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In contrast to road-based traffic, the track as well as the corresponding duty cycle for railways are known beforehand,
which represents a great advantage during the development of operating strategies for hybrid vehicles. Hence the benefits
of hybrid vehicles regarding the fuel consumption can be exploited by means of an off-line optimisation. In this article, the
fuel-optimal operating strategy is calculated for one specified track using two hybrid railway vehicles with different kinds
of energy storage systems: on the one hand, a lithium-ion battery (high-energy storage) and, on the other, a double layer
capacitor (high-power storage). For this purpose, control-oriented simulation models are developed for each architecture
addressing the main effects contributing to the longitudinal dynamics of the power train. Based on these simulation models,
the fuel-optimal operating strategy is calculated by two different approaches: Bellman’s dynamic programming, a well-
known approach in this field, and an innovative sensitivity-based optimisation.
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1. Introduction

In Europe, only a certain part of the railway network is
electrified. On the remaining lines the traffic is realised
by diesel vehicles, e.g., diesel-multiple-units (DMUs).
The rising ecological awareness, stricter emission and
noise regulations, exhaust-free stations, and rising fuel
prices lead the railway system suppliers worldwide to
invest in the research and development of hybrid railway
vehicles, which have a promising potential to reduce
fuel consumption, emissions and noise. The most
common hybrid vehicle uses an electric motor combined
with an energy storage system to support the internal
combustion engine (ICE). The choices of the energy
storage system (ESS), further vehicle components and
the overall propulsion chain depend on the vehicle’s duty
cycle and on other issues such as cost effectiveness as well
as maintainability.

Hillmansen and Roberts (2007) carried out a
kinematic analysis of ESSs suggesting a potential of up
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to 35% energy savings for commuter vehicles. The result
of research work on hybrid concepts for diesel multiple
units presented by Hillmansen et al. (2009) calculates
a potential for the reduction in the fuel consumption
of up to 25% on a fixed track. Beside the system
architecture with its corresponding components and ESS,
the operating strategy plays an important role regarding
the fuel consumption of a hybrid vehicle (see Meinert
et al., 2015).

In the literature, many different optimal control
strategies have been published in the past aiming at
minimising the fuel consumption by managing the power
flows of the energy sources. In particular, they can be
classified into three groups (Pisu and Rizzoni, 2007):

1. dynamic programming (cf. Ogawa et al., 2007;
Brahma et al., 2000);

2. rule-based approaches (cf. Dittus et al., 2011; Torres
et al., 2014), fuzzy logic (see Wang and Yang,
2006; He et al., 2013), and neural network control
techniques (Moreno et al., 2006);
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3. methods based on the conversion of electric power
into an equivalent fuel consumption (cf. Pisu and
Rizzoni, 2007; Katranik, 2010).

Here, dynamic programming is the pre-dominant
technique (see Bellman, 1952; 2003), which involves
a discrete system model and discrete control variables
to calculate the optimal management strategy. Based
on the known duty cycles, the sequence of operating
modes can be computed completely off-line. Moreover,
also a fuel-optimal combined driving strategy and
energy management can be determined using dynamic
programming (see Leska and Aschemann, 2015).

In order to evaluate the total fuel and energy
consumptions, respectively, the so-called tank-to-wheel
(TTW) analysis is used, which deals with the energy
conversion from the fuel and the electric capacity to the
required mechanical energy at the wheels. The most
common approach of the TTW analysis is the use of
one lumped efficiency, which denotes the average value
of the relation between the used fuel energy and the
mechanical energy at the wheel (Guzzella, 2013). This
so-called cycle-averaged efficiency is well suited for
standard but not for hybrid vehicles. For this purpose,
further methods like the use of two averaged efficiencies
for the fuel-to-tank and the recuperation efficiency (cf.
Ott et al., 2012), and the use of several cycle-averaged
efficiencies for each energy conversion step as in the
work of Katrasnik et al. (2007) can be found in the
literature. Leska et al. (2014) analyse the energy
conversion using a complete simulation model of a hybrid
railway vehicle with a mechanical transmission and an
on-board lithium-ion battery including the main system
components of the power train.

In this paper, the approach of Leska et al. (2014) is
adapted for a hybrid railway vehicle with a diesel-electric
transmission with a battery (Bat) and a double layer
capacitor (DLC), respectively, as an on-board energy
storage system (ESS). In Section 2, a control-oriented
simulation model is derived for both railway vehicles.
Then, the fuel-optimal operating strategy is calculated
in two alternative ways: in Section 4.1 by dynamic
programming according to Bellman, and in Section 4.2 by
a sensitivity-based optimisation (cf. Leska et al., 2014).
Both the methods are compared with each other in
Section 5 regarding accuracy, computational effort and the
ability for an on-line energy management. Moreover, the
impact of fuel costs regarding the overall life cycle costs
is discussed. Finally, Section 6 concludes this article and
provides an outlook on future research.

