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We introduce a novel concept of the augmented Farey table (AFT). Its purpose is to store the ranks of fractions of a Farey
sequence in an efficient manner so as to return the rank of any query fraction in constant time. As a result, computations
on the digital plane can be crafted down to simple integer operations; for example, the tasks like determining the extent of
collinearity of integer points or of parallelism of straight lines—often required to solve many image-analytic problems—
can be made fast and efficient through an appropriate AFT-based tool. We derive certain interesting characterizations of an
AFT for its efficient generation. We also show how, for a fraction not present in a Farey sequence, the rank of the nearest
fraction in that sequence can efficiently be obtained by the regula falsi method from the AFT concerned. To assert its merit,
we show its use in two applications—one in polygonal approximation of digital curves and the other in skew correction of
engineering drawings in document images. Experimental results indicate the potential of the AFT in such image-analytic
applications.
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1. Introduction

Given a positive integer n, the Farey sequence Fn of or-
der n is the (ordered) sequence of all simple fractions
starting from 0, ending at 1, and having denominators not
exceeding n (Hardy and Wright, 1968). For example, the
first five sequences are
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If we disregard the ordering of Fn for sake of
notational simplicity, then

Fn =
{a

b
: (0 ≤ a ≤ b ≤ n) ∧ (b > 0)

∧ (gcd(a, b) = 1)
}
. (1)

The Farey sequences are named after John Farey,
who first conjectured in 1816 that Fn can be obtained
from Fn−1; a brief history following that can be found
in the work of Hardy and Wright (1968). There are
several works related with the Farey sequence, which
mostly concern the theory of fractions (Hardy and Wright,
1968; Graham et al., 1994; Neville, 1950; Pătraşcu and
Pătraşcu, 2004; Pawlewicz and Pătraşcu, 2009; Schroeder,
2006). However, from the viewpoint of algorithms or
computation, limited work has been done so far. A
computationally interesting problem addressed in recent
time is the rank problem and its associated order statis-
tic problem (Pawlewicz and Pătraşcu, 2009). The rank
rn (x) of a fraction x in a Farey sequence Fn is the
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number of fractions less than or equal to x in Fn, i.e.,
rn (x) = |{y : (y ≤ x) ∧ (y ∈ Fn)}|. Given the order n,
the rank problem is to find the rank of a given fraction in
Fn, whereas the order statistic problem deals with finding
the fraction in Fn for some given rank.

In this paper, we introduce some elementary
properties of the Farey sequence, which are particularly
useful for digital-geometric techniques related to image
analysis. Based on these properties, we propose the
concept of an augmented Farey table (AFT), from which
the rank of a fraction in an augmented Farey sequence
can be obtained by single memory access only. This,
in turn, provides definite advantages of using the AFT as a
tool while performing fraction-related computations in an
image-analytic application.

An AFT is readily implementable as a 2D array
whose rows are indexed by numerators and columns by
denominators, and whose array entries store the fraction
ranks. It becomes a natural choice in our applications,
since the best-known algorithm can compute the rank of
a fraction in no sooner than O(n2/3 log1/3 n) of time
(Pawlewicz and Pătraşcu, 2009). Using the AFT, the
fraction ranks are fetched almost instantaneously as they
are queried very frequently in different procedural steps,
such as comparing the slopes of two line segments with
integer endpoints, checking the collinearity of three or
more integer points, determining the type of turn (left or
right) for three non-collinear integer points, etc. (cf. Das
et al., 2010; Pratihar and Bhowmick, 2010; 2011).

The motivation for our work on AFT owes to its
particular advantage as a precomputed look-up table to
support an application involving straight edge information
and running on a large image dataset. Let us clarify
at this early point its typical applicability through a
simple example. Given three integer points (i.e., pixels)
p1
(
i1, j1

)
, p2

(
i2, j2

)
, and p3

(
i3, j3

)
in succession, the

metric used to decide on the deviation of p2 from p1p3 is
given by Δ

(
p1, p2, p3

)
/d∞(p1, p3), where d∞(p1, p3) =

max
(|i1−i3|, |j1−j3|) andΔ

(
p1, p2, p3

)
denotes the area

of the triangle with vertices p1, p2, p3. This is a commonly
followed practice (Bhowmick and Bhattacharya, 2007;
Wall and Danielsson, 1984), which requires several
multiplications for computing the value of Δ

(
p1, p2, p3

)
.

Using an AFT provides a simpler and faster way to reach
the solution by keeping away such multiplications, as
shown in Section 4.

Our contributions are as follows:

(i) We show how a Farey sequence can be appropriately
augmented for effectively using it in different
applications. Theoretical results related to this are
given in Sections 2.1 and 2.2. Further, as the existing
algorithms for constructing a Farey sequence cannot
readily be adapted for AFT generation, we propose
an optimal-time algorithm for this in Section 2.3.

(ii) When a fraction has a large denominator and hence
does not belong to an AFT of a lower order, the
rank of its nearest fraction in that AFT can serve
the requisite purpose in a computation involving
fraction ranks. For this purpose, in Section 3, we
derive certain theoretical results that aid designing an
efficient technique for searching in an AFT for the
closest fraction against any query fraction.

(iii) To emphasize the applicability of the AFT, we
consider two well-known problems related to digital
image analysis. One is polygonal approximation
of digital curves (Section 4), and the other is
skew correction of document images containing
engineering drawings (Section 5). We show how an
AFT can be used while determining the approximate
collinearity of a sequence of 2D points having
integer coordinates; the procedure involves only
addition, comparison, and memory access, but no
multiplication or division, thus reducing the overall
runtime.

In essence, we show how the computation involved in
the related algorithms can be crafted down to operations
based on fraction ranks that are accessible from an AFT
in real time. For the applications shown in the subsequent
sections, extraction of straight edges is an important
preprocessing task. For this purpose, we use the results of
Bhowmick and Bhattacharya (2007) when the input image
is a binary curve (Section 4), and Pratihar and Bhowmick
(2009) when it is a gray-scale image (Section 5).

2. Farey sequence: Generation,
augmentation, representation

Given two fractions a
b ∈ Fn and c

d ∈ Fn, their mediant is
defined as the fraction a+c

b+d , which always lies between
a
b and c

d (Graham et al., 1994). Based on this unique
property, the sequence Fn can be computed from the
sequence Fn−1 by inserting in Fn the mediant of any two
consecutive fractions of Fn−1 unless the denominator of
the mediant does not exceed n. To recursively generateFn

from Fn−1 based on mediants, it is required to check all
pairs of adjacent fractions in Fn−1. This calls for Θ((n−
1)2) steps, since Fn contains fn = 3

π2n
2 +O(n log n) =

Θ(n2) fractions (Hardy and Wright, 1968). Hence, the
time complexity to generate Fn becomes Θ(n3).

