61E-04 9.95E-01 ± 1.97E-04 9.92E-01 ± 5.85E-04 9.94E-01 ± 6.59E-04 9.83E-01 ± 1.29E-02
Srinivas 9.96E-01 ± 4.66E-03 9.94E-01 ± 4.45E-04 9.93E-01 ± 2.29E-04 9.94E-01 ± 1.47E-03 9.89E-01 ± 1.69E-03
Tanaka 9.85E-01 ± 3.26E-03 9.96E-01 ± 6.18E-04 9.98E-01 ± 9.28E-04 9.96E-01 ± 9.38E-04 9.87E-01 ± 3.78E-03
ZDT1 9.97E-01 ± 2.74E-04 9.96E-01 ± 4.41E-05 9.95E-01 ± 1.89E-04 9.91E-01 ± 6.33E-04 8.21E-01 ± 7.05E-02
ZDT2 9.96E-01 ± 3.38E-04 9.97E-01 ± 4.01E-05 9.96E-01 ± 2.20E-04 9.87E-01 ± 2.71E-03 6.03E-01 ± 1.62E-01
ZDT3 9.97E-01 ± 7.90E-04 9.99E-01 ± 3.98E-05 9.93E-01 ± 9.81E-03 9.83E-01 ± 7.11E-03 6.27E-01 ± 4.49E-02
ZDT4 9.72E-01 ± 1.09E-02 9.98E-01 ± 3.16E-06 9.90E-01 ± 1.80E-03 6.46E-01 ± 1.35E-01 6.33E-01 ± 2.11E-01
ZDT6 9.99E+00 ± 1.94E-04 9.99E-01 ± 8.83E-05 8.72E-01 ± 1.02E-02 9.39E-01 ± 4.38E-03 9.95E-01 ± 2.67E-02

DTLZ1 9.95E-01 ± 1.50E-03 9.93E-01 ± 5.52E-05 9.92E-01 ± 3.26E-04 9.64E-01 ± 4.36E-02 9.95E-01 ± 4.73E-03
DTLZ2 9.70E-01 ± 2.62E-03 9.97E-01 ± 1.52E-04 9.95E-01 ± 1.02E-03 9.96E-01 ± 3.30E-04 9.73E-01 ± 4.62E-02
DTLZ3 9.65E-01 ± 1.57E-03 9.97E-01 ± 1.54E-04 9.11E-01 ± 9.01E-02 9.10E-01 ± 8.06E-02 0.00E+00 ± 0.00E+00
DTLZ4 9.98E-01 ± 7.66E-04 9.97E-01 ± 3.77E-04 9.76E-01 ± 3.11E-02 9.77E-01 ± 3.18E-02 9.93E-01 ± 1.37E-03
DTLZ5 9.95E-01 ± 1.27E-03 9.89E-01 ± 2.02E-05 9.87E-01 ± 1.03E-03 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00
DTLZ6 9.93E-01 ± 3.67E-05 9.88E-01 ± 1.52E-05 0.00E+00 ± 0.00E+00 9.99E-01 ± 1.37E-04 9.94E-01 ± 9.08E-03
DTLZ7 9.76E-01 ± 3.67E-05 9.69E-01 ± 4.23E-03 9.63E-01 ± 4.03E-03 9.56E-01 ± 4.45E-03 9.32E-01 ± 5.75E-03
w/l -/- 10/8 14/4 14/4 15/3
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Fig. 2. Pareto fronts obtained by the five algorithms on the Kursawe problem.

between solutions, and therefore the Pareto front shape
of the two parts are nearly identical. When it comes to
SPEA2, as expected, almost all solutions are distributed
on the left part while the right part has few solutions.
NSGA-II and MOSADE (using a crowding distance

based diversity strategies) and MOPSO (using an adaptive
hypercube based strategy) produce similar results as
SPEA2 for the problem of ConstrEx. Moreover, the
result for ConstrEx also confirms the effectiveness of
the proposed constraint handling strategy in dealing with
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Fig. 3. Pareto fronts obtained by the five algorithms on the ZDT4 problem.
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Fig. 4. Pareto fronts obtained by the five algorithms on the ConstrEx problem.
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Fig. 5. Pareto fronts obtained by the five algorithms on the DTLZ2 problem.
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Fig. 6. Pareto fronts obtained by the five algorithms on the DTLZ5 problem.
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the constrained MOP. For problems with more than two
objective functions, as can be seen from Fig. 4 that the
SFMOFOA and SPEA2 have better spread performance
than NSGA-II, MOPSO and MOSADE. Therefore, it can
be concluded that crowding distance based strategies are
good choices for bi-objective problems while the nearest
neighbor distance based methods are more effective for
problems with three or more objectives. What is also
worth noticing is that some of the solutions obtained by
SPEA2 do not converge to the true Pareto front, which
can be clearly observed from Fig. 5.

As a measure of both convergence and diversity,
the hypervolume (HV) may be used to test the results
of the other two indicators. As can be seen from
Table 3, the SFMOFOA produces ten larger HV values
than MOSADE. This means that the SFMOFOA is
competitive to MOSADE in both convergence and
diversity performance for these test problems. With a
further inspection of Table 3, the SFMOFOA produces
14, 14, and 15 larger HV values when comparing with
NSGA-II, SPEA2, and MOPSO, respectively. These
results indicate that SFMOFOA has better convergence
and diversity performance than NSGA-II, SPEA2 and
MOPSO for most of the test benchmarks. Take DTLZ5
as an example, the HV value generated by SPEA2 and
MOPSO is zero, meaning that the Pareto fronts obtained
by the two algorithms are outside the limits of the true
Pareto front of the problem. To graphically demonstrate
this fact, the nondominated solutions to the problem
DTLZ5 obtained by the SFMOFOA, NSGA-II, SPEA2,
MOPSO and MOSADE (in the objective space) are shown
in Fig. 6.

