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For many scientists interval arithmetic (IA, I arithmetic) seems to be easy and simple. However, this is not true. Interval
arithmetic is complicated. This is confirmed by the fact that, for years, new, alternative versions of this arithmetic have been
created and published. These new versions tried to remove shortcomings and weaknesses of previously proposed options
of the arithmetic, which decreased the prestige not only of interval arithmetic itself, but also of fuzzy arithmetic, which,
to a great extent, is based on it. In our opinion, the main reason for the observed shortcomings of the present IA is the
assumption that the direct result of arithmetic operations on intervals is also an interval. However, the interval is not a direct
result but only a simplified representative (indicator) of the result. This hypothesis seems surprising, but investigations
prove that it is true. The paper shows what conditions should be satisfied by the result of interval arithmetic operations
to call it a “result”, how great its dimensionality is, how to perform arithmetic operations and solve equations. Examples
illustrate the proposed method of interval computations.
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1. Introduction

Interval arithmetic (IA, I arithmetic) is very important for
artificial intelligence (in the thinking process, people use
granular information), for granular computing (Pedrycz
et al., 2008) and especially for fuzzy arithmetic (Pedrycz
et al., 2008), because a fuzzy set can be interpreted as
a sum of cuts of the set on different μ-levels. It is
impossible to solve many problems containing uncertainty
without an effective IA. However, today it is not easy to
choose an appropriate version of IA because its numerous
versions have been proposed. Below, a few types of IA
are presented:

• standard interval arithmetic (SIA, SI arithmetic) of
Warmus–Sunaga–Moore (Moore and Young, 1959;
Moore, 1996; Moore et al., 2009; Sunaga, 1958;
Warmus, 1956),
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• extended interval arithmetic of Kaucher (EIA, EI
arithmetic) (Kaucher, 1980),

• affine interval arithmetic (AIA, AI arithmetic) of
Figuiredo and Stolphi (Figuiredo and Stolfi, 2004),

• constrained interval arithmetic (CIA, CI arithmetic)
of Lodwick (Lodwick, 1999),

• instantiation interval arithmetic (IIA, II arithmetic) of
Dubois (Lodwick and Dubois, 2015).

The best known and most often used IA is
SI arithmetic (SIA). It is an important step in the
development of uncertainty analysis. It enabled solving
many problems such as computing enclosures of solutions
to uncertain computational problems and getting rigorous
bounds on computational errors. There are also other
reasons behind the great popularity of this arithmetic such
as, e.g., its compatibility with human intuition, easiness
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in calculation and memorizing results. However, because
SIA could not solve all uncertainty problems, new types of
IA, as mentioned above, were developed to make progress
in interval computing. But SIA has some faults. Hanss
(2005), Chalco-Cano et al. (2014) and Neumaier (1990)
write about overestimation of results in SIA and the
dependence of the results on the form of the mathematical
expression used in problem solving. Hayes (2003) and
Dadala (2009) describe the “traps” of SI arithmetic. The
authors write that the main reason of the observed “traps”
is calculating with only borders of intervals. Moore
et al. (2009) report that the arithmetic does not possess
such important properties as the distributivity law and
the property of multiplicative cancellation. The lack of
inverse element of addition and multiplication is also very
important. If x denotes the left endpoint of an interval, x
stands for its right endpoint and x ≥ x (proper interval),
then the interval model is given by

[x] = [x, x], x ≥ x, x, x ∈ R (1)

Similarly to [x], the interval [y] is defined. Let ∗
be one of the operations {+,−,×,÷}. In terms of SI
arithmetic, each operation ∗ for independent variables can
be defined as follows (Lodwick and Dubois, 2015):

[x] ∗ [y] =
[

min
x∈[x],y∈[y]

x ∗ y, max
x∈[x],y∈[y]

x ∗ y
]
. (2)

The elementary arithmetic operations {+,−,×,÷}
are of course a basis for more complicated problems of
interval computing. Therefore, they are very important.
If the elementary operations are formulated imprecisely
or incorrectly, then using them for solving problems
can sometimes lead to controversial results. Examples
of these are frequently described in the literature (e.g.,
Dymova, 2011; Piegat and Landowski, 2012; 2013; Piegat
and Plucinski, 2015; Piegat and Tomaszewska, 2013;
Sevastjanov and Dymova, 2009). One of the important
problems of interval computations is interval extension
F (X1, X2, . . . , Xn) of a function f(x1, x2, . . . , xn),
where x1, x2, . . . , xn are real-valued arguments and
X1, X2, · · · , Xn are interval-valued arguments. This
problem can be illustrated by an example. Consider four
formal expressions of the same function f(x) given by

f1(x) = x(x + 1), f2(x) = x · x+ x,

f3(x) = x2 + x, f4(x) = (x+ 0.5)2 − 0.25. (3)

The expressions have been extended for X = [x] =
[−1, 1],

F1(X) = [x]([x] + 1) = [−2, 2],

F2(X) = [x] · [x] + [x] = [−2, 2],

F3(X) = [x]2 + [x] = [−1, 2],

F4(X) = ([x] + 0.5)2 − 0.25 = [−0.5, 2].

(4)

One can see that the accuracy of the resulting
intervals obtained with SI arithmetic depends on the form
of the function f used in the calculations. In economies,
Leontief’s input-output model is of great importance
(Leontief, 1949; 1966). This model is given by

[A][x] = [b], (5)

where [A] is an interval matrix, [b] is an interval vector
and [x] is an interval solution vector.

In opinion of many researchers (e.g., Shary, 2002;
Pilarek, 2010), the system of equations (5) has no
exact solution and only approximate solutions can be
determined. Even in the simplest case of n = 1,
the solution is problematical, because (5) is an interval
extension of the equation ax = b, which has alternative
forms b/a = x, a = b/x, ax − b = 0. Particular crisp
forms correspond to four interval extensions: [a][x] = [b],
[b]/[a] = [x], [a][x]− [b] = 0, [a] = [b]/[x].

Each of these interval forms delivers, in general,
different results [x], which means the ambiguity of the
results. This phenomenon, discovered by Dymova (2011)
as well as Sevastjanov and Dymova (2009), can be
called the dependence of interval results on the equation
form or, in short, the multiple results phenomenon (MR
phenomenon). The next example of an ambiguity in
interval arithmetic is the Hukuhara difference (Moore
et al., 2009). According to the most commonly used SIA,
the difference [w] = [u]− [v] of two intervals is calculated
with the formula [w,w] = [u − v, u − v]. However, for
the calculation of this difference another formula, called
the Hukuhara difference, is also used, i.e.,

[u] = [v] + [w]H : [u, u] = [v + wH , v + wH ]. (6)

Thus, in the present interval arithmetic, two different
formulas for the interval difference are accepted, which
yield different results in general. This situation is of
course very strange and unacceptable. The next disputable
point of interval arithmetic is using improper intervals
introduced by Kaucher (1980) in the form

[a] = [a, a], a ≤ a, a, a ∈ R. (7)

Improper intervals are not accepted by Lodwick and
Dubois (2015), either. Weaknesses of the present IA
results in a situation when even the solution of the simplest
equations as A + X = B leads to difficulties and is
disputed (see, e.g., Mazarhuiya et al., 2011; Kovalerchuk
and Kreinovich, 2016; Piegat and Landowski, 2012) and
there are different proposals of how it should be solved.
What is the reason for such a situation? Earlier, five
versions of interval arithmetic were mentioned: SIA,
EIA, AIA, CIA, SLIA. It appears that particularly IIA
and CIA seem noteworthy. They were presented in the
comprehensive paper of Lodwick and Dubois (2015). For
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solving interval linear equations the authors especially
recommend application of II arithmetic and CI arithmetic.
Further on, a short description of these taken from the
work of Lodwick and Dubois (2015) is given.