2.1. Generation of Fn. The mediant-based technique
for generation of Fn, as explained above, is not optimal in
runtime. As mentioned by Pătraşcu and Pătraşcu (2004)
or Routledge (2008), and also by Graham et al. (1994),
(Problem 4-61), the fractions of Fn can be generated using
their adjacency relation in O(n2) iterations. We state this
here in Theorem 1, which is proved using the following
lemma.
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Lemma 1. For any fraction a
b ∈ Fn, the next fraction in

Fn is u+ka
v+kb , where k =

⌊
n−v
b

⌋
and (u, v) is any solution

to bx− ay = 1.

Proof. Since gcd(a, b) = 1, there exist two integers u and
v such that bu−av = 1 (Hardy and Wright, 1968). So, if c

d
lies next to a

b in Fn, then c = u+ka and d = v+kb, since
bc − ad = 1 (Graham et al., 1994). Also, the difference
between these two fractions is w = c

d − a
b = bc−ad

bd = 1
bd .

Clearly, w is minimum when d is maximum. As d ≤ n,
we get v + kb ≤ n, or, k = �n−v

b �, which completes the
proof. �

Given any fraction a
b ∈ Fn, the above lemma says

about the existence of the next fraction in Fn, but it does
not provide an efficient way of solving it. Consequently,
we extend this lemma to obtain an efficient way of finding
the fraction lying immediately next to any two consecutive
fractions in Fn. In particular, we have the following
theorem. (Recall that a

b is simple if gcd(a, b) = 1;
otherwise a

b is a compound fraction and equivalent to

its corresponding simple fraction, i.e., a/g
b/g , where g =

gcd(a, b).)

Theorem 1. (Next fraction) If a
b and c

d are two consecu-
tive fractions in Fn, with a

b < c
d , then the next (simple or

equivalent) fraction in Fn is given by

e

f
=

kc− a

kd− b
, (2)

where k =
⌊
n+b
d

⌋
.

Proof. As a
b ,

c
d are two adjacent fractions in Fn, we get

cb− ad = 1, or, d(−a)− c(−b) = 1. Thus, by Lemma 1,
the fraction next to c

d is kc−a
kd−b , where k =

⌊
n+b
d

⌋
, which

is our assertion. �

Using Theorem 1, the Farey sequence Fn can be
generated, starting with 〈01 , 1

n 〉, in Θ(n2) time. However,
to speed up the computation, we use the ranks of the
leading fractions in Fn to obtain those of the trailing
fractions. To this end, we define the lower half of Fn by
FL
n = Fn∩[0, 1

2 ), and the upper half by FU
n = Fn∩(12 , 1],

so that Fn = FL
n ∪{ 12}∪FU

n . Now we have the following
theorem.

Theorem 2. (Complementary rank) If x ∈ Fn, then
rn (1− x) = fn + 1 − rn (x), where fn = rn

(
1
1

)
=

2rn
(
1
2

)− 1.

Proof. Observe that x ∈ FL
n if and only if y := 1 − x ∈

FU
n , which implies that FL

n �→ FU
n is a bijection. Hence,

1
2 − x = y− 1

2 , or rn
(
1
2

)− rn (x) = rn (y)− rn
(
1
2

)
, or

rn (x) + rn (y) = 2rn
(
1
2

)
= fn + 1. �

Theorem 2 is used in Section 2.3 for efficiently
generating an AFT.

Denominator
-4 -3 -2 -1 0 1 2 3 4

N
um

er
at

or

4 19 18 16 14 13 12 10 8 7
3 20 19 17 15 13 11 9 7 6
2 22 21 19 16 13 10 7 5 4
1 24 23 22 19 13 7 4 3 2
0 25 25 25 25 – 1 1 1 1
-1 26 27 28 31 37 43 46 47 48
-2 28 29 31 34 37 40 43 45 46
-3 30 31 33 35 37 39 41 43 44
-4 31 32 34 36 37 38 40 42 43

1
4

[
0
1
: 0
4

]

[
1
2
: 2
4

]
3
4

[
1
1
: 4
4

]

2
3

1
3

4
3

3
2

[
2
1
: 4
2

]

3
1

4
1

[
1
0
: 4
0

]

3
−1

3
−2

[
2
−1:

4
−2

]
4
−1

4
−3[

1
−1:

4
−4

]

3
−4

2
−3

1
−3

[
1
−2:

2
−4

]

[
0
−1:

0
−4

]
1
−4

−1
−4 −1

−3

−2
−3

[−1
−2:

−2
−4

]

[−1
−1:

−4
−4

]
−3
−4

−1
4−1

3

−2
3

[−1
2
:−2
4

]

−3
4

−4
−3

−4
−1

−4
1

−4
3

−3
−2

−3
−1

−3
1

−3
2

[−2
−1:

−4
−2

] [−1
0
:−4
0

] [−2
1
:−4
2

]
[−1

1
:−4
4

]

a
�

0,
b
>

0,
a
�

b
a
�

0,
b
>

0,
−a

�
b

a < 0, b � 0,−a � ba < 0, b � 0,−a � −b

a
�

0,
b
<

0,
−a

�
−b

a
�

0,
b
<

0,
a
�
−b

a > 0, b � 0, a � −b a > 0, b � 0, a � b

23

45

6

78

9

10

11

121314

15

16

17

1819

20

2122

2324

25

26 27

28 29

30

31 32

33

34

35

36 37 38

39

40

41

42 43

44

45 46

47 48

1

Fig. 1. Geometric interpretation (bottom) of the complete AFT
of order 4 (top), i.e., F4 := F

(1)
4 ∪ F

(2)
4 ∪ F

(3)
4 ∪ F

(4)
4 ,

containing the ranks of all fractions in F 4 := {a
b
: |a| ≤

4 ∧ |b| ≤ 4}. Notice the counter-clockwise increase in
ranks of the fractions in F4.