2. Modelling of a diesel-electric hybrid
railway vehicle

The power train of a basic diesel-electric hybrid railway
vehicle mainly consists of an internal combustion engine
directly connected to an electric generator (G), an energy
storage system (ESS) and an electric motor/generator
(M/G) located on the drive shaft. In Fig. 1, a simplified
structure of the modelled hybrid railway vehicle is
presented. The ICE supplies the mechanical auxiliaries
during the whole duty cycle. For the system architecture
with a DLC, only mechanical auxiliaries are used,
whereas for the architecture with a battery some of the
consumers are electrified.

Given this system configuration, the following six
operating modes are available:

• Mode 1: Pure ICE,

• Mode 2: Pure electric M/G,

• Mode 3: Boosting,

• Mode 4: Load level increase,

• Mode 5: Coasting,

• Mode 6: Recuperation.

In Mode 1, the ICE provides the total power demand.
Mode 2 is a pure electric mode, where only the M/G is
active. In Mode 3, the power boost mode, the power for
the electric motor is supplied by the ICE via the generator
and by the ESS. During a load level increase (Mode 4),
the ICE provides more power than required to follow the
pre-specified duty cycle. Here, the excess power is used
for recharging the ESS. This mode is also used at standstill
to fully recharge the ESS. In Mode 5, the coasting mode,
neither the electric motor nor the combustion engine
are providing power. Finally, in the recuperation mode
(Mode 6), kinetic energy of the vehicle is recovered in
deceleration phases. In all six operating modes, the ICE
is running to supply the mechanical auxiliaries with the
required power.

In Fig. 2, the simulation structure reflecting the
system architecture according to Fig. 1 is depicted.
Only the main effects—contributing to the longitudinal
dynamics of the power train—are modelled. The
individual blocks represent the component models of the
hybrid system. For each component, low-order models

Fig. 1. Architecture of a hybrid diesel-electric railway vehicle.
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Fig. 2. Simulation structure of a diesel hybrid railway vehicle.

based on dynamic equations and static characteristic maps
were derived and implemented in Matlab/Simulink. The
arrows represent the numerical evaluation order of the
components and not the directions of the power flow.

Note that this evaluation order is opposed to the
direction of the power flow corresponding to an inverse
problem setting. Therefore, the inputs of the simulation
approach are the velocity and altitude profiles, whereas
the outputs are given by the load points and the fuel
consumption of the ICE and the state of charge (SOC) σ
of the ESS (cf. Guzzella and Sciarretta, 2005). According
to the control strategy, the control unit distributes the
requested power for tracking the duty cycle between
the ICE and the ESS. In the following section, a short
description of the component models is given. The model
of the converter is represented, for the sake of simplicity,
by a constant efficiency factor.

2.1. Vehicle. The vehicle model results from a balance
of forces

Fw = mveh · a+ Fres + Finc , (1)

where Fw denotes the force at wheel, mveh the mass
of the vehicle, a the acceleration of the vehicle, Fres

the resistance forces which include the air resistance and
rolling resistance, and Finc = mveh · g · sin(γ) the
inclination force with the inclination angle γ. To consider
the rotary inertia of the power train, the vehicle mass
mveh includes the rotating masses mrot = prot · mtare,
0 < prot < 1, which are defined by the tare weight mtare

of the train. With the wheel diameter dw and the velocity
v of the train, the torque at wheel Tw and the rotational
speed ωw of the wheels can be calculated by

Tw = Fw

dw

2
, ωw = 2

v

dw
. (2)

2.2. Axle gear. The axle gear transmits the power
from the drive shaft to the wheels. Corresponding to the
constant gear ratio iag, the torque Tag and the angular
velocity ωag at the mechanical input of the axle gear can
be computed by

Tag =
Tw

iag · ηdag
, ωag = ωw · iag . (3)

The efficiency ηag of the gear box is assumed to be
constant. The exponent d has to be chosen according to
the direction of the power flow. For a positive power
flow, directed from the propulsion system to the wheels,
its value is d = 1. In the case of a negative power flow
(for a power flow in the opposite direction), a negative
exponent d = −1 is used.

2.3. Internal combustion engine. The ICE, which is
directly connected to the electric generator, represents the
prime mover of the system architecture. In the simulation
model, mainly the fuel consumption V of the ICE is
predicted by a measured static map of the specific fuel
consumption be (Fig. 3). With the simulation inputs,
the angular velocity ωICE and the requested ICE power
PICE , the specific fuel consumption be is computed by
using a 2D-interpolation inside the static engine map. The
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Fig. 3. Specific fuel consumption be in g/kWh depending on the
angular velocity ωICE and the power PICE .

total fuel consumption for the ICE becomes

V (t) =

∫ t

0

PICE(τ) · be(τ)
ρfuel

dτ , (4)

where ρfuel denotes the density of the fuel.

2.4. Electric motor/generator. The electrical drive
represents a classical motor/generator unit, e.g., an
induction machine. It is used either as a traction motor
to move the train vehicle or as a generator to recuperate
the braking energy.

By multiplication of the simulation block inputs
TMG and ωMG, the mechanical power PMG can be
obtained. Depending on the direction of the power flow
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(d = 1: positive power flow; d = −1: negative power
flow), the electric power Pel can be computed as

Pel =
PMG

ηdMG

. (5)

The efficiency ηMG is determined by a linear
2D-interpolation in the efficiency map of the electric
motor/generator (Fig. 4).
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Fig. 4. Efficiency ηMG of the M/G depending on the rotational
speed ωMG and the torque TMG.