Let ∗ ∈ {+,−,×,÷}. II arithmetic is [x]∗[y], where

[x] ∗ [y] =
[

min
x∈[x],y∈[y]

x ∗ y, max
x∈[x],y∈[y]

x ∗ y
]
. (8)

The expression (8) is precisely how Moore (1996) defined
interval arithmetic. Note that according to (8) the result
of an arithmetic operation on intervals is also interval (1D
mathematical object). IIA does not impose independence.
In IIA we have

[x]− [x] = [x− x] = [0, 0] = 0. (9)

IIA is a different arithmetic from SIA since in the
latter [a, b]− [a, b] = [a− b, b− a], which equals [x]− [y]
if [x] = [y], assuming unrelated variables x, y. Thus, IIA
distinguishes between subtractions [x] − [y] and [x] − [y]
even when the intervals are the same. Similarly, it can
easily be seen that

[x]÷ [x] = [x÷ [x] = [1, 1] = 1,

if 0 /∈ [x], which is distinct from the usual IA.
IIA uses an instantiation of values inside the interval.
Computing with these single instantiated values makes
solving equations possible since instantiation is a real
value and possesses additive and multiplicative inverses.
In physical systems, the distinction between repeated
intervals and independent ones, possibly of equal values,
occurs when we have the same interval values coming
from two different measurements or parts such as two
different resistors which are outputting the same interval
values in a circuit. In II arithmetic, the following
epistemic view on an interval is assumed: it is an unknown
value x restricted by the interval x, x denoted by [x]. So,
x is an arbitrary real number in the interval [x] and we call
it instantiated. If we have a different variable y known to
lie in the interval [y], we may have that [x] = [y] even if
these two identical ranges refer to distinct quantities. This
representation is adapted to epistemic intervals.

The description of constraint interval arithmetic
(CIA) (cf. Lodwick and Dubois, 2015) is as follows: An
interval may be encoded by means of a continuous and
monotonic function f(λx) : [0, 1] → [x, x] such that

f(0) = x, f(1) = x, f nondecreasing, (10)

which we call a general constraint interval. We restrict
ourselves for this presentation to f(λx) being linear and
increasing, that is,

f(λx) = x+ wxλx, wx = x− x ≥ 0,

0 ≤ λx ≤ 1 (11)

called a constraint interval. It was the original approach
used in the so-called constraint interval arithmetic (CIA)
of Lodwick (1999). The set of constraint intervals belongs
to a mathematical space that is richer in properties than
the algebraic space of intervals used in SI arithmetic
associated with the traditional. CI arithmetic realizes
operations {+,−,×,÷} denoted briefly by

[x] ∗ [y]

=

[
min

0≤λx,λy≤1
{(x+ wxλx) ∗ (y + wyλy)},

max
0≤λx,λy≤1

{(x+ wxλx) ∗ (y + wyλy)}
]
,

(12)

where ∗ ∈ {+,−,×,÷}. It appears that a constraint
interval merely transformsx ∈ [a, b] into x = a+(b−a)λ,
for some λ ∈ [0, 1]. If it is true, one thinks of transforming
a particular single value x. However, a constraint interval
as defined by (11) is the function f(λx) whose domain is
0 ≤ λx ≤ 1 that explicitly keeps track of dependences and
lack of dependences all in one representation and operates
on the level of expressions. In CIA, we have

[x]− [x] = [f(λx)− f(λx)] = [0, 0] = 0, (13)

[x]÷ [x] = [f(λx)÷ f(λx)] = [1, 1] if 0 /∈ [x]. (14)

IIA and CIA also have the following property in contrast
to the standard:

[x]([y] + [z]) = [x][y] + [x][z]. (15)

Note that, according to CI arithmetic, the result of an
arithmetic operation on intervals is also an interval.

2. Important demands on interval
arithmetic

A very important demand on the arithmetic is the
possibility of transformations of formulas (mathematical
models, M models) to enable the calculation of any
variable (parameter) occurring in the M model which
we want to determine. For example, if a model of a
dependence existing in a system has the form a + x = b
and we know a ∈ [a, a] and b ∈ [b, b], then we want to
determine the unknown x by a formula transformation.
The result x has to be verifiable. How can we proceed
with the verification in the simplest way? By substituting
the result into the original equation (mathematical model).
Such a method is very well known under the name of an
algebraic solution (Lyashko, 2005; Popova, 1998; Shary,
1996). For interval computations, Popova (1998) gives the
following definition: the interval algebraic solution of a
linear interval equation is an interval (interval vector) such
that substituting it into the equation(s) and performing all
interval operations results in valid equality(ies). Let us
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notice that according to Popova (1998) solution of a linear
interval equation is an interval (interval vector), i.e., the
same mathematical object type.

A similar definition is given by Lyashko (2005):
An interval vector is called an algebraic solution of the
interval equation if after substituting this vector into
the given equation and executing all interval operations
according to the rules of interval arithmetic we get an
equality. However, we would like to extend this definition
taking into account the multiple results phenomenon (MR
phenomenon). The proposal of an extended definition is
as follows: the algebraic solution is a solution such that
substituting it into the pertinent system of equations and
performing all interval operations according to the rules of
interval arithmetic, we get an equality of both the sides of
all the equations independently of the mathematical form
of the system of equations used in calculations. Thus,
an algebraic solution (result) should satisfy the (result)
universality condition for the solution.

Eliminating the ambiguity of results from interval
arithmetic is a basic matter, which conditions its scientific
credibility. As Dymova (2011) as well as Sevastjanov and
Dymova (2009) have shown, the standard IA is incredible
in this respect, because depending on the given form of
a system model it delivers different results. However,
it does not mean that SIA is of no value because this
arithmetic allows solving many problems and has many
practical applications (Moore et al., 2009). We would
only like to say that the application of this arithmetic is
limited.

Now, investigate the credibility of the new versions
of IA, i.e., of instantiated IA and of constrained IA. In
our opinion, these arithmetic versions undoubtedly mean
a progress in interval computations. This was shown by
Lodwick and Dubois (2015). However, it seems that these
arithmetic versions are not ideal and can be improved
because they do not deliver universal algebraic solutions.
Let us consider the simple, basic operation of interval
addition [x] + [y] and its result suggested both by SIA,
IIA and CIA. This operation can be interpreted as the
dependence existing in a real system in which the output z
is the sum of two inputs x and y but their values are known
only approximately in the form of constraints given by
intervals [x] and [y]. An example of such a system can be
a tank with two water inflows or a firm obtaining incomes
from two sources. The operation of addition of two proper
intervals [x] and [y] gives, according to SIA, IIA, CIA, an
identical result, expressed by

[x, x] + [y, y] = [x+ y, x+ y] = [z, z]. (16)