2.2. Augmentation of Fn. As the Farey sequence Fn

is restricted only to simple and proper fractions, it needs
an appropriate augmentation for geometric applications.
The rationale is as follows. Let pq be a straight line
segment with integer endpoints p = (xp, yp) and q =

(xq , yq). Also, let max{|xq−xp|,|yq−yp|}
gcd(|xq−xp|,|yq−yp|) ≤ n. Then

the slope of pq equals some fraction in Fn if and only
if 0 ≤ yq − yp ≤ xq − xp ≤ n. In other words,
Fn corresponds to just one half of the first quadrant, as
shown in Fig. 1. Hence, to overcome this limitation, we
augment Fn to Fn, so that it includes compound fractions
and proper/improper fractions with negative numerators
or/and denominators. We call Fn the augmented Farey
sequence.

2.3. Farey table. For efficient storage and subsequent
use of Fn, we construct the augmented Farey table
(AFT), Fn, which is a 2D array of size (2n+1)×(2n+1).
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Figure 1 shows an example for n = 4. For simplicity, we
allow negative row and negative column indices in Fn.
Each row i ∈ [−n, n] represents a numerator and each
column j ∈ [−n, n] a denominator. The value stored in
Fn[i][j] contains the rank of the fraction i

j in Fn.
The array Fn comprises four sub-arrays, namely,

{F(k)
n : k = 1, 2, 3, 4}, which store the ranks of fractions

in F
(k)

n for k = 1, 2, 3, 4, and correspond to line slopes in
all the four quadrants. For example, F(1)

n stores the ranks

of the fractions in F
(1)

n , i.e., F(k)
n [a][b] = rn

(
a
b

) ∀(a, b) ∈
[0, n]2. The following theorem shows how the ranks of
fractions in F

(k)
n for k �= 1 are obtainable from those in

F
(1)
n .

Theorem 3. (All ranks) If (a, b) ∈ [0, n]×[0, n]\{(0, 0)},
then

F
(1)
n [a][b] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rn

(a
b

)
if a ≤ b

2

2rn

(
1

2

)
− rn

(
1− a

b

)

if
b

2
< a ≤ b

2fn − rn

(
b

a

)
if a > b

(3a)

(3b)

(3c)

Otherwise, we have the following three cases:

a ∈ [0, n], b ∈ [−n,−1]
=⇒ F(2)

n [a][b] = 4fn − 2− F(1)
n [a][−b], (4a)

a ∈ [−n,−1], b ∈ [−n,−1]
=⇒ F(3)

n [a][b] = 8fn − 6− F(1)
n [−a][b], (4b)

a ∈ [−n,−1], b ∈ [0, n]

=⇒ F(4)
n [a][b] = 12fn − 10− F(1)

n [a][−b]. (4c)

Proof. The formula (3) follows from Theorem 2 and (4)
from the reflection symmetry among the four quadrants.

�
Theorem 3 implies that we can store only F

(1)
n and

use it to get the rank of any fraction in Fn in constant
time. This is particularly useful when we need to work
with a Farey table of a higher order.

Theorems 1–3 are used to design Algorithm 1 for
generation of F(1)

n . An illustration of this algorithm for
n = 10 is shown in Fig. 2. The cells highlighted in
light gray contain the ranks of the fractions in [0, 12 ]. The
ranks of the smallest element (i.e., 0/1 and its equivalent
fractions) and the next element (i.e., 1/n) are generated
by the first for loop. Then, all the fractions in [0, 1

2 ] are
generated by the repeat-until loop. Fractions in [ 12 , 1] are
generated by the subsequent for loop; cells are highlighted
in dark gray in Fig. 2). The last for loop generates the
ranks of the fractions greater than 1.

Algorithm 1. GEN-AFT.
Input: Order of Farey sequence: n
Output: Fn, F(1)

n

int a← 0, b← 1, c← 1, d← n, e, f, k, g, rank← 2
for i← 1, 2, . . . , n do

F
(1)
n [0][i]← 1

Fn[1]← 0/1, Fn[2]← 1/n,F
(1)
n [1][n]← 2

repeat
rank ← rank + 1
k ← �(n+ b)/d� � Theorem 1
e← k · c− a, f ← k · d− b
g ← gcd(e, f)
e← e/g, f ← f/g

Fn[rank]← e/f,F
(1)
n [e][f ]← rank

for i← 1, 2, . . . , �n/f� do
F

(1)
n [e · i][f · i]← rank � equivalent

fractions
a← c, b← d, c← e, d← f

until (e/f = 1/2)
fn ← 2 · rank − 1 � Theorem 2
for a← 1, 2, . . . , n do

for b← a, a+ 1, . . . , 2a− 1 do
F

(1)
n [a][b]← fn + 1− F

(1)
n [b− a][b] �

Theorem 3, Eqn. 3(b)

for a← 1, 2, . . . , n do
for b← 0, 1, . . . , a− 1 do

F
(1)
n [a][b]← 2 · fn − F

(1)
n [b][a] �

Theorem 3, Eqn. 3(c)

return F
(1)
n

Time complexity. The algorithm uses O(n2) iterations.
The dominant operation in an iteration is for GCD
computation, which runs with O(log n) arithmetic opera-
tions or O(log2 n) bit operations, since the operands are
bounded above by n (Cormen et al., 2000). Hence, the
time complexity of Algorithm 1 is O(n2 logn) measured
in terms of arithmetic operations and O(n2 log2 n) in
terms of bit operations.

3. Finding the closest rank in F(1)
n

While processing fractions and their ranks, if some
fraction a

b appears with a > n or b > n, then it does

not belong to Fn, and so its rank cannot be found in F
(1)
n .

To tackle this situation, we find its closest fraction a′
b′ in

Fn, and use the rank of a′
b′ in subsequent applications. We

call this rank the closest rank corresponding to a
b .

To search for the closest fraction a′
b′ , we use a range

(i.e., subsequence) of fractions, namely [a1

b1
, a2

b2
] ⊂ Fn,

to speed up the process. The following theorem provides
this range.
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0 − 1 1 1 1 1 1 1 1 1 1
1 65 33 17 12 9 7 6 5 4 3 2
2 65 49 33 22 17 14 12 10 9 8 7
3 65 54 44 33 25 20 17 15 13 12 11
4 65 57 49 41 33 27 22 19 17 16 14
5 65 59 52 46 39 33 28 24 21 18 17
6 65 60 54 49 44 38 33 29 25 22 20
7 65 61 56 51 47 42 37 33 30 26 23
8 65 62 57 53 49 45 41 36 33 31 27
9 65 63 58 54 50 48 44 40 35 33 32

10 65 64 59 55 52 49 46 43 39 34 33

Fig. 2. Generation of F(1)
10 using Algorithm 1.