2.5. Battery. A lithium-ion battery consisting of
npar = 6 branches in electric parallel connection, where
each branch itself contains nser = 216 cells in serial
connection, is used as the energy storage device. In
traction phases, it provides power to the electric motor,
whereas it stores the recuperated energy in braking
phases. The simplified model of the battery is derived
at the cell level on the basis of the work of Rauh and
Aschemann (2012) for the equivalent electrical circuit
of the battery illustrated in Fig. 5. It consists of a
state-of-charge-controlled voltage source Uoc in series
with a constant resistance Rser representing ohmic losses.
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Fig. 5. Equivalent electrical circuit for the battery.

The terminal voltage Ucell of the cell is defined by
the cell current

icell =
Pel

npar · nser
· 1

Ucell
(6)

according to

Ucell = Uoc −Rser · icell . (7)

Using (6) and (7), the output variables Ubat and ibat
can be formulated as

Ubat = Ucell · nser, ibat = icell · npar . (8)

The state of charge σ results from the cell current icell, its
initial value σinit = σ(0), and the nominal capacity Cnom

of one cell

σ(t) = σ(0)−
∫ t

0

icell(τ)

Cnom
dτ . (9)

To avoid an overheating of the battery, it is necessary
to meet the maximum charging and discharging power
given by the battery manufacturer. Usually, the maximum
continuous powerPcont of the battery depends on the state
of charge and allows for short phases, where power peaks
exceeds the continuous power Pcont. Here, a three-stage
limitation is employed for the maximum discharging
power Pdch,max according to

Pdch,max =

⎧⎪⎨
⎪⎩
Ppeak,1 if cnt < t1,

Ppeak,2 if t1 ≤ cnt < t2,

Pcont otherwise.

(10)

The counter is increased in every time step by the sample
time as long as the requested power Pess for the ESS
is larger than the continuous power Pcont. A reset is
performed if a change from charging to discharging or
the other way round occurs. The limiting values for the
peak power Ppeak,1 and Ppeak,2 restrict the maximum
discharging power for the following simulation step
corresponding to the boundaries t1 and t2 of the counter
cnt. For the charging power, an analogous approach is
implemented.

2.6. Double layer capacitor. As high-power energy
storage, the double layer capacitor (DLC) is used. The
modelling is based on a simplified electrical circuit
consisting of an internal resistance RDLC in series with a
capacitor CDLC . Both are in parallel to a self-discharging
resistance Rdch; see Fig. 6. The losses caused by the
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Fig. 6. Electrical circuit of the DLC.

self-discharging resistance Rdch were neglected because
of the large value of Rdch and the requested duty cycle
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with short steady-state times. With the requested power
PDLC as simulation input and the DLC voltage UDLC the
current results from

iDLC =
PDLC

UDLC
. (11)

A positive value of iDLC corresponds to a
discharging, a negative value to a charging of the DLC.
The DLC voltage follows from

UDLC =
QDLC

CDLC
−RDLC · iDLC , (12)

whereQDLC denotes the electric charge of the DLC. With
the energy contentEDLC = 1

2CDLCU
2
DLC , the minimum

energy content Emin and the usable energy content Euse,
the state of charge σ can be calculated by

σ =
EDLC − Emin

Euse
. (13)

The maximum discharging and charging current are
limited similarly to the power limitation of the battery.
If the current iDLC exceeds a defined limit ilim for a
longer time period, the maximum current is limited for
a specified period. Furthermore, the root mean square of
the current irms is build on-line for a fixed number N of
samples in the past

irms =

√√√√√
t∑

t−N ·Δt

i2DLC

N
. (14)

If this value exceeds a certain value, the maximum current
is limited until the root mean square falls below another
threshold.

3. Simulation scenario

The vehicle considered is a three-coach DMU operated
as regional train, with one propulsion unit per coach
(Fig. 1). Here, an increased vehicle mass accounts for
the additional system components of a hybrid system
architecture such as the electric motor and the ESS. The
auxiliaries are characterised by a constant power demand,
half of which has to be provided by the ICE and half by
the ESS. As a result, the ICE is operated permanently
during the whole operating time. In the case of the DLC
architecture all auxiliaries are mechanical. The DLC is
only used to support the ICE during traction.

As mentioned before, the velocity profiles serve
as simulation inputs. Because of a calculation in the
opposite direction of the power flow, it is essential that
they comply with the maximum traction forces of the
power train. For that purpose, the driving cycles are
computed as shown by Leska et al. (2013) with respect to

the current system architecture. All profiles are calculated
with a time contingency of 10% in comparison with a
time-optimal driving strategy to allow for a reduction of
the fuel consumption and emissions. Figure 7 shows the
resulting speed profiles for both system architectures: the
one with a battery, and the other with a DLC.

In the top panel, the speed profile is shown, whereas
the corresponding inclination profile, which is typical for
the low mountain range of Germany, is depicted in the
bottom panel.
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Fig. 7. Reference trajectory.