Formulas confirming that statement can be found,
e.g., in the work of Lodwick and Dubois (2015, p. 9)
and Lodwick (1999). Let us notice that the formula (16)
suggests that the result of addition of two intervals
(interval numbers (Lodwick, 1999)) is also an interval,

that is, the same mathematical object. Such a result
is consistent with the axiom of closure that can be
formulated as follows: a set of intervals has a closure
under an operation (e.g., of addition) if this operation on
members of the set always produces a member of the
same set, i.e., an interval. Such an interval set is said
to satisfy the closure property (Bader and Nipkow, 1998;
Birkhoff, 1967). From an intuitive point of view, the
closure property seems obvious and perhaps this axiom
has motivated the creators of existing versions of interval
arithmetic to make the assumption that the result of an
operation on interval is also an interval. Now, let us
check whether a result of intervals’ addition (16) is the
algebraic result of all possible interval extensions of the
addition operation x + y = z. If a real system is ruled by
dependence x+ y = z then it is also ruled by transformed
dependences given under

x+ y = z, x = z − y,

y = z − x, x+ y − z = 0. (17)

Interval extensions of crisp forms of addition are
given by

[x] + [y] = [z], (18)

[x] = [z]− [y], (19)

[y] = [z]− [x], (20)

[x] + [y]− [z] = 0. (21)

The result of interval addition (18) according to SIA, IIA
and CIA is the interval [z] determined by (16). Now, let
us check the extension (19) given by (22):

[x] = [z]− [y] = [z] + (−[y]),

[x, x] = [z, z] +
(− [

y, y
])

= [z, z] +
[−y,−y

]
=

[
z − y, z − y

]
,

x = z − y : z = x+ y,

x = z − y : z = x+ y

[z, z] =
[
x+ y, x+ y

]
.

(22)

The result (22) is different from that suggested by the
definitions of the interval addition (16) according to SIA,
IIA and CIA. Now, let us consider the extension (20) of
the interval addition given by

[y] = [z]− [x] = [z] + (−[x]),[
y, y

]
= [z, z] + (− [x, x])

= [z, z] + [−x,−x] ,

= [z − x, z − x]

y = z − x : z = y + x,

y = z − x : z = y + x,

[z, z] =
[
x+ y, x+ y

]
.

(23)
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The result (23) is also different from (16) suggested
by the definitions of interval addition according to
the SIA, IIA and CIA. Now, lets us consider the
extension (21) of interval addition given by

[x] + [y]− [z] = 0,

[x, x] +
[
y, y

]
+ (− [z, z]) = 0,[

x+ y, x+ y
]
+ [−z,−z] = 0,[

x+ y − z, x+ y − z
]
= [0, 0] = 0,

x+ y − z = 0 : z = x+ y,

x+ y − z = 0 : z = x+ y,

[z] =
[
x+ y, x+ y

]
. (24)

This result is also different from (16). Summarizing
there exist four possible results of addition of intervals
dependent on four possible mathematical forms of the
addition operation, namely,

[x, x] +
[
y, y

]
= [z, z] =

[
x+ y, x+ y

]
,

[x, x] +
[
y, y

]
= [z, z] =

[
x+ y, x+ y

]
,

[x, x] +
[
y, y

]
= [z, z] =

[
x+ y, x+ y

]
,

[x, x] +
[
y, y

]
= [z, z] =

[
x+ y, x+ y

]
.

(25)

This situation cannot be accepted. None of the
four possible results (25) is a universal result of all
four possible forms of the interval addition (18)–(22).
A similar situation exists in the case of other arithmetic
operations: subtraction, multiplication and division.

The conclusion is that the analysed formulations of
interval arithmetic contain a certain basic error being
the reason of the observed controversial results. In our
opinion, the error stems from the generally incorrect
approach to interval arithmetic. An approach that we think
is correct will be presented in Section 3.

3. Proposed approach to interval arithmetic

In our opinion, reasons for controversial results observed
in the present versions of interval arithmetic are as
follows:

• Calculations in the present versions of IA are realized
only with the use of intervals, while they should be
realized with the use of M models of precise values of
uncertain variables (parameters). Note: One should
distinguish between the precise (true) value of a
variable and the M model of this value. If we have
the M model, this does not mean that we know the
precise value of the variable itself. The calculation
result is denoted by zpr. It allows generating all
possible point-results zposs creating the set Zposs that
gives the information about uncertainty in the precise
result zpr.

• In present versions of IA the notion of the solution
(result) of a calculation is sometimes used in relation
to partial sets (subsets) of the complete solution
(result) set (CSS or CS set) and in relation to
simplified representatives of this set. However, these
notions should be distinguished. Representatives of
the CS set give simple information about it, mostly
about its uncertainty, but they should not be used
in further steps of computation algorithms. In such
algorithms, computations should be realized with
models of precise results to get the final solution.
Then representatives of this solution that we are
interested in can be determined.

• Present versions of IA do not satisfy an important
requirement that can be called the principle of so-
lution (result) universality. This principle can be
formulated as follows: the mathematical solution
of a problem (an equation, a system of equations)
has to be of universal algebraic character, which
means that after substituting it into the M model
the equality of the right- and left-hand sides of the
model is achieved. This also means that regardless of
which mathematical form of the model the solution
(result) has been determined it should have the same
mathematical form.

In the case of interval calculations concerning a
problem with variables x, y and parameter a, the
procedure should be as follows:

Step 1. Determine a mathematical model F (x, y, a) = 0
of the system in a traditional form, i.e., appropriate for
calculations with precise, crisp values of all variables and
parameters.

Step 2. By model transformations derive a formula for
the variable (parameter) you are interested in, e.g., y =
fy(x, a).

Step 3. In the model y = fy(x, a) introduce RDM
models of precise values of uncertain variables and
parameters x(αx), a(αa). The obtained model ypr =
fy(x(αx), a(αa)) is called the model of precise variable
value (PVV model) and αx,αa are RDM variables. The
PVV model allows generating all possible point solutions
to the problem.

Step 4. On the basis of the PVV model determine the
model yposs = fy(x(αx), a(αa)) being the M model of
the algebraic solution set and determine its subsets or
representatives that are of your interest.

4. Mathematical model of the precise
variable value represented by an interval

If a precise value of variable x is unknown but we have
approximate knowledge that it is contained in an interval
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[x] = [x, x], then the following model (PVV model)
represents the precise, true value of the variable that
occurred in the real system:

Xpr : xpr = x+ αx (x− x) ,
αx ∈ [0, 1], cardX = 1,

(26)

Xpr denotes the set of true x-values. Since only one value
could occur in the system, cardinality of this set is equal
to 1. Hence, this set is of epistemic character (Lodwick
and Dubois, 2015). The RDM variable αx informs about
the relative position of a chosen value of variable x in the
interval [x]. Though the formula (26) is called the PVV
model, this does not mean that the precise x-value xpr

is known. The formula (26) informs that only one true
value exists between x and x. From the PVV model of
xpr (26), one should distinguish the model of Xposs that
allows generating all possible values of the set Xposs:

Xposs : xposs = x+ αposs
x (x− x) ,

αposs
x ∈ [0, 1], cardXposs = c(continuum). (27)

The difference between the sets Xposs and Xpr

consist in the meaning and cardinality. The set
of precise, true values of Xpr contains only one
value and is of epistemic character and the set Xposs

contains a continuum of possible values xposs and is
of ontic character (Lodwick and Dubois, 2015). The
model (26) of the precise value xpr was introduced in
the framework of multidimensional RDM arithmetic by
Piegat and Landowski (2012) without any knowledge of
CI arithmetic. A similar model of an instantiated x-value
was earlier introduced by Lodwick in the framework of CI
arithmetic. However, the general idea of both the types of
interval arithmetic is different, first of all in understanding
of arithmetic operations, which will be explained further
on. The RDM is an abridgement of relative distance
measure. In the traditional coordinate system each value
of a variable x is positioned. However, in the traditional
interval notation [x, x], we cannot position particular
values of variable x. The RDM variableαx ∈ [0, 1] allows
positioning each x-value because it introduces the RDM
coordinate system with a unit of the variable, similarly
as in the traditional Cartesian coordinate system. RDM
variables have the meaning of normalized coordinates
determining the distance of a single x-value from the
origin of the local coordinate system. The meaning of
RDM coordinates αx1, αx2 ∈ [0, 1] is illustrated in Fig. 1.