Theorem 4. (Fraction search) For any proper fraction a
b ,

let
gcd(�an/b�, n) = g1,

gcd(�an/b�, n) = g2,

a1 =
�an/b�

g1
, b1 =

n

g1
,

a2 =
�an/b�

g2
, b2 =

n

g2
,

such that

gcd(a1, b1) = gcd(a2, b2) = 1.

Then, for

a1
b1

:=
�an/b�

n
,

a2
b2

:=
�an/b�

n
,

the following statements are true:

(i)
a1
b1
∈ Fn,

a2
b2
∈ Fn.

(ii)
a1
b1
≤ a

b
≤ a2

b2
.

Proof.

(i) As 0 ≤ a ≤ b ≤ n, we have 0 ≤ �an/b� ≤ n and
0 ≤ �an/b� ≤ n. This gives a1

b1
∈ Fn and a2

b2
∈ Fn.

(ii) We have a1

b1
≤ an/b

n ≤ a2

b2
, which implies a1

b1
≤ a

b ≤
a2

b2
.

�
We use the result of Theorem 4 later in Algorithm 2.

In particular, we use the following corollary, which
follows from the two statements of Theorem 4 when taken
together.

Corollary 1. We have that a
b ∈ Fn if a1

b1
= a2

b2
. However,

if a1

b1
< a2

b2
, then a

b may or may not belong to Fn.

Also,

a1
b1

<
a2
b2
⇔ �an/b�

n
<
�an/b�

n
,

and hence the following corollary:

Corollary 2. If a1

b1
< a2

b2
, then a1

b1
= m

n and a2

b2
= m+1

n ,
where m = �anb �.

If we search for the closest fraction of a
b in [a1

b1
, a2

b2
]

using binary search, it may take O(log n) time in the worst
case. The following theorem accounts for this.

Theorem 5. (Search range) Fn contains at most O(n)
fractions in the range [a1

b1
, a2

b2
], where a1, b1, a2, b2 are de-

fined as in Theorem 4.

Proof. From Corollary 2, a1

b1
= m

n and a2

b2
= m+1

n
when a1

b1
< a2

b2
. Let, for a given positive integer d, c

d be a
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fraction of Fn, if possible, lying between (and excluding)
m
n and m+1

n . Observe that d < n. We now show that
no other fraction of Fn with denominator d can exist in
[a1

b1
, a2

b2
].

As d < n, we get 1
d > 1

n , or, c
d− c−1

d > m+1
n − m

n >
c
d − m

n , or, c−1
d < m

n , which implies that any a fraction
with denominator d and a numerator less than c lies
outside [a1

b1
, a2

b2
]. Similarly, any fraction with denominator

d and a numerator greater than c also lies outside this
range, as 1

d > 1
n implies c+1

d − c
d > m+1

n −m
n > m+1

n − c
d .

Thus, for every integer d in [1, n − 1], at most one
fraction of Fn can be there in [a1

b1
, a2

b2
]. Therefore, there

can be at most n−1 fractions of Fn lying in [a1

b1
, a2

b2
]. �

3.1. Binary search and its limitation. To study the
performance of binary search, we consider various cases
for searching for some key fractions in Farey tables of
small orders. For this, we define the fraction difference
as the difference of a fraction c

d of Fn from the key
fraction a

b , given by a
b − c

d = ad−bc
bd . Computation of

each such difference needs O(loglog 3 n) bit operations if
we use the Karatsuba algorithm for multiplication, since
the numerator and the denominator of a fraction in Fn

is bounded above by n (Knuth, 1997). We compute the
differences of all the fractions of Fn having rank in [r1, r2]
from the key fraction a

b .
These differences would be monotonically

decreasing with the fraction ranks increasing from
r1 to r2. Further, they are initially positive and gradually
become negative, with a zero-crossing somewhere in
between. Clearly, the closest fraction of a

b in Fn is
the fraction lying nearest to this zero-crossing, which
needs O(log n) iterations for searching using binary
search. In fact, for instances when the zero-crossing lies
near one of the boundaries (r1 or r2), the binary search
algorithm really takes O(log n) iterations (Fig. 3(b)).
Hence, the number of bit operations is given by
O(log n loglog 3 n) ≈ O(log2.585 n).

3.2. Algorithm using regula falsi. The nature of the
variation in the fraction difference is grossly linear with
the fraction rank. This is evident from three different plots
given in Fig. 3. Thus, as a better alternative, we use an
iterative approach based on the regula falsi method to find
the zero-crossing. The rationale is that the regula falsi
method provides the exact solution for a linear function
in constant time. For a nonlinear function, it provides an
approximate solution that can be successively improved
by iteration. Further, if a function is not exactly but
grossly linear, then it provides an approximate solution
very fast, and the number of iterations depends on the
grossness of linearity.
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Fig. 3. Instances of various cases for searching for fractions in
lower order Farey tables using Algorithm 2: searching
for a/b = 78/145 in F75, the closest fraction in F75 =
7/13, rank= 935 (a), searching for a/b = 375/448 in
F55, the closest fraction in F55 = 36/43, rank= 787(b),
searching for a/b = 1957/2788 in F99, the closest frac-
tion in F99 = 40/57, rank= 2108 (c). The black solid
lines indicate zero-crossing.

In our algorithm FIND-CLOSEST-RANK

(Algorithm 2), after each iteration, we get two closer
ranks between which the zero-crossing lies. The iteration
continues depending on how close the ranks are, and
it stops when the two ranks have unit a difference.
The initialized search range is [a1/b1, a2/b2], where
rn (a1/b1) = r1 and rn (a2/b2) = r2. The fractions
a1/b1 and a2/b2 are computed at the beginning of the
algorithm (Algorithm 2). By Theorem 4, the query
fraction a/b belongs to the range given by [a1/b1, a2/b2].
We have now the following three cases.

Case 1 (r1 = r2). The query fraction belongs to Fn,
and it is equal to a1/b1 (Corollary 1). Therefore, the
algorithm returns the rank of a1/b1.
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Algorithm 2. FIND-CLOSEST-RANK.