These profiles are used as simulations inputs in the
following simulations.

4. Optimal operating strategy

An operating strategy for a hybrid vehicle specifies the
allocation of the demanded traction power Pel among the
propulsion systems (the ICE and the ESS). It includes a
systematic approach to determining the required operating
modes and control variables. For that purpose, the power
split ratio x is introduced which allows for splitting the
required traction power Pel between the ICE (Pcu1) and
the ESS (Pcu2). In Mode 3, the power values of Pcu1 and
Pcu2 are defined as

Pcu1 = (1 − x) · Pel, Pcu2 = x · Pel , (15)

with x ∈ [0, 1]. If Mode 4 (load level increase) becomes
active, the power values are calculated by

Pcu1 = −x · (Pmax − Pel) + Pel,

Pcu2 = Pel − Pcu1 , (16)

where the power split ratio is defined as x ∈ [−1, 0] and
Pmax denotes the maximum recuperation power, which is
limited by the maximum ICE power and the maximum
power of the ESS.
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By adjusting the power split ratio x in an optimal
way for each time step of the duty cycle, the fuel-optimal
operating strategy can be found. In the following sections,
two optimisation approaches are applied to the given
simulation models to obtain an optimal sequence of the
power split ratio x. To allow for a comparison of the
achievable fuel savings of the hybrid railway vehicle, a
simulation with a classical diesel vehicle is performed.
The resulting fuel consumption is employed as a reference
Vref for the following optimisation results with the hybrid
vehicle.

4.1. Bellman’s dynamic programming. The dynamic
programming approach according to Bellman (2003) is
a computationally expensive algorithm calculating the
optimal control sequence for each time step. The
algorithm determines the optimal control sequence on
a chosen grid backwards in time based on Bellman’s
optimality principle: “Regardless of the decisions taken to
enter a particular state in a particular stage, the remaining
decisions made for leaving that stage must constitute an
optimal policy” (Bellman, 1952). The resulting operating
strategy is characterised by frequent switches in the power
split ratio x, but the results can be regarded as the global
optimum. In general, dynamic programming is used to
calculate the optimal control sequence for multi-stage
decision processes.

First, the optimisation problem is discretised into k ∈
{0, . . . , N} with N time intervals, in i ∈ {1, . . . , I} with
I values for the state of charge σ and in j ∈ {1, . . . ,M}
with M values for the power split ratio xj(k) ∈ [−1, 1].
The resulting state of charge

σ(k + 1) = f(σi(k), xj(k)) (17)

and the actual costs (fuel consumption)

V0(k) = g(σi(k), xj(k)) (18)

are then computed in for each decision k using the
simulation model given in Fig. 2. Hence the minimum
costs V N−(k+1) for the remaining trajectory can be
obtained for all states σi(k) by solving the following
optimisation problem:

V N−k(σi(k))

= min
xj(k)

{V0(σ
i(k), xj(k)) + V N−(k+1)(σ(k + 1))} ,

(19)

where V N−(k+1)(σ(k + 1)) denotes the remaining costs
starting from the resulting state σ(k + 1) up to the final
stage N .

The dynamic programming starts at the stage k =
N − 1 and is evaluated according to Bellman’s optimality
principle backwards in time until the first stage k = 0

is reached. For that purpose, at first, the load points
(Pel) corresponding to the duty cycle—characterised by
the velocity profile as well as the inclination profile—are
identified off-line for every time step k by evaluating the
grey shaded components of the simulation model in Fig. 2.
With the load point (Pel) and the initial state of charge
σi(k), the resulting state of charge σ(k+1) and the actual
costs V0(k) can be computed. If the resulting state of
charge σ(k + 1) is not equal to one of the N discrete
values of the state of charge σi(k+1), the remaining costs
V N−(k+1) will be determined by an interpolation between
the two closest states of charge. The overall costs for all
N time intervals can be calculated by

V N (x(0)) =

N−1∑
k=0

(V0(σ(k), x(k)) + V (x(N))) . (20)

4.1.1. Battery. For the given system architecture
with an on-board battery, the optimisation problem is
discretised into N = 11079 time steps, I = 1001
values for the state of charge σ ∈ [0.4, 0.6] and
M = 201 values for the power split ratio x. Figure 8
shows the resulting progression of the state of charge
σ(t) and the corresponding progressions of the requested
power Pel, the power values for Pcu1 and Pcu2 and
the maximum discharging and charging power Pcu2,max

and Pcu2,min, which include the power limitations of all
relevant components, e.g., the battery, the generator and
the ICE.
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Fig. 8. Optimisation results by dynamic programming for the
hybrid vehicle with a battery ESS.

The state of charge of the battery at the starting
point is equal to the one at the final destination. This is
demanded for all optimisation experiments in this article
to ensure a fair comparison with the standard diesel
vehicle. Compared with the standard railway vehicle,
a fuel saving of 24% could be achieved. Regarding
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the large values of Pcont (see (10)), for the state of
charge values above σ = 0.4, the power restrictions
caused by the counter (see Section 2), are not relevant
here. Hence the results by dynamic programming can be
seen as a global optimum disregarding the numerical and
the discretisation errors. The frequent switchings in the
power values shown in Fig. 8 are typical for the dynamic
programming approach. This effect and, especially, the
high computational effort inhibit the use in an on-line
operating strategy.