5. RDM interval arithmetic

The main difference between RDM-IA and other
arithmetic types consists in the fact that RDM-IA
operations are realized not on intervals (sets) but on
models of precise variable values. Hence, the achieved

Fig. 1. RDM variables αx1, αx2 ∈ [0, 1] as coordinates of a
local, normalized coordinate system formed by intervals.

result is also a model of the precise variable value and
not an interval. The result is multidimensional and not
one-dimensional. Let us denote by xpr and ypr precise,
true values of variables about which we possess only
approximate knowledge xpr ∈ [x, x] and ypr ∈ [y, y],
and by ∗ one of the arithmetic operations in {+,−,×,÷}.
Models of precise values of variables x and y are given by

xpr = x+ αx(x− x),

αx ∈ [0, 1], cardXpr = 1, (28)

ypr = y + αy(y − y),

αy ∈ [0, 1], cardY pr = 1. (29)

A model of the precise result value zpr of any
arithmetic operation ∗ is formulated by

zpr(αx, αy) = xpr(αx) ∗ ypr(αy),
αx, αy ∈ [0, 1], cardXpr = 1, cardY pr = 1.

(30)
Let us notice that the result zpr(αx, αy) is

multidimensional and not one-dimensional. It is the M
model of the precise value. Now, let us test on an example
of interval addition whether the result (30) has properties
of the algebraic and universal result with respect to all
four possible forms of addition (18)–(21). The result of
addition zpr on the basis of (30) has the form

zpr = [x+ αx(x− x)] + [y + αy(y − y)]
αx, αy ∈ [0, 1], cardXpr = 1, cardY pr = 1.

(31)
The basic addition formula has the form x + y = z,

substituting (28) into (18) and (29) and (31) into (18), we
obtain

{
[x+ αx(x− x)] + [y + αy(y − y)]

}
= [x+ αx(x− x)] + [y + αy(y − y)]

αx, αy ∈ [0, 1], cardXpr = 1, cardY pr = 1.

(32)

The second possible form of addition x + y = z is
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the form (19), x = z − y. Substituting (31) in it, we get

[x+ αx(x− x)]

=
{
[x+ αx(x− x)] + [y + αy(y − y)]

}
− [y + αy(y − y)]

αx, αy ∈ [0, 1], cardXpr = 1, cardY pr = 1.

(33)

After the reduction of the term ypr on its right-hand
side, we obtain

[x+ αx(x− x)] = [x+ αx(x− x)],
αx ∈ [0, 1], cardXpr = 1.

(34)

The third possible form of addition x+y = z is (20),
i.e., y = z − x. Substituting (31) in it, we obtain

[y + αy(y − y)]

=
{
[x+ αx(x− x)] + [y + αy(y − y)]

}
− [x+ αx(x− x)]

αx, αy ∈ [0, 1], cardXpr = 1, cardY pr = 1.

(35)

After the reduction xpr(αx) on the right-hand side,
we get

[y + αy(y − y)] = [y + αy(y − y)],

αy ∈ [0, 1], cardY pr = 1. (36)

The fourth possible form of addition x + y = z
is (21), i.e., x + y − z = 0. Substituting (31) in it, we
have

[x+ αx(x− x)] + [y + αy(y − y)]

− {
[x+ αx(x− x)] + [y + αy(y − y)]

}
= 0,

αx, αy ∈ [0, 1], cardXpr = 1, cardY pr = 1.

(37)

After the reduction on the right-hand side of the
equation, we achieve the indentity of both the sides,
0 = 0. The above analysis has shown that the
result (31) of addition of interval-valued variable values
has properties of the algebraic result and satisfies the
universality principle. Just as for addition, also the
correctness and universality of results can easily be proved
for other arithmetic operations realized according to (31).
The formula (31) determines the mathematical model of
the precise result of arithmetic operations. The set Zpr

contains only one element because in a real system only
one state determined by a triple (xpr, ypr, zpr) occurs in
a given, single instant. However, in practical problems
we are interested in the set Zposs containing all point
results which can occur in a system when our knowledge
about inputs x, y is approximate and of interval character.
Determining this set is very important for the evaluation
of uncertainty of the result. When the set Zpr of precise
values that occurred in a real system is epistemic and

Fig. 2. Visualisation of the set Zposs of possible point results of
addition xposs + yposs = zposs, xposs ∈ [x, x] = [1, 3],
yposs ∈ [y, y] = [2, 5] of independent variable values in
the 3D-space X × Y × Z.

contains only one-element (cardZpr = 1), then the set
of possible results Zposs contains an infinite number of
elements (ontic set) and its cardinality card(Zposs) =
c (continuum). The set Zposs is given by

Zposs : zposs = xposs(αx) + yposs(αy),
αx, αy ∈ [0, 1], cardXposs, cardY poss = c,

(38)

where
Xposs : xposs = x+ αx(x− x),

Y poss : yposs = y + αy(y − y).

The set Zposs is presented in Fig. 2.
Figure 2 concerns addition of two interval-valued

variables x and y about which we know that x ∈
[x, x] = [1, 3] and y ∈ [y, y] = [2, 5]. Equation (38)
is a mathematical model of the set Zposs which enables
generating all possible values of zposs for given possible
values of xposs and yposs or, in other words, enables
generating all possible states of a system that is ruled by
the dependence z = x + y. If xposs ∈ [1, 3] and yposs ∈
[2, 5], then in terms of RDM arithmetic xposs = 1 + 2αx,
αx ∈ [0, 1] and yposs = 2 + 3αy , αy ∈ [0, 1]. Assuming
αx = 0.1 and αy = 0.3, the following system state is
achieved: xposs = 1.2, yposs = 2.6 and zposs = 3.8. The
triple (xposs, yposs, zposs) = (1.2, 2.6, 3.8) determines one
of possible system states.

The other allowed values of αx and αy permit
generating other possible system states, among them
possible values of the result zposs. The set Zposs itself
is not the result of addition of uncertain interval-valued
variables. The addition result is zpr determined by (30).
The set Zposs is only used for uncertainty evaluation of
the result zpr and should not be used in possible further
calculations. Only one of the points lying on the surface
of the set Zposs (Fig. 2) corresponds to the precise, true
values (xpr, ypr, zpr) which occurred in the real system.
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Fig. 3. Projection of the set of possible results Zposs from the
3D-space X × Y × Z on the 2D-space X × Y .

As Fig. 2 shows, the set of possible addition results is the
information granule existing in a 3D-space: the resulting
set is not a one-dimensional interval. Simplifying the set
Zposs to a one-dimensional interval, as happens in many
I arithmetic versions, yields a considerable information
loss. Observe in Fig. 2 that the subset of addition results
for zposs = 8 consists of only one element (one possible
system state), whereas for zposs = 6 it has the cardinality
of a continuum.