Input: F(1)
n , Fn, a

b

Output: Rank of closest fraction of a
b in F

(1)
n

g1 ← gcd(�an/b�, n), g2 ← gcd(�an/b�, n)
a1 ← �an/b�/g1, b1 ← n/g1
a2 ← �an/b�/g2, b2 ← n/g2
r1 ← F

(1)
n [a1][b1], r2 ← F

(1)
n [a2][b2]

if r1 = r2 then
return F

(1)
n [a1][b1] � Corollary 1

if r2 − r1 = 1 then
if (a/b− a1/b1) < (a2/b2 − a/b) then

return F
(1)
n [a1][b1]

else
return F

(1)
n [a2][b2]

a′1/b
′
1 ← a1/b1, a

′
2/b

′
2 ← a2/b2

repeat
if a/b < a′2/b

′
2 then

a2/b2 ← a′2/b
′
2

else
a1/b1 ← a′2/b

′
2

y1 ← (a1b−b1a)/(b1b), y2 ← (a2b−b2a)/(b2b)
r← (r1y2 − r2y1)/(y2 − y1) � zero-crossing
a′1/b′1 ← Fn[�r�]
if a′1/b

′
1 < a/b then

a′2/b′2 ← Fn[�r + 1�]
else

a′2/b
′
2 ← Fn[�r − 1�]

until
((a′1/b′1 ≤ a/b ≤ a′2/b′2) ∨ (a′2/b′2 ≤ a/b ≤ a′1/b′1))
if a/b− a′1/b

′
1 < a′2/b

′
2 − a/b then

return F
(1)
n [a′1][b

′
1]

else
return F

(1)
n [a′2][b

′
2]

Case 2 (r2 − r1 = 1). There are only two fractions in
the range [a1/b1, a2/b2]. Therefore, the fraction between
a1/b1 and a2/b2 lying closest to a/b is returned, using the
if-else statements.

Case 3 (r2 − r1 > 1). The length of the search range
is reduced iteratively for this case, until r2 − r1 = 1.
This is done in the repeat-until loop. The loop terminates
when a′1/b

′
1 ≤ a/b ≤ a′2/b

′
2 or a′2/b

′
2 ≤ a/b ≤ a′1/b

′
1. In

either case, the ranks of a′1/b
′
1 and a′2/b

′
2 differ by unity.

The fractions a′1/b′1 and a′2/b′2 are used to update the
range [a1/b1, a2/b2]. The fraction a′2/b

′
2 gets the value

of the fraction having rank �x + 1� when a′1/b
′
1 < a/b;

otherwise, it gets the value of the fraction having rank
�x− 1�.

 2

 4

 6

 8

 10

 1
0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

#
ite

ra
tio

n

order (n)

Find-Closest-Rank
Binary search

Fig. 4. Comparison between FIND-CLOSEST-RANK and binary
search. The average number of iterations (rounded off to
integers) is plotted vs. n.

3.3. Performance of FIND-CLOSEST-RANK. For
studying the performance of FIND-CLOSEST-RANK and
to compare it with binary search, a set of 100 randomly
generated proper fractions in [0, 1] is taken, and the av-
erage number of iterations required for each of these two
methods is considered for F(1)

n , with its order n varying
from 10 to 1000. We generate the set of random fractions
such that no fraction belongs to Fn. The corresponding
average number of iterations required for these randomly
generated sets for different F(1)

n is plotted against n in
Fig. 4. From this plot, it can be noticed that FIND-
CLOSEST-RANK runs significantly faster compared with
binary search. Even for n of order of 1000, FIND-
CLOSEST-RANK reports the closest rank in just two or
three iterations.

3.4. Comparison with the existing technique.
Recently, an algorithm has been proposed by Charrier and
Buzer (2009) for determining the fraction a′

b′ ∈ Fn so
that it is closest to any given fraction a

b . The technique is
based on the principal convergent series of an even order
and that of an odd order, denoted respectively by SE and
SO, which are obtained by decomposition to a continued
fraction. As a natural follow-up, we compare our FIND-
CLOSEST-RANK with this algorithm, and some examples
on the comparison are given below.

Example 1. To detect the closest fraction of a
b = 78

145
where its denominator is less than or equal to n = 75.

We have
78

145
= [0 1 1 6 11].

Therefore,

SE = {0/1, 1/2, 8/15, 15/28, 22/41,
29/54, 36/67, 43/80, 50/93, 57/106,

64/119, 71/132, 78/145}
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Table 1. Sub-cases of Case 3 (FIND-CLOSEST-RANK).
Sub-case 3a Sub-case 3b Sub-case 3c Sub-case 3d

a′
1

b′1
< a

b

a′
1

b′1
≥ a

b

a′
2

b′2
< a

b

a′
2

b′2
≥ a

b

a′
2

b′2
< a

b

a′
2

b′2
≥ a

b

=⇒ a′
1

b′1
<

a′
2

b′2
< a

b
=⇒ a′

1
b′1

< a
b
<

a′
2

b′2
=⇒ a′

2
b′2

< a
b
<

a′
1

b′1
=⇒ a

b
<

a′
2

b′2
<

a′
1

b′1
action:

a1
b1
← a′

2
b′2

return
closest rank

return
closest rank

a2
b2
← a′

2
b′2

and

SO = {1/1, 2/3, 3/5, 4/7, 5/9, 6/11, 7/13}.

The closest fraction of a
b in SE is 36

67 with error 0.000618
and in SO is 7

13 with error 0.000531. Hence, the reported
closest fraction is 7

13 . Our algorithm also reports the same
(see Fig. 3(a)). �

Example 2. Let a
b = 1957

2788 , n = 99. We have

1957

2788
= [0 1 2 2 1 4 2 6 4].

Thus,

SE = {0/1, 1/2, 2/3, 7/10, 40/57, 73/104, 544/775,
1015/1446, 1486/2117, 1957/2788}

and

SO = {1/1, 3/4, 5/7, 12/17, 19/27, 26/37, 33/47,
106/151, 179/255252/359, 325/463,

398/567, 471/671}.

The closest fraction reported is 40
57 , which matches

our result (see Fig. 3(c)). �

The time complexity of the algorithm is mainly
determined by the number of iterations in the re-
peat-until loop. Since the fraction difference has a
grossly linear relation with rank, this loop converges
very fast within a small number of iterations because
of the interpolation by the regula falsi method.
Hence, the time complexity becomes a constant
factor of the arithmetic operations used in different
steps of the algorithm. The major operations are
GCD computation and multiplication/division, whose
respective time complexities in terms of bit operations are
O(log2 n) and O(loglog 3 n) (Cormen et al., 2000). As
a result, the overall time complexity becomes O(log2 n),
which is asymptotically better than the algorithm based on
binary search.