4.1.2. DLC. For the system architecture with an
on-board DLC, a fuel saving of 17% is achieved compared
with the standard diesel vehicle. The optimisation
problem is discretised into N = 11079 time steps, I =
251 values for the state of chargeσ ∈ [0, 1] andM = 201
values for the power split ratio x. Figure 9 shows the
resulting progression of the state of charge σ(t) and the
corresponding progressions of the power values for Pel,
Pcu1, Pcu2, Pcu2,max and Pcu2,min.
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Fig. 9. Optimisation results by dynamic programming for the
hybrid vehicle with a DLC ESS.

The progression of the state of charge is balanced
between the starting point and the final destination as
demanded. At the time periods from 3800 to 5500 s
and from 8800 to 10000 s, a significant reduction in
the maximum charging Pcu2,min and discharging power
Pcu2,max caused by the root mean square irms can be
observed; see Section 2. Such methods which are
based on counters cannot be considered in the dynamic
programming because of the calculation in the backward
direction. It cannot be definitely said if the obtained
results could be seen as a global optimum.

4.2. Sensitivity analysis optimisation. To compare
and to assess the results of the dynamic programming, a
second optimisation approach is applied to the two hybrid

problems. The so-called sensitivity analysis optimisation
by Leska et al. (2014) is used. This approach calculates
the optimal operating strategy of hybrid vehicles in
two steps. First, characteristics of the optimal power
split ratios x in Modes 3 and 4 are computed by a
sensitivity analysis. Afterwards, these characteristics
serve for calculating the fuel optimal operating strategy
using adequate optimisation approaches.

If the grey-shadowed blocks in the simulation model
in Fig. 2 are neglected, the optimal power split ratios
x are calculated by a numerical sensitivity analysis of
the remaining simulation structure. Different load points
(P i

el) are applied as inputs. For k ∈ {1, . . . , 100},
simulations are performed with a specified initial state of
charge of σinit, a fixed simulation time and varying values
of xi

k to determine the corresponding fuel consumptions
V i
k and thresholds for σi

k. With the simulation results V i
d

and σi
d for a pure diesel drive (xi

k = 0) the optimal power
split ratios xi

k ∈ [0, 1] in Mode 3 can be determined by the
evaluation of the boost sensitivity sb according to

sib =

{
V i
d − V i

k

σi
d − σi

k

}
· 100 . (21)

The higher the boost sensitivity sib, the more efficient is
the support of the diesel engine by the ESS at the current
load point (Pel).

Analogously, the optimal power split ratios xi
k ∈

[0, 1] in Mode 4 can be determined by the evaluation of
the load increase sensitivity sl according to

sil =

{
V i
k − V i

d

σi
k − σi

d

}
· 100 . (22)

It indicates the additional fuel consumption for charging
the battery by one percent of its usable energy content.
The lower the load increase sensitivity sl, the more
efficient is the load increase mode at the current load point
(Pel).

4.2.1. Battery. Figure 10 shows the boost sensitivities
for the system architecture with an on-board battery. As
mentioned before, the larger these sensitivities, the higher
is the potential to save fuel. The best boosting conditions
are obtained at high loads with a small power split value
x. However, they get worse with increasing power split
ratios x and decreasing loads.

The load increase sensitivities for the battery are
depicted in Fig. 11. In the white region, the power Pcu2 is
too small to supply the electrical auxiliaries, which leads
to a decreasing state of charge.

It is not meaningful to use Mode 4 in this area. The
promising scenarios for a load increase—characterised by
small sensitivities sl—are related to small loads Pel and
power split ratios x. With increasing loads as well as
power split ratios, the costs increase.
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Fig. 10. Boost sensitivities sb for the battery.
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Fig. 11. Load increase sensitivities sl for the battery.

In the work of Leska et al. (2014), the fuel optimal
operating strategy is determined by the introduction of an
additional parameter slim that defines the minimum value
for sb. Accordingly, Mode 3 is only used at load points
with a power split ratio x larger than sb,lim. At load
points with a boost sensitivity sb < sb,lim, any boosting
is omitted. The optimal strategy can be evaluated by a
bisection method. In every iteration step, one complete
simulation is performed for a certain factor of sb,lim until
the state of charge at the final destination is equal to the
one at the starting point; see Fig. 12.
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Fig. 12. Optimisation results by sensitivity analysis optimisa-
tion for the hybrid vehicle with a battery ESS.

To limit the range of the state of charge σ, the bounds
are implemented in the simulation model. Consequently,
any boosting is performed below σ ≤ 0.4 and no load

increase is used if σ ≥ 0.6. During recuperation, however,
σ is allowed to exceed the upper bound. The lower bound
may be violated in some periods due to the auxiliaries.
In addition to sb,lim, an additional parameter sl,lim
is introduced to allow for a load increase—especially
at small loads including zero. In the given scenario,
however, the sensitivities sl are quite small in comparison
with the boost sensitivities. The optimisation is subject
to an interlaced structure according to the following
algorithm:

repeat: specification of sl,lim (golden section
method)

repeat: specification of sb,lim (golden section
method)

• execution of a simulation run
• optimization of sb,lim in sections where

the minimum SOC value σmin is attained
• evaluation of the corresponding cost

function value

until the terminal criterion is fulfilled

until the terminal criterion is fulfilled.