6. Set of possible results Zposs of arithmetic
operations and simplified representatives
of this set

The set of possible results of an arithmetic operation ∗
and, in particular, the set of possible results of addition
determined by (39) and shown in Fig. 2 can be difficult
to interpret because they exist in a 3D-space (Fig. 3
shows its projection on a 2D-space). Therefore, to give
better and more understandable information about this set,
various simplified representatives of it are used. There is
nothing wrong in this approach. However, such simplified
representatives are frequently called a “result.” This can
be observed in all present versions of interval arithmetic:

Zposs : zposs = xposs(αx) + yposs(αy),
αx, αy ∈ [0, 1], cardXposs, cardY poss = c,
xposs = 1 + 2αx, yposs = 2 + 3αy,
zposs = (1 + 2αx) + (2 + 3αy)

(39)

The most commonly used representative is the span
s(Zposs) of possible point-results. The span of an
arithmetic operation ∗ on interval-valued variables is

Fig. 4. Non-normalized distribution of cardinality measure
M card(z) of particular possible addition results z =
x+ y = const (representative, indicator).

expressed by

s (Zposs) =

[
min

αx,αy∈[0,1]
zposs(αx, αy),

max
αx,αy∈[0,1]

zposs(αx, αy)

]

=

[
min

αx,αy∈[0,1]
(xposs(αx) ∗ yposs(αy)),

max
αx,αy∈[0,1]

(xposs(αx) ∗ yposs(αy))

]
.

(40)

In the case of addition, the span of the set Zposs

(Fig. 2) is given by (41). The meaning of the span in
relation to the full set Zposs can be easily understood
from Fig. 2:

s (Zposs) = [x+ y, x+ y]. (41)

The span s(Zposs) as secondary simplified
information about the set Zposs (indicator, representative)
is not a result of an arithmetic operation and should
not be used in possible further calculations. The other
simplified but better information about the set Zposs can
be the cardinality of possible point results z. Figure 2
shows isoclines (lines of constant z-values, e.g., z = 4,
z = 5). Isoclines show which values of the result z of
an arithmetic operation have higher or lower frequency.
As the cardinality measure M card(z), can the length
L(z = const) of the segments corresponding to particular
subsets z = const be assumed. In the case of binary
arithmetic operations for cardinality determination
one can use both a 3D-visualisation as in Fig. 2 and a
projection of the set Zposs on the 2D-space X×Y (Fig. 3).

On the basis of Fig. 3, cardinality measures can easily
be calculated: M card(z = 8) = 0, M card(z = 4) =√
2, M card(z = 5) =

√
8, M card(z = 6) =

√
8,

M card(z = 8) = 0.
The distribution of cardinality measures of possible

addition results z = const is shown in Fig. 4.
The distribution M card(z) is very valuable

information about the frequency of possible results zposs.
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Fig. 5. Center of gravity CofG of the set Zposs of possible addi-
tion of interval-valued uncertain variables.

However, it represents only the set Zposs of possible
point results and is not a direct addition result itself.
In conceivable further calculations, it should not be
substituted as the result. The right result is given by (39).
The next representative of the set Zposs can be the center
of gravity zCofG of this set, which can be calculated from

ZCofG =

max z∫
min z

z ·M card(z) dz

max z∫
min z

M card(z) dz

. (42)

In the case of the addition example considered,
zCofG = 5.5. The result representative, the center of
gravity, can be shown together with a span s(Zposs) of the
set of all possible point-results as in Fig. 5.

Interval RDM arithmetic allows correct realization of
arithmetic operations for all fully independent variables,
partly dependent and fully dependent variables. Let us
consider partial dependence of variables x and y. An
example of such dependence can be the relation y ≥
x. In terms of RDM arithmetic, it can be expressed as
y + αy(y − y) ≥ x + αx(y − y), αx, αy ∈ [0, 1]. In
this case, the formula for the precise result zpr arithmetic
operations ∗ ∈ {+,−,×,÷} is given by

zpr(αx, αy) = xpr(αx) ∗ ypr(αy),
αy ≥ [

x− y + αx(y − y)
]/
(y − y),

αx, αy ∈ [0, 1], cardXpr, cardY pr = 1.
(43)

Instead, the formula presenting a mathematical
model of the set Zposs of possible point results is given
by

Zposs : xposs(αx) ∗ yposs(αy),
αy ≥ [

x− y + αx(y − y)
]/
(y − y),

αx, αy ∈ [0, 1], cardXposs, cardY poss = c.
(44)

In the case of addition of two uncertain
interval-valued numbers x ∈ [1, 3] and y ∈ [2, 5],
the addition formula takes the form

Zposs : zposs = (1 + 2αx) + (2 + 3αy),
αy ≥ −1/3 + 2/3 · αx, αx, αy ∈ [0, 1],
cardXposs, cardY poss = c.

(45)

If the addition is made with SIA (2), IIA (8) or
CI arithmetic (12), then the addition result has the form
of an interval representative zposs = [3, 8]. It is a
correct span s(Zposs) of the addition under the condition

Fig. 6. Set Zposs of point results of addition of partly dependent
variables xposs ∈ [x, x] = [1, 3] and yposs ∈ [y, y] =
[2, 5] under condition y ≥ x in projection on the X ×Y
space (cf. Fig. 3).

y ≥ x. However, the identical “addition result” is
achieved when intervals [1, 3] and [2, 5] are added without
the condition y ≥ x, when variables x and y are
independent. Thus, dependence of variables has no
influence on the “addition result” in SIA, IIA and CI
arithmetic. This situation is due to the fact that these
types of I arithmetic “do not notice” this dependence
because they “assume” an interval to be a direct result
of arithmetic operations. Instead, multidimensional RDM
arithmetic perceives all dependences (relations) existing
between variables (see Fig. 6).

Now, let us consider the case of full dependence of
variables x = y (we know that uncertain variable values
are equal) on the example of addition of x ∈ [1, 3] and
y ∈ [2, 5]. The condition x = y means that in terms of
RDM arithmetic we have xposs = x+αx(x−x) = 1+2αx

and yposs = y + αy(y − y) = 2 + 3αy . From the above
equation, the following condition can be derived:

αy = [x− y + αx(y − y)]
/
(y − y),

αy = −1/3 + 2/3 · αx

αx, αy ∈ [0, 1], cardXposs, cardY poss = c.
(46)

Thus, when the relation x = y holds, a mathematical
model of addition is given by

Zpr : zpr = xpr(αx) + ypr(αy),
αx, αy ∈ [0, 1], cardXpr, cardY pr = 1,
αy = [x− y + αx(y − y)]

/
(y − y),

Zposs : zposs = xposs(αx) ∗ yposs(αy),
αx, αy ∈ [0, 1], cardXposs, cardY poss = c,
αy = [x− y + αx(y − y)]

/
(y − y).

(47)

Figure 7 shows a visualization of the set Zposs of fully
dependent addition.

It should be noticed that in the case of the given
example of addition of interval-valued variables x and y,
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Fig. 7. Set Zposs of possible point results of addition of fully de-
pendent variable values xposs ∈ [1, 3] and yposs ∈ [2, 5]
under condition y = x in projection on the space X×Y .

with an increase in dependence sharpness (independency
of x and y, y ≥ x, y = x), the cardinality of the set
Zposs decreases (see Figs. 3, 6 and 7). The geometric
irregularity of the set Zposs strongly hinders determining
representatives of this set. In the case of more complicated
mathematical dependencies, analytical determination of
representatives of the set Zposs becomes impractical and
numerical, approximate computer simulation methods
should be applied. Multidimensional RDM I arithmetic
presented in this section should be used according to the
steps given below:

1. On the basis of the given, original form of
mathematical equation/equations, derive a formula
for the variable/parameter of interest by appropriate
transformations of the original equation/equations.