4. Application to polygonal approximation

Polygonal approximation is an important task in the
paradigm of computer vision, since it can succinctly
represent the boundary of an object (Melkman and
O’Rourke, 1988). The result can subsequently be
used in various applications, such as image analysis
(Neumann and Teisseron, 2002), image registration
(Wang et al., 2013; Zhang et al., 2015), image matching
(Mikolajczyk and Schmid, 2005; Wang et al., 2009;
Zhang and Koch, 2013), shape understanding (Attneave,
1954; Kumar et al., 2002; O’Connell, 1997), image
and video retrieval (Mokhtarian and Mohanna, 2002;
Van and Le, 2016). There exists a multitude of
algorithms for polygonal (or poly-chain) approximation
of a digital curve; see, for example, the works of
Bhowmick and Bhattacharya (2007), Wall and Danielsson
(1984), Chung et al. (2008), Koutroumbas (2012), Liu
et al. (2008), Nguyen and Debled-Rennesson (2011),
Parvez and Mahmoud (2010), Prasad et al. (2012),
Rosin (1997), Teh and Chin (1989) or Yin (2004) and
the references therein. These are based on various
techniques like normalization of area deviation (Wall
and Danielsson, 1984), curvature estimation (Liu et al.,
2008; Teh and Chin, 1989), dominant point detection
(Prasad et al., 2012), particle swarm optimization (Yin,
2004), approximate digital straightness (Bhowmick and
Bhattacharya, 2007), etc. Working principles of these
algorithms and their comparative study are given in
Table 2.

We show here how the AFT can be used for
polygonal approximation of a (thinned) digital curve, once
the approximately digital straight segments (ADSSs) are
extracted from the curve (Bhowmick and Bhattacharya,
2007). For this purpose, the endpoints of the ADSS
are taken in order and stored in V . Each maximal
subsequence of vertices in V , which are “almost
collinear”, is replaced by a single edge. That is,
if 〈eh, eh+1, . . . , eh+i〉 is the maximal subsequence of
straight edges that are almost collinear, i.e., they conform
to some approximation criterion, then these (i + 1)
edges are combined to a single edge. The process is
repeated for all such maximal subsequences in succession
to obtain a reduced sequence of (almost) straight edges
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Algorithm 3. POLY-APPROX-FT.

Input: V,m,F
(1)
n , τ

Output: V ′

V ′ ← V
for h← 1 to m− 2 do

i← 1, iLoop← TRUE

while ((i < m− h) ∧ (iLoop = TRUE)) do
j ← 1
while j ≤ i do

dx1 ← V [h+ i + 1] .x− V [h] .x
dy1 ← V [h+ i+ 1] .y − V [h] .y
dx2 ← V [h+ j] .x− V [h+ i+ 1] .x
dy2 ← V [h+ j] .y − V [h+ i+ 1] .y
l ← max(|dx2|, |dy2|)
r1 ← F

(1)
n [dy1][dx1] � Eqns. 3, 4

r2 ← F
(1)
n [dy2][dx2] � Eqns. 3, 4

r ← δn (r1, r2)
a/b← Fn[r]
if l · |a| > τ · √a2 + b2 then

i← i− 1, iLoop← FALSE

break
j ← j + 1

if iLoop = TRUE then
delete V ′[h+ i]

i← i+ 1
h← h+ i

return V ′

V ′ corresponding to the object boundary. The process is
repeated for all such maximal subsequences in succession
to obtain a reduced set of straight edges corresponding to
the object boundary.

4.1. Approximation by the differential Farey index.
There are several approximation criteria available in the
literature (Bhowmick and Bhattacharya, 2007; Rosin and
West, 1988; 1995; Wall and Danielsson, 1984). As we use
the AFT for polygonal approximation, we introduce here
the notion of a differential Farey index. For ranks r1 and
r2 of two fractions in Fn, it is defined as

δn (r1, r2) =

{
Δr21 if Δr21 ≤ 4fn − 4,
8fn − 8−Δr21 otherwise.

(5)
Here, Δr21 = |r2 − r1|. For example, in Fig. 1, n =
4, fn = 7, which gives 4fn − 4 = 24. So, for r1 = 1 and
r2 = 25, we get δn (r1, r2) = 24; as r2 increases to 26,
we have |r2−r1| = 25, and so δn (r1, r2) = 48−25 = 23.

While checking the approximate collinearity of a
subsequence of straight edges coming from the set of
straight edges E, their slopes are considered ranks of
the corresponding fractions stored in Fn. These ranks

are used to compute their differential Farey indices.
Algorithm 3 shows the steps of the proposed algorithm,
POLY-APPROX-FT. It takes the set V that stores m
endpoints defining the sequence of edges. The parameter
τ denotes the approximation parameter, and it signifies
the amount of approximation. A high value of τ provides
a loose approximation, whereas a low value gives a tight
approximation,

Algorithm 3 has a for loop containing two nested
while loops. Each iteration of the for loop finds a maximal
subsequence of straight edges that are approximately
collinear (within a tolerance τ ). In particular, if
〈eh, eh+1, . . . , eh+i〉 is the maximal subsequence, then
the distance of each vertex vh+j , 1 ≤ j ≤ i, from the
straight line segment vhvh+i+1 is at most τ . Note that the
vertex vh+j is shared by the edges eh+j−1 and eh+j . For
each straight line segment pq with endpoints p(xp, yp) and
q(xq , yq), the rank of the fraction yq−yp

xq−xp
is obtained from

Fn using single memory access.
Each iteration of the inner while loop computes the

deviation (Euclidean distance) of a vertex vh+j from the
straight line segment vhvh+i+1. This computation is done
using the differential Farey index obtained from the ranks
corresponding to the slopes of vhvh+i+1 and vh+i+1vh+j ,
as shown in Fig. 5. This differential Farey index is treated
as a rank and its corresponding fraction, shown as a

b in
Fig. 5, is obtained from Fn. Consequently, the deviation
of vh+j from vh+jvh+i+1 is estimated as

d2(vh+j , vhvh+i+1) ≈ a · ‖vh+jvh+i+1‖√
a2 + b2

, (6)

where ‖vh+jvh+i+1‖ denotes the length of vh+jvh+i+1.
The inner while loop executes for j varying from 1

to i. If the deviation lies within the threshold τ for each
vertex vh+j , then 〈eh, eh+1, . . . , eh+i〉 is considered to be
approximately straight; to include the next edge in this
sequence for its maximality, this loop is again executed
with the value of i incremented to i+ 1 in the outer while
loop. If the deviation exceeds the threshold τ for some
vertex vh+j in the inner while loop, then the previous
solution remains the maximal solution, and the algorithm
finds the next maximal subsequence with initialization
from the for loop.