The above analyses clearly show that the SFMOFOA
can generate a significantly better convergence
performance than NSGA-II, SPEA2 and MOPSO
and better than MOSADE in most of cases for the 18 test
problems. The good convergence performance mainly
benefits from the effective local search capability of
the stochastic fractal with parameter adaptive updating
strategy. The local search method can find a very
promising convergence to the true Pareto front compared
with the other strategies (Chen et al., 2015). Moreover, the
SFMOFOA significantly outperforms NSGA-II, MOPSO
and SPEA2 and is competitive with MOSADE in diversity
performance, which results from the normalized nearest
neighbor distance-based density estimator.

To further testify the above conclusions, the
Wilcoxon signed-rank test was carried out and the
results for the three quality indicators for all Benchmark
problems are proposed in Table 4. The Wilcoxon signed
ranks test is a simple yet safe and robust nonparametric
test for pairwise statistical comparisons (Derrac et al.,
2011). It is a pairwise test that aims to detect significant
differences between two sample means. The results of
the Wilcoxon signed-rank test were calculated by the

statistical software tool KEEL (Alcalá-Fdez et al., 2009).
From Table 4, it is clear that the SFMOFOA

obtained higher R+ values than R− values in the GD
indicator, which means that the SFMOFOA significantly
outperforms NSGA-II, SPEA2, MOPSO and MOSADE
in convergence performance. For the spread indicator Δ,
the SFMOFOA is significantly different from NSGA-II
and MOPSO at 5% level of significance. That is to say,
the SFMOFOA has a significantly better performance of
diversity maintenance than NSGA-II and MOPSO. But
compared with MOSADE and SPEA2, the difference
is not significant (the p-values are approximately equal
to 0.5). The main reason is that the SFMOFOA
loses in bi-objective problems but wins in tri-objective
problems in the Δ indicator. When considering the
HV indicator, the SFMOFOA outperforms NSGA-II,
SPEA2 and MOPSO at 5% level of significance, but has
a comparable performance with MOSADE. Obviously,
the multi-problem Wilcoxon signed-rank test results are
consistent with the above conclusions from Tables 1–3.

6. Conclusions

An improved novel fruit fly optimization algorithm based
on stochastic fractals for multiobjective optimization was
proposed. To avoid the limitations of the original
definition of the smell concentration judgement in the
FOA and improve its convergence performance, a new
position update mechanism based on the Gaussian walk
based fractal growth was developed. In addition,
an adaptive parameter strategy was introduced to
dynamically adjust the search range according to the
current swarm location and evolution process to balance
the exploration and exploitation. All this significantly
improved the search power of fruit fly swarm, both locally
and globally, as now it enables a more effective search in
a relatively larger space.

Based on the Pareto dominance concept, a
dominance selection operator was developed and the
improved FOA was then extended for multiobjective
optimization problems. Similarly to many other MOEAs,
an external elitist archive was utilized to preserve
the non-dominated solutions found so far during the
evolution. For the purpose of finding a set of Pareto
optimal solutions that are uniformly distributed along
the whole Pareto front, the normalized nearest neighbor
distance based density estimation strategy was proposed
to keep the size of the archive. The normalized nearest
neighbor distance can accurately reflect the crowding
degree of solutions in the archive, especially for problems
with the Pareto front composed of multiple nonidentical
parts and different orders of magnitude of objective
function values. In addition, the concept of sequence
constrained-domination is proposed to handle constrained
MOPs by means of an improved feasibility-first scheme
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Table 4. Wilcoxon signed-rank result for the SFMOFOA vs. MOSADE, NSGA-II, SPEA2 and MOPSO.
SFMOFOA GD Δ HV

vs. R+ R− p-value R+ R− p-value R+ R− p-value

MOSADE 144.0 27.0 8.96E-3 81.0 90.0 5.37E-1 77.5 75.5 4.85E-1
NSGA-II 158.0 13.0 6.71E-4 141.0 30.0 1.38E-2 134.5 36.5 3.23E-2
SPEA2 159.0 12.0 5.34E-4 103.0 68.0 4.68E-1 131.5 21.5 7.27E-3
MOPSO 164.0 7.0 1.45E-4 146.0 25.0 6.32E-3 144.5 8.5 4.43E-4

and associate dominance selection mechanism. It follows
from the analysis results proposed in Section 5 that
overall the proposed SFMOFOA outperforms the four
state-of-the-art methods, namely, NSGA-II, SPEA2,
MOPSO and MOSADE.

A potential drawback of the proposed SFMOFOA is
that its performance is sensitive to the adaptive strategy
of δ in the Gaussian walk. The choice of the power α in
Eqn. (16) may affect the performance of the algorithm
for various MOPs. For the future work, a more robust
adaptive strategy should be further considered. Moreover,
we are planning to extend the proposed SFMOFOA
to dynamic multiobjective optimization problems and
practical applications, e.g., to environmental systems
modelling and economic dispatch of power systems.
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