2. Construct RDM models of all uncertain,
interval-valued variables/parameters containing
RDM variables α.

3. Construct a mathematical model of the precise (true)
value of the variable/parameter of interest. Substitute
RDM models of uncertain variables/parameters from
Step 2 into the formula obtained in Step 1.

4. Check whether the equation/equations elaborated in
Step 3 satisfies the universality condition.

5. Construct a mathematical model of the set of possible
point solutions. Transform the model of the precise
value of the variable/variables of interest into the
model of uncertainty of this value, the model of
possible point solutions.

6. On the basis of the model from Step 5 using
the analytical approach, determine precise
representatives, or using the computer simulation
approach determine approximate representatives
(indicators) of the set of possible point solutions
such as, e.g., the span, the cardinality measure
distribution, the center of gravity of the set, etc.

7. Examples of application of RDM interval
arithmetic

Example 1. Let us consider equation [a] + X = [b]. A
real system is ruled by dependence a+x = b, where a and
x are the inputs and b is the output of the system. We know
only an approximate value of a ∈ [1, 3] and b ∈ [4, 5],
and we want to determine the value of the second input x.
In terms of SI arithmetic, the following equation is to be
solved:

[a] + [x] = [b], [a, a] + [x, x] = [b, b],

[1, 3] +X = [4, 5].
(48)

Solving such equations is not as trivial as it could
seem, and many papers have been devoted to this subject
both in terms of interval and fuzzy arithmetic (e.g.,
Mazarhuiya et al., 2011; Kovalerchuk and Kreinovich,
2016). If we assume that the solution of the equation
is an interval, then with the use of SIA, on the basis
of (48), we have a + x = b, a + x = b, which gives the
solution [x, x] = [3, 2] being an improper interval. Such a
solution, according to Lodwick and Dubois (2015), should
be rejected as unrealistic. With the use of IIA and CIA,
which possess the inverse element of addition, the term
[a, a] = [1, 3] on the left-hand side of Eqn. (48) can be
reduced, which gives solution [x, x] = [b, b] − [a, a] =
[1, 4]. Is this solution the universal algebraic solution
of (48) that satisfies all possible extension forms of the
system equation (48)? There exist four different forms of
the equation a + x = b : a + x = b, a = b − x, x =
b − a, a+ x − b = 0. It is easy to check that the solution
[x, x] = [1, 4] is not the universal algebraic solution
(UAS/UA solution) because it gives us the equality of the
left- and right-hand sides only in the case of the extension
[a] + [x] = [b] and not for other extensions. For example,
in the case of the extension [a] = [b] − [x], we have
[1, 3] = [4, 5] − [1, 4]. According to IIA and CIA the
RH side is equal to [4, 5] − [1, 4] = [0, 4]. Because the
LH side of the equation is equal to [1, 3], the RH side is
different from the LH side. For comparison, a solution of
the equation with RDM I arithmetic is given below.

Step 1. The crisp dependence ruling the system and
deriving the formula for the variable of interest,

a+ x = b → x = b− a.

Step 2. RDM models of interval-valued variables,

a ∈ [1, 3] : apr = 1 + 2αa,

αa ∈ [0, 1], cardApr = 1

b ∈ [4, 5] : bpr = 4 + αb,

αb ∈ [0, 1], cardBpr = 1.
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Step 3. The RDM model of the precise value of the
variable of interest x,

xpr = bpr − apr = (4 + αb)− (1 + 2αa),

xpr = 3− 2αa + αb,

αa, αb ∈ [0, 1], cardApr, cardBpr = 1.

Step 4. Verification of the universality of the RDM
solution xpr for all possible extension forms of the system
equation [a] + x = [b], x = [b] − [a], [a] = [b] − x,
[a] + x − [b] = 0. Simple calculations prove that the
RDM model of the precise solution xpr(αa, αb) gives us
the equality of the LH and RH sides of all extensions of the
system equation. For example, for the form [a] = [b] − x
we have

(1+2αa) = (4+αb)− [(4+αb)−(1+2αa)] = 1+2αa.

This means that the 3D solution xpr = 3− 2αa+αb is the
universal algebraic solution.

Step 5. The model of the set Xposs of possible
point-solutions,

Xposs : xposs = bposs − aposs = 3− 2αa + αb,
αa, αb ∈ [0, 1], cardAposs, cardBposs = c.

Figure 8 shows the set Xposs in the 3D-spaceA×B×
X and Fig. 9 its projection on the 2D-space A×B.

Step 6. Determining representatives of the set Xposs.

The set Xposs is generated by the formula xposs =
3 − 2αa + αb with αa, αb ∈ [0, 1] and cardαa = c,
cardαb = c (see Step 5). If we are interested in the span
s(Xposs) being a measure (indicator) of its uncertainty,
then we can easily determine it analytically as min xposs =
1 for αa = 1 and αb = 0, and maxxposs = 4 for
αa = 0 and αb = 1. Hence, the span is determined by
the interval s(Xposs) = [1, 4]. A representative of the
set Xposs in the form of a distribution of the cardinality
measure cardM(x) of particular subsets x = const can
be easily determined in this simple example on the basis
of Fig. 9 by calculating lengths of particular isoclines
corresponding to particular values x = const (Fig. 10).

The distribution of cardM(x) is much more
informative that span s(Xposs) alone because it gives
additional information about the frequency of particular
possible result values x. This distribution can be given
both in non-normalized and in normalized form with
max cardM(x) = 1. We can also be interested in the
representative of the set Xposs in the form of position
xCofG of its center of gravity CofG. This position can be
calculated on the basis of the distribution of cardM with

xCofG =

maxx∫
minx

x · cardM(x) dx

maxx∫
minx

cardM(x) dx

= 2.5. (49)

Fig. 8. Set Xposs of possible point-solutions of equation aposs +
xposs = bposs for aposs ∈ [1, 3], bposs ∈ [4, 5] in the 3D-
space A×B ×X .

Fig. 9. Set Xposs of possible point-solutions of equation aposs +
xposs = bposs for aposs ∈ [1, 3], bposs ∈ [4, 5] in projection
from the 3D-space A×B×X on the 2D-space A×B.

Fig. 10. Distribution of non-normalized cardinality measure
cardM(x) of set Xposs of possible point solutions.
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Fig. 11. Position xCofG of the center of gravity and span
s(Xposs) of set Xposs as representatives of set Xposs.

Fig. 12. Trajectory of the object after the start from (x, y) =
(0, 0) in the space X × Y .

It is more informative to show the center of gravity
against a background of the span of the set Xposs than the
center alone (Fig. 11). �

Example 2. An object starts from point (x, y) = (0, 0)
(Fig. 12). Its acceleration is constant and known precisely,
g = 9.8 m/s2. Its initial velocity u in the x direction is
known only approximately from measurements: u ∈ U =
[10, 15] m/s. Similarly, its velocity v in the y direction
v ∈ V = [12, 18] m/s. Separate formulas determining the
object position after time t [s] are given by

x = ut, y = vt− 0.5gt2, (50)

and in aggregated form by

−gx2

2u2
+

vx

u
− y = 0. (51)

Calculation task. Determine the distance x from the
initial point when the object will be on a height of y = 3 m
(see Fig. 12).