The inner while loop runs in a time linear in the
number of vertices from vh+1 to vh+1. Hence the overall
time complexity obtained by summing up this runtime
becomes quadratic in the total number of input vertices.
However, as mentioned earlier, the input sequence of
vertices is obtained by extraction of the ADSS from a
digital curve. If the digital curve consists of M pixels,
then the input sequence of m vertices is obtained in
O(M) time (Bhowmick and Bhattacharya, 2007). If m
is asymptotically smaller than M , then the overall time
complexity becomes asymptotically less than O(M2).
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Table 2. Comparative study on existing polygonal approximation algorithms (listed chronologically) and the proposed algorithm.
Principle Non-

Euclidean
Complexity Error control Non-recursive

Normalization of area deviation (Wall and Danielsson,
1984)

No Low Yes No

Curvature estimation and non-maxima suppres-
sion (Teh and Chin, 1989)

No High No No

Dominant point detection using trigonometric opera-
tions (Ray and Ray, 1992)

No High No No

Particle swarm optimization (Yin, 2004) No High Yes No
Genetic algorithm (Sarkar et al., 2004) No High No No
Digital straightness properties and area devia-
tion (Bhowmick and Bhattacharya, 2007)

Yes Low Yes Yes

Curvature estimation based on local integral square er-
ror (Chung et al., 2008)

No High Yes No

Chain code and removal of dominant points (Masood,
2008)

No High Yes No

Statistical and geometric properties (Dinesh and Guru,
2009)

No High Yes No

Curvature estimation and adaptive fitting (Parvez and
Mahmoud, 2010)

No High Yes No

Maximal blurred segments (Nguyen and Debled-
Rennesson, 2011)

No Low Yes No

Graph-theoretic tools and elementary geome-
try (Koutroumbas, 2012)

No Low Yes No

Reverse engineering on Bresenham’s algorithm (Ray
and Ray, 2013)

Yes Low No Yes

Proposed algorithm: digital straightness properties
and differential Farey index

Yes Low Yes Yes

vh

vh+i+1

vh+1

vh+2

vh+i

vh+j

eh

eh+i
a b

d2(vh+j, vhvh+i+1)

rank = rn
(
yh+i+1−yh
xh+i+1−xh

)

rank = rn
(
yh+j−yh+i+1

xh+j−xh+i+1

)

Fig. 5. Estimation of the deviation of a point vh+j from vhvh+i+1 using the differential Farey index.

(a) (b) (c) (d)

Fig. 6. Results using the proposed algorithm: input image (a), straight edges extracted (b), polygonal approximation: τ = 1 : m′ =
7 (c), polygonal approximation: τ = 2 : m′ = 6 (d).
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Fig. 7. Results on soldier (left) for τ = 1 (middle) and τ = 4 (right).

(a) (b)

(c) (d)

Fig. 8. Polygonal approximation for the image lab, using the proposed algorithm (after detection of thin edge). Input image: lab
(512 × 484 pixels) (a), edge map extracted using the approach of Pratihar and Bhowmick (2009), M = 9349 (b), τ = 1,
m′ = 1080 (c), τ = 4, m′ = 561 (d).

For example, if m = O(
√
M), then the overall time

complexity is linear in M . In general, the actual runtime
would depend on the amount of variation in direction
while traversing the input curve.

4.2. Results of polygonal approximation. We have
implemented our algorithm in C in Ubuntu 12.04, Linux
Kernel 3.2.0-54-generic 64-bit, Intel R© Core

TM
i5-2310

CPU 2.90 GHz. Unless mentioned otherwise, all the

results shown in this paper are obtained for n = 200. The
significance of τ in our algorithm is evident from a set
of experimental results shown in Fig. 6. The number of
edge points, the number of vertices before approximation,
and the number of vertices in the polygon or polychain
after approximation are denoted here by M , m, and m′,
respectively. For τ = 1, we get a tight approximation with
m′ = 7, whereas for τ = 2, we have more relaxation with
m′ = 6. We notice the same pattern for other images ,
too, such as the ones shown in Figs. 7 and 8.
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Table 3. Summary of results for some images.
Existing algorithm Proposed algorithm

(Bhowmick and Bhattacharya, 2007)
m′ m′

Image name M m τ = 1 2 3 5 8 τ = 1 2 3 5 8

soldier 2494 302 209 156 120 90 73 202 143 115 87 72
bird-children 2813 267 166 115 93 76 69 163 107 88 72 66
crocodile 1123 100 67 49 35 28 18 66 48 34 27 17
spider 1760 135 78 69 52 42 38 78 66 50 42 38
diver 1719 153 103 74 55 40 30 101 67 55 38 27
drum-men 2835 374 257 178 144 112 92 240 170 135 104 88
vase 5755 576 438 322 266 215 181 414 308 258 209 174
India-map 2535 566 444 297 198 133 96 399 245 181 119 86
House 7037 349 275 192 166 145 131 261 192 163 145 132

τ = 1 τ = 2 τ = 5

Fig. 9. Results of polygonal approximation on
bird-children: Bhowmick and Bhattacharya
(top row), proposed method (bottom row).

Algorithm 3 works with the differential Farey index,
which is computed from the ranks of two fractions in
Fn. We have already shown an illustration of Fn in
Fig. 1 for an order of n = 4, which has fn = 7 and
contains 48 fractions in total. As the order n becomes
large, the number of fractions increases quadratically. For
example, the total number of fractions in Fn is 24352 for
n = 100, and 97856 for n = 200. These slopes/fractions
divide the space of 360◦ into angular divisions, which
are approximately, but not exactly, equal. However, with
an increasing value of n, the disparity of these angular
divisions decreases, as the number of divisions increases
quadratically. For example, n = 100 means 24352 slopes
and hence 24352 angular divisions, making each division

approximately 0.014783◦, whereas n = 200means 97856
slopes, making each division approximately 0.003679◦.

If some straight line segment has a slope a/b whose
numerator (or/and denominator) is greater than the ordern
of Fn, then the fraction would not be present in Fn.
Hence, its approximate rank is estimated as the rank of
its closest fraction a′/b′ in Fn, using Algorithm 2, as
explained in Section 3.