In the outer loop, the optimal parameter sl,lim is
determined by a golden section search. Using a golden
section search as well, sb,lim is adjusted in the inner
loop. In each section, where Mode 3 is terminated by
the lower bound of the state of charge, the thresholds of
sb,lim are increased as long as the minimum value of σ is
still at the lower bound. The resulting progression of the
state of charge and the corresponding power are shown in
Fig. 12. Compared with the standard diesel vehicle, a fuel
saving of 23% could be achieved. This result is very close
to the one of the dynamic programming representing (at
least theoretically) the global optimum; advantageously,
the former approach strongly reduces the computational
effort.

4.2.2. DLC. The boost sensitivities for the
architecture with a DLC are depicted in Fig. 13.
Accordingly, the favourable boost situation—as for the
battery—corresponds to high loads Pel at small power
split ratios x. In general, the sensitivity values are smaller
than those for the battery due to a smaller capacity.

Figure 14 shows the load increase sensitivities for the
DLC architecture. The most promising areas—with small
sensitivities sl—are at low loads Pel and small values of x.

Given these characteristics, the optimal operating
strategy can be determined by means of the thresholds
sb,lim and sl,lim. In contrast to the dynamic programming
approach, the power limitations of the DLC can be
addressed here. The algorithm can be summarized as
follows where the condition max(irms(t)) < irms,max

must be always fulfilled:
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Fig. 13. Boost sensitivities sb for the DLC.
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Fig. 14. Load increase sensitivities sl for the DLC.

repeat: bisection of sb,lim

• reduction of the generator power during
sections with σend = 1 by lowering irms(t)

• increase of sb,lim in sections with σend = σmin

(see also Section 4.2.1)

until irms,max −max(irms(t)) < ε, where ε > 0

repeat: golden section method for sl,lim within
sections with σend < 1

• selection of sb,lim and simulation

until the terminal criterion is fulfilled.

The main indicator for a power limitation is the root
mean square value irms, which is based on the last time
steps. If this value exceeds a predefined threshold, the
power will be limited until it comes back to a fixed
value. To consider the value of irms, the optimisation is
performed in two steps: Firstly, the threshold of sb,lim
will be adjusted by means of a bisection method as long
as no power limitations occur, which means that irms

does not exceed the maximum value. In every iteration
step, one simulation is performed for a certain value
of sb,lim. To avoid any power limitation of the DLC,
two additional adoption methods are used: On the one
hand, the braking power of the electric motor/generator is
reduced in sections where the DLC is completely charged
at the end. This reduces the root mean square value irms.
On the other hand, the threshold of sb,lim is adjusted in
sections where the DLC is completely discharged. It is
increased as long as the DLC stays completely discharged
to prefer more efficient power split ratios x.
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Fig. 15. Optimisation results by sensitivity analysis optimisa-
tion for the hybrid vehicle with a DLC.

Secondly, the load increase mode is introduced in
sections with an incompletely charged DLC at the end.
Only sections are considered where an increasing value
of irms does not lead to exceeding its bounds. The power
split value is defined by the load increase sensitivity sl,lim,
which is adjusted by a golden section search. In every
iteration, one simulation is performed and the adoption
methods mentioned before are applied. Furthermore,
the threshold of sb,lim is decreased in the corresponding
sections to use the additional energy generated by the load
increase. The resulting progression of the DLC charge
is shown in Fig. 15. It is well visible that no power
limitation occurs. The DLC charge is balanced over the
duty cycle and the fuel saving compared to the diesel
vehicle comes to 18.3% which means 1.3% more than by
dynamic programming.

5. Discussion

5.1. Comparison of dynamic programming and
sensitivity analysis optimization. In Section 4, two
optimization approaches are presented and applied to
calculate the fuel-optimal operating strategy for a diesel
hybrid railway vehicle with a battery and a DLC as
on-board energy storage. The resulting fuel-savings
in comparison with the standard diesel vehicle are
summarized in Table 1. In general, dynamic programming
is used to calculate the optimal control sequence for
discrete multi-stage decision processes. If an adequate
discrete approximation of the continuous system exists,
the results of the dynamic programming can be seen as a
global optimum up to numerical and discretization errors.
In the present article, current and power restrictions
depending on their previous progressions are relevant for
both energy storages; see Section 2. Due to a calculation
backwards in time, however, dynamic programming
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cannot address these limitations. If they are attained,
it is no longer guaranteed that the results of dynamic
programming provide a global optimum.

As the SOC of the battery is always kept above a
certain level in this optimization, the power limitations of
the battery do not affect the operating strategy. In this
area, the battery is able to provide enough power, even if
only the continuous power Pcont is usable. Consequently,
the results of the dynamic programming for the battery
can be seen as a global optimum. In comparison with
this result, the sensitivity analysis optimisation achieves
similarly good results.