Step 1. Determining the crisp dependence governing the
system and deriving a formula for the variable of interest.
For y = 3 m, the formula (51) takes the form

−gx2

2u2
+

vx

u
− 3 = 0. (52)

It is a quadratic equation that in general possesses
two possible solutions, x1 and x2, containing Δ in the
form

Δ =
v2 − 58.8

u2
. (53)

The possible solutions x1 and x2 for crisp data are
determined as

x1 =
u

g

[
v +

(
v2 − 58.8

)]1/2
,

x2 =
u

g

[
v − (

v2 − 58.8
)]1/2

.
(54)

Step 2. Determining the RDM models of interval-valued
variables. The interval-valued variables are velocities
u and v: u ∈ [10, 15] and v ∈ [12, 18] m/s. The
RDM models of the precise values of these velocities are
determined by

U pr : upr = 10 + 5αu, αu ∈ [0, 1],
V pr : vpr = 12 + 6αv, αv ∈ [0, 1],
cardU pr = 1, cardV pr = 1.

(55)

Step 3. Determining RDM models of the precise values of
the variables of interest x1 and x2 (roots of the quadratic
equation (52)),

Xpr
1 : xpr

1 = 0.10204(10+ 5αu)

{(12 + 6αv) + [(12 + 6αv)
2 − 58.8]0.5},

Xpr
2 : xpr

2 = 0.10204(10+ 5αu)

{(12 + 6αv)− [(12 + 6αv)
2 − 58.8]0.5},

αu, αv ∈ [0, 1], cardXpr
1 , cardXpr

2 = 1.
(56)

Models xpr
1 and xpr

2 should be used in possible further
calculations.

Step 4. Determining sets Xposs
1 andXposs

2 of possible point
solutions,

Xposs
1 : xposs

1 = 0.10204(10+ 5αu)

{(12 + 6αv) + [(12 + 6αv)
2−58.8]0.5},

Xposs
2 : xposs

2 = 0.10204(10+ 5αu)

{(12 + 6αv)− [(12 + 6αv)
2−58.8]0.5},

αu, αv ∈ [0, 1], cardXposs
1 , cardXposs

2 = c.
(57)

Mathematical models of sets Xposs
1 and Xposs

2 allow
generating both particular point solutions xposs

1 and
xposs
2 and their representatives such as spans, frequency

(cardinality) distributions, centers of gravity of solution
sets, and other set features. These models also allow
generating any possible system state by assuming numeric
values of RDM variables (αu, αv). For example, variable
values αu = 0.3, αv = 0.5 correspond to the system
state: uposs = 11.5, vposs = 15, xposs

1 = 32.73000,
xposs
2 = 2.47381. Such a single system state can be

called a point-state because it creates a point in the system
space U × V × X1 × X2, and the solutions xposs

1 =
32.73000, xposs

2 = 2.47381 can appropriately be called
point-solutions in the solution space Xposs

1 ×Xposs
2 .

Step 5. Determining representatives of possible solution
sets Xposs

1 and Xposs
2 .

The spans s(Xposs
1 ) can be determined analytically

by examining (57) because of the function simplicity;
min(xposs

1 ) = 21.673 occurs for αu = αv = 0 and
max(xposs

1 ) = 52.487 occurs for αu = αv = 1.
Hence, the span s(Xposs

1 ) = [21.673, 52.487]. Analytical
determination of the span s(Xposs

2 ) is more difficult,
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Fig. 13. Visualisation of uncertainty of the object trace
and of the sense of calculated spans s(Xposs

1 ) =
[21.67, 52.49] and s(Xposs

2 ) = [1.75, 4.24].

Fig. 14. Visualization of sets Xposs
1 and Xposs

2 of possible point-
solutions xposs

1 and xposs
2 of the object position x at the

height y = 3 m.

therefore its function given by (57) has been examined
by simulation; min(x

poss
2 ) = 1.75 occurs for αu = 0

and αv = 1 and max(xposs
2 ) = 4.24 occurs for αu = 1

and αv = 0. Hence, the span s(Xposs
2 ) = [1.75, 4.24].

Figure 13 illustrates uncertainty of the possible object
trace.

The spans s(Xposs
1 ), s(Xposs

2 ) themselves are only
general and insufficient information about possible roots
xposs
1 and xposs

2 of the system equation (52). Note that the
roots of the quadratic equation are complex conjugate and
the correct result has to inform about pairs of complex
conjugate roots (xposs

1 , x
poss
2 ). This coupling is only

possible by RDM variables αu, αv, as shown in the
formulas (57).

The given problem of solution sets Xposs
1 and Xposs

2

is three-dimensional and can be visualized. Figure 14
shows two sets of possible point-solutions xposs

1 and x
poss
2 .

Here αu and αv are independent RDM variables that are
transformable in variables u and v according to (55).

The next representative of the possible solution
sets Xposs

1 and Xposs
2 is the frequency (un-normalized

cardinality) distribution of possible root values x
poss
1 and

xposs
2 . To determine it analytically, intricate integrals have

to be calculated. A more practical way is computer
simulation with the use of Matlab in which 107 of random
values of RDM variables αu, αv from interval [0, 1]
have been generated and the corresponding root pairs
(xposs

1 , xposs
2 ) were calculated according to (57). Figure 15

Fig. 15. Distribution of 107 of random solutions (roots, values)
xposs
1 and xposs

2 of Eqn. (51) describing the position x of
the object at the height y = 3 m.

Fig. 16. Positions x1CofG and x2CofG of the centers of gravity of
possible solution sets Xposs

1 and Xposs
2 against a back-

ground of their spans s(Xposs
1 ) and s(Xposs

2 ).

shows the number of occurrences of a particular root’s
values (histogram).

The next simplified representative of the possible
solution sets Xposs

1 and Xposs
2 can be positions x1CofG and

x2CofG of centers of gravity (expected values of particular
roots xposs

1 and xposs
2 ). According to the calculations made

on the basis of the simulation results x1CofG = 2.74 and
x2CofG = 35.52. Figure 16 shows the centers of gravity of
the solutions against the background of their spans. �

Example 3. The task now consists in determining
solutions x1 and x2 of the interval linear-equation
system (58),

[a1]x1 + [a2]x2 = [a3],
[a4]x1 + [a5]x2 = [a6],

[2, 4]x1 + [−2, 1]x2 = [−2, 2],
[−1, 2]x1 + [2, 4]x2 = [−2, 2].

(58)

This system of equations can have the meaning of a
balance model of a mechanical, biological or economic,
system. In the case of economic systems, linear balance
models were introduced by Dymova (2011), Leontief
(1966) or Sevastjanov and Dymova (2009), and are
frequently called Leontief’s models. In (58), we can
notice pairs of equal intervals, e.g., [a1] = [2, 4] and
[a5] = [2, 4]. However, the mathematical equality of
intervals [2, 4] = [2, 4] does not mean that the true values
of uncertain parameters [a1] and that [a5] are equal. In a
real system, the true value of a1 can be 2.11 and that of
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a5 can be 3.97. Therefore, these parameters have to be
modeled as different variables.

Step 1. Determining the crisp dependence governing the
system on the basis of the well-known Cramer formulas
and deriving the formulas (59) for the variables of interest
x1 and x2,

x1 =
a3a5 − a6a6
a1a5 − a2a4

, x2 =
a1a2 − a3a4
a1a5 − a2a4

. (59)

Step 2. Determining the RDM models (60) of
interval-valued parameters,

[a1] = [2, 4] : Apr
1 : apr

1 = 2 + 2α1,

α1 ∈ [0, 1], cardApr
1 = 1,

[a2] = [−2, 1] : Apr
2 : apr

2 = −2 + 3α2,

α2 ∈ [0, 1], cardApr
2 = 1,

[a3] = [−2, 2] : Apr
3 : apr

3 = −2 + 4α3,

α3 ∈ [0, 1], cardApr
3 = 1,

[a4] = [−1, 2] : A
pr
4 : a

pr
4 = −1 + 3α4,

α4 ∈ [0, 1], cardApr
4 = 1,

[a5] = [2, 4] : A
pr
5 : a

pr
5 = 2 + 2α5,

α5 ∈ [0, 1], cardApr
5 = 1,

[a6] = [−2, 2] : Apr
6 : apr

6 = −2 + 4α6,

α6 ∈ [0, 1], cardApr
6 = 1.

(60)

Step 3. Determining the RDM models (61) of the precise
values of variables of interest x1 and x2,

Xpr
1 : xpr

1

=
(−2 + 4α3)(2 + 2α5)− (−2 + 3α2)(−2 + 4α6)

(2 + 2α1)(2 + 2α5)− (−2 + 3α2)(−1 + 3α4)
,

X
pr
2 : x

pr
2

=
(2 + 2α1)(−2 + 4α6)− (−2 + 4α3)(−1 + 3α4)

(2 + 2α1)(2 + 2α5)− (−2 + 3α2)(−1 + 3α4)
,

α1, . . . , α6 ∈ [0, 1], cardXpr
1 = 1, cardXpr

2 = 1.

(61)

Step 4. Checking the correctness of solutions (61).
Substituting the solutions (61) in the system (58), we
check that they satisfy it .

Step 5. Determining the RDM models (62) of sets X
poss
1

and Xposs
2 of possible point-solutions,

X
poss
1 : x

poss
1

=
(−2 + 4α3)(2 + 2α5)− (−2 + 3α2)(−2 + 4α6)

(2 + 2α1)(2 + 2α5)− (−2 + 3α2)(−1 + 3α4)
,

Xposs
2 : xposs

2

=
(2 + 2α1)(−2 + 4α6)− (−2 + 4α3)(−1 + 3α4)

(2 + 2α1)(2 + 2α5)− (−2 + 3α2)(−1 + 3α4)
,

α1, . . . , α6 ∈ [0, 1], cardXposs
1 = c, cardXposs

2 = c.

(62)

Examining the determinant of the system (58) being
the denominator in these equations for various values of
RDM variables α1, . . . , α6, shows that the determinant is
always positive

2 ≤ (2 + 2α1)(2 + 2α5)

− (−2 + 3α2)(−1 + 3α4) ≤ 20. (63)

This means that both sets Xposs
1 and X

poss
2 of possible

point-solutions are 1-granular and not multi-granular as in
the case of changing determinant from − to + (Piegat and
Plucinski, 2017). Equations (62) allow generating each
possible, complex conjugate point-solution pair (x1, x2)
of the system (58). For example, for α1 = α3 = α5 =
α6 = 0.5 and α2 = α4 = 0, coefficients ai take on the
following values: a1 = 3, a2 = −2, a3 = 0, a4 = −1,
a5 = 3, a6 = 0. For these parameter values, Eqns. (58)
take the form of

3x1 − 2x2 = 0, −x1 + 3x2 = 0. (64)

The solutions calculated with the formulas systems
of (62) have the values x1 = x2 = 0 and satisfy (58)
and (64). For other values of RDM variables α1, . . . , α6,
other values of system parameters a1, . . . , a6 and other
solution pairs (x1, x2) are achieved. Solutions x1 and x2

are coupled together by variables α1, . . . , α6. Thus, they
are dependent. This dependence can be expressed by

x2 = x1

× (2 + 2α1)(−2 + 4α6)−(−2 + 4α3)(−1 + 3α4)

(−2 + 4α3)(2 + 2α5)−(−2 + 3α2)(−2 + 4α6)
.

(65)

For various sextuples (α1, . . . , α6), different solution
pairs (x1, x2) are achieved. The set of these pairs is
displayed in Fig. 17.

Step 6. Determining representatives of sets Xposs
1 and

X
poss
2 of possible point-solutions x

poss
1 and x

poss
2 . If we

are interested in spans s(Xposs
1 ) and s(Xposs

2 ) of sets of
possible point-solutions, then they can be determined
with an analytical method (function examining) or with
a computer simulation method on the basis of

s(Xposs
1 ) =

[
min

α1,...,α6

xposs
1 , max

α1,...,α6

xposs
1

]
= [−4, 4],

s(Xposs
2 ) =

[
min

α1,...,α6

xposs
2 , max

α1,...,α6

xposs
2

]
= [−4, 4],

(66)
where xposs

1 and xposs
2 are determined by the formulas (62).

The value of minxposs
1 was achieved for α1 = 0,

α2 = 0, α3 = 0, α4 = 0, α5 = 0, α6 = 0, the value of
max xposs

1 for α1 = 0, α2 = 0, α3 = 1, α4 = 0, α5 = 0,
α6 = 1, the value of minxposs

2 for α1 = 0, α2 = 1,
α3 = 1, α4 = 1, α5 = 0, α6 = 0, and the value of max
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Fig. 17. Visualization of pairs (x1, x2) of possible solutions
of the system (58) achieved by computer generated
solutions for various sextuples of RDM variables
(α1, . . . , α6).

Fig. 18. Representatives of possible solutions sets Xposs
1 and

Xposs
2 in the form of their centers of gravity (expected

values) x1CofG and x2CofG vs. a background of their
spans s(Xposs

1 ) and s(Xposs
2 ).

xposs
2 for α1 = 0, α2 = 1, α3 = 0, α4 = 1, α5 = 0,

α6 = 1. The achieved spans s(Xposs
1 ) = [−4, 4] and

s(X
poss
2 ) = [−4, 4] of the possible solution sets should

convince everyone that spans are not solutions of a system
of equations because only appropriately chosen pairs of
point-solutions x

poss
1 and x

poss
2 satisfy this system. The

values of point-solutions cannot be chosen freely from
particular span-intervals. They should satisfy Eqns. (58).
If one is interested in positions x1CofG and x2CofG of
the centers of gravity (expected values of x1 and x2) as
representatives of possible solution sets X

poss
1 and X

poss
2 ,

then, due to a high problem dimensionality, one should
apply a computer simulation method which gives the
result x1CofG = 0 and x2CofG = 0. Figure 18 shows the
centers of gravity vs. the background of spans. �

8. Conclusions

The paper shows that the right result of arithmetic
operations on intervals is not an interval, i.e.,
not a one-dimensional information granule, but
a multi-dimensional one. An interval can only
be a representative of this granule delivering a
simplified information about it. Two multidimensional
result-granules can be different, but they can have the
same representative in the form of, e.g., their span

(interval). Hence, they will be indistinguishable in a
1D-space whereas they are distinguishable in their full,
multi-dimensional space. Using the interval as a result
of arithmetic operations on intervals frequently leads to
unacceptable results observed in these calculations and
described in the subject literature. The paper presents the
correct way of realization of arithmetic operations and
equation solving which prevents achieving unacceptable
results in interval computations.
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Piegat, A. and Pluciński, M. (2015). Computing with words
with the use of inverse RDM models of membership
functions, International Journal of Applied Mathe-
matics and Computer Science 25(3): 675–688, DOI:
10.1515/amcs-2015-0049.

Piegat, A. and Plucinski, M. (2017). Fuzzy number division and
the multi-granularity phenomenon, Bulletin of the Polish
Academy of Sciences: Technical Sciences 65(4): 497–511.

Piegat, A. and Tomaszewska, K. (2013). Decision making
under uncertainty using info-gap theory and a new
multidimensional RDM interval arithmetic, Przegląd Elek-
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