In the case of the DLC, the limitations—which are
related to the root mean square value of current irms—do
affect the operating strategy. Here, dynamic programming
does not provide any more the global optimum, and the
sensitivity analysis approach produces better results.

Table 1. Optimization results.
Battery DLC Computing time

DP 24% 17% 13476 s
SO 23% 18% 2 s

In addition to the fuel savings, the required
computing time is stated in Table 1. Computation
with an Intel Core i7 2.70 GHz computer of the
fuel-optimal operating strategy for the hybrid vehicle with
a battery took 13476 s with the dynamic programming
and 2 s with the sensitivity analysis optimisation. Here,
the computation time for the calculation of sensitivity
characteristics is neglected. They are related to the system
architecture and have to be determined only once.

The computing times indicate that the dynamic
programming is not very promising for the use in
an on-line energy management strategy such as model
predictive control. The calculation takes a lot of time
and could be done only for small prediction horizons
or for highly simplified models in a sufficiently small
time period. By contrast, the sensitivity analysis
optimisation in contrast needs much less time than
dynamic programming. Only one parameter has to be
adopted to determine the fuel-optimal operating strategy.
In combination with a prediction of the future speed
profile, this approach is very promising for the usage in
an on-line energy management.

5.2. Life cycle costs. The investment decision process
for the selection of a traction system for a railway vehicle
is often based on the so called life cycle costs (LCCs),
which includes the initial costs, the running costs for fuel,
and the maintenance costs for a specified time period.
As all the system architectures considered use the same
diesel engine, the initial and maintenance costs for this
engine are the same. Only the initial and maintenance

costs for additional system components of the hybrid
vehicle, especially for the energy storage, have to be
considered. Furthermore, lifetime aspects of the energy
storage systems have to be included in the life cycle costs.
If the usable lifetime is less than the one of the vehicle and
the covered LCC period of 20 years, the energy storage
has to be replaced, and the additional investment costs
have to be added to the LCC costs. For batteries and
DLCs, usually not the whole system has to be replaced,
but only the storage modules, which results in lower
replacement costs in comparison with the initial costs.
Hence the dominant factors for the LCC are the costs for
the fuel and the energy storage system.

5.3. Fuel costs. The fuel costs are one of the
dominating elements in the LCC assessment. They result
from the total fuel consumption during the LCC period
and the corresponding fuel price. This is mainly governed
by the world crude oil price and the tax regulations
of the countries. It changes not only from country to
country but also in time. This makes it very difficult to
convert the fuel savings in Table 1 into costs, which is
necessary to compare it with the additional investment
costs. Therefore, the average value cfuel,av of a specified
fuel price scenario is usually used to calculate the fuel
costs for the LCC period.

5.4. Energy storage costs. The costs for the
energy storage system are composed of the initial and
replacement costs, which become relevant if the lifetime
of the ESS is shorter than the LCC period. The lifetime of
the energy storage system mainly depends on the ageing
characteristics.

5.5. Ageing of a double layer capacitor. Double layer
capacitors belong to a category between batteries and
conventional capacitors. Due to low internal resistances,
they are able to accept and provide high power levels.
The process of charging is nearly reversible. They are
characterised by a high cycle stability, a high power
density and mechanical robustness. Thus, they are
typically used in applications with high power requests
in short time periods, such as hybrid vehicles. However,
their capacitance reduces over their lifetime. Even though
the energy storage in a DLC is pure electrostatic, parasitic
electrochemical reactions occur (Bohlen et al., 2007a;
2007b). Chemical mechanisms as well as processes of
physical nature (Bittner et al., 2012) are expected to
change the structural characteristics of the electrodes and
the chemistry of the electrolyte. These effects are mainly
influenced by the temperature and voltage. The higher
these values, the more the electrochemical reactions will
be accelerated. The impact of this degradation can be
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described by an increase in the internal resistance and a
decrease in the capacitance.

According to the investigations reported by Bohlen
et al. (2007a; 2007b), the main part of the ageing arises
from the calendric ageing and not from the cyclic ageing.
Hence, the operating strategy can only influence slightly
the ageing behaviour of the DLC. The lifetime of the DLC
is reached if the capacitance has reached a value of 80% of
the nominal one. For a DLC in traction applications, the
calendric lifetime is predicted to be maximally 15 years.
This means that the DLC has to be replaced once in the
LC period of 20 years. Consequently, the LCC costs are
given by the sum of the fuel costs, the initial costs of the
DLC and the replacement costs. If these costs are smaller
than the fuel costs of the conventional diesel vehicle, the
hybrid vehicle is cheaper.

5.6. Ageing of a battery. Beside specific energy,
energy density, specific power, safety, recyclability and
costs, the cycle life is one of the most important properties
of a traction battery (Lorf, 2013). It is limited due to
degradation and ageing of the battery, which are related to
electrochemical phenomena, which change the materials
and the properties of the battery cell. Ageing starts in
the chemical composition of the battery’s electrolyte and
goes on with degradation mechanisms at the electrodes
(Barré et al., 2013), whereas the origin can be either
mechanical or chemical. The effects of the ageing can be
described by a capacity fade and an increase in the internal
resistance (Waag et al., 2013). A distinction is made
between calendric ageing and cyclic ageing (Meissner and
Richter, 2005). The sum of both effects represents the
overall ageing of battery.

Calendaric ageing refers to the irreversible part of
the lost capacity by battery storage (Sarre et al., 2004).
It is mainly influenced by the storage temperature (Omar
et al., 2014) and the SOC level during storage (Ohue et al.,
2011). These parameters cannot be directly influenced by
the operating strategy. According to the manufacturer’s
data, the battery cell reaches a calendric age of 20 years at
20◦C and 10 years at 40◦C. Under these circumstances,
it is expected that the battery cells have to replaced once
within the LCC period.

Cyclic ageing occurs during the charging and
discharging phases of the battery. It depends on
parameters such as cycling depth, charge volume,
maximum SOC and depth of discharge (DOD), mean
discharge and charge current (see Herb, 2010). All of
them are related to the chemistry and the construction of
the battery and to the operating strategy, respectively. In
the work of Marongiu et al. (2015), the influence of the
vehicle-to-grid strategy on the ageing behaviour of lithium
ion batteries is investigated. It was figured out that the
chemistry plays an important role. The impact of the
special design is investigated by Rothgang et al. (2015).

It is shown that a modular energy storage system can lead
to a higher flexibility in the system design and enhance
lifetime and safety at the same time. In the work of Lorf
(2013), it is shown that the optimum size of a battery
for an electric vehicle depends on the system architecture
and the speed profile but also on the battery degradation.
With increasing cycle numbers the available capacity as
well as the available power fades. In order to satisfy
the power requirements at the end of the LCC period, it
is necessary to consider a certain spare capacity at the
beginning. This leads to an optimum battery capacity
of around 1.25 to 1.75 times the optimal nominal battery
capacity and increases the initial costs.

Another way to influence cyclic ageing is to adopt
the operating strategy in order to maximise the battery
lifetime. For this purpose, the ageing has to be estimated
and the additional replacement costs have to be considered
in the performance index. To evaluate ageing, several
indicators are proposed to quantify the health level of the
battery (Barré et al., 2013). The most common is the state
of health (SOH), which is defined by

SOH =
nominal capacity at t

initial capacity
. (23)

Various methods exist for SOH estimation, which
can be divided in five groups (Barré et al., 2013):

• electrochemical models,

• equivalent-circuit-based models,

• performance-based models,

• analytical models with empirical fitting,

• statistical approaches.

Each of these methods tries to solve the ageing estimation
problem, and is subject to individual pros and cons. One
method, the rainflow counting algorithm (Meissner and
Richter, 2005), only considers the number of cycles and
the corresponding cycle depth. Under the assumptions
that the order of the loading makes no difference and that
the damage accumulation is independent of the stress level
this algorithm counts the number of cycles and separates
them according to their magnitude. The results are the
mean value, the amplitude and the number of repetitions
of the oscillation. Usually, the end of life of a battery is
reached if the capacity is dropped by 20%. In general, the
manufacturers provide the dependency of the maximum
number of cycles for different depths of decharge (DODs)
in a cycle life curve. According to this curve, the lifetime
of the battery is reached if

D =

N∑
i=1

ni

nmax,i
= 1. (24)
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Here, the sum of the relation between ni, the number
of cycles with the i-th DoD, and nmax,i, the maximum
number of cycles with the i-th DOD, are built for all N
occurring DODs. Accordingly, the maximum number of
years ny of the battery can be calculated on the basis of
one journey of the train with the driving time tf and the
operating time per year T by

ny =
tf

T ·D. (25)

The operating hours per year vary from train to train
and from year to year. It is not possible to state an accurate
value for the operating time. Hence, the average value of
T = 3500 h/a is assumed. With this value, the lifetime
ny = 8.2 a of batteries is calculated by the rainflow
counting algorithm.

6. Conclusions

In this article, a comparative calculation of a hybrid
diesel-electric railway vehicle with two different energy
storage systems has been presented. On the one
hand, a lithium-ion battery is used as an example
for a high-energy ESS. On the other hand, a double
layer capacitor is investigated representing a high-power
ESS. The sizes of both the storages are chosen in
agreement with the maximum weight of the train. Based
on the control-oriented model presented in this paper
and the track specifications, two different optimisation
approaches are applied and compared with each other.
Bellman’s dynamic programming according is the most
common method in this area. It is computationally
expensive and, hence, not applicable to an on-line
operating strategy on board at trains in revenue service.
Furthermore, it is not perfectly applicable to all
optimisation problems. Nevertheless, if it can be
employed, the results can be considered a global optimum.

As the second optimisation approach, an innovative
sensitivity-based method has been proposed and adapted
to the problems under consideration. The performance is
close to the one using dynamic programming, although
with a significantly smaller evaluation time. Since only
several parameters are required to adopt the operating
strategy, this approach is also very promising for an
on-line power management, e.g., in model-predictive
control.
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