Table 3 shows results for some digital curves (two
of them are shown in Figs. 7 and 9). It can be noticed
from these results that, as τ increases, the number of
vertices in the approximate polygon P gets reduced. For
example, for the image soldier with M = 2494 and
m = 302, we get m′ = 202, 143, 115, 87, 72, for τ =
1, 2, 3, 5, 8, using our algorithm. These results are quite
similar to the ones obtained by the algorithm proposed
by Bhowmick and Bhattacharya (2007), which produces
m′ = 209, 156, 120, 90, 73 for the same values of τ .

For an appropriately large value of τ , our algorithm is
found to be stable with respect to rotation. This is evident
from the set of results given in Fig. 10. Notice that the
sequence of straight edges describing the rotated object
remains almost same as that of the original one, especially
when τ = 8. For τ < 8, there are some variations due to
changes in the point sequence defining the edges, which
occurred during rotation.

Quality of approximation. In our algorithm, the
parameter τ provides a control over the approximation.
Thus, the compression ratio, ρ = m′/m, is taken as
a measure of approximation quality. This measure is
also used in most of the related work (Bhowmick and
Bhattacharya, 2007; Masood, 2008; Teh and Chin, 1989;
Yin, 2004). As the control parameter τ increases, ρ
decreases. As evident from Table 3, the compression ratio
ρ reported by our algorithm complies with the results of
Bhowmick and Bhattacharya (2007).

Another measure of approximation quality is defined
as the maximum deviation of a point (x, y) lying on a
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θ = 0o 15o 30o 45o 60o

τ = 1
m′ = 34 m′ = 30 m′ = 24 m′ = 26 m′ = 30

τ = 2
m′ = 17 m′ = 16 m′ = 16 m′ = 14 m′ = 19

τ = 5
m′ = 9 m′ = 9 m′ = 9 m′ = 9 m′ = 11

τ = 8
m′ = 8 m′ = 8 m′ = 8 m′ = 8 m′ = 8

Fig. 10. Results on rotated wdg3 for various τ .

CM (Teh and Chin, 1989) ACS (Yin, 2003) AD (Wall and Danielsson, 1984)PO (Hu and Yan, 1997)
m′ = 15 m′ = 12 m′ = 12 m′ = 16

DZ (Buzer, 2009) DZ (Buzer, 2009) proposed proposed
m′ = 18 m′ = 11 m′ = 13 m′ = 8
(ε = 1) (ε = 2) (τ = 1) (τ = 2)

Fig. 11. Results of polygonal approximation obtained by existing algorithms and the proposed algorithm for the image chromosome.

straight edge e ∈ E from the corresponding edge of
the approximate polygon, P . If p′ =

(
x′, y′

)
is the

closest point on an edge of P corresponding to a point
p =

(
x, y

) ∈ e, then the deviation of p from p′ is given as

d∞
(
p, p′

)
= max{|x− x′|, |y − y′|}. (7)

The total deviation of all the edge points of E is therefore

δE =
∑
e∈E

∑
p∈e

d∞
(
p, p′

)
. (8)

The value d∞
(
p, p′

)
depends on the provided value
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CM (Teh and Chin, 1989) ACS (Yin, 2003) AD (Wall and Danielsson, 1984) PO (Hu and Yan, 1997) DZ (Buzer, 2009) proposed
m′ = 20 m′ = 16 m′ = 19 m′ = 26 m′ = 14 m′ = 17

Fig. 12. Results of polygonal approximation obtained by existing algorithms and the proposed algorithm for the image semi-circle
(ε = 1 for DZ and τ = 1 for the proposed).

Table 4. Comparative results on the number of operations for the image soldier for the polygonization part. (mul., add., comp.,
mem., assn., inr./dcr., AND denote the respective numbers of multiplications, additions, comparisons, memory accesses,
assignments, increments/decrements, and logical AND operations.)

Number of operations
τ m m′ mul. add. comp. mem. assn. inr./dcr. AND

B
ho

w
m

ic
k

an
d

B
ha

tt
ac

ha
ry

a
(2

00
7)

1 302 209 2296 2435 1767 0 2890 664 295
2 302 156 2751 2707 1844 0 2979 729 242
3 302 120 3178 2976 1930 0 3090 790 206
4 302 99 3640 3285 2041 0 3246 856 185
5 302 90 3871 3441 2098 0 3327 889 176
6 302 82 4186 3658 2180 0 3446 934 168
7 302 76 4382 3792 2230 0 3518 962 162
8 302 73 4606 3949 2291 0 3608 994 159

P
ro

po
se

d
m

et
ho

d

1 302 202 332 2116 1932 582 3966 668 288
2 302 143 409 2365 2181 659 4387 745 229
3 302 115 459 2537 2353 709 4681 795 201
4 302 95 528 2793 2609 778 5124 864 181
5 302 87 563 2925 2741 813 5353 899 173
6 302 79 602 3073 2889 852 5610 938 165
7 302 74 645 3240 3056 895 5901 981 160
8 302 72 672 3346 3162 922 6086 1008 158

of τ , and the average deviation is measured as

δ =
δE
M

, (9)

where M denotes the total number of pixels in E. Again,
for the measure of the error frequency, for a chosen τ ,
we find the number of edge points in P deviated from the
edges of E by a distance δ(= 0, 1, 2, 3, . . .). Then the
error frequency is defined as

ν(τ, δ) =
1

M

∑
e∈E

|{p ∈ e : d∞
(
p, p′

)
= δ}|, (10)

where the variation of ν(τ, δ) versus τ and δ provides the
error distribution for polygonal approximation.

Since the focus of our work is on the AFT and its
applicability to practical problems, we have compared our
algorithm with one of those proposed by Bhowmick and
Bhattacharya (2007), which has a fast execution owing
to integer operations. Plots for average deviation caused
by approximation are shown in Fig. 13 for the images
soldier and bird-children. It can be noticed

from these plots that the output produced by the proposed
algorithm complies with the one produced using the
algorithm given by Bhowmick and Bhattacharya (2007).
Comparative results on the error frequency for these two
images are also shown in Figs. 14 and 15. It yields
high frequency for low deviation, and low frequency for
high deviation, which indicates its qualitative merit in the
process of approximation. Table 4 shows a comparative
study on the number of operations required for polygonal
approximation of soldier image. It can be noticed
in this table that, in comparison with the algorithm
of Bhowmick and Bhattacharya (2007), the number of
multiplications is significantly lower in the proposed
algorithm. However, the proposed algorithm needs
memory access for accessing ranks from the AFT. Also, it
needs some more comparisons and assignments compared
with that of Bhowmick and Bhattacharya (2007). As
the number of multiplications is reduced significantly, we
notice a marginal improvement in CPU time (see Table 5).

Also, we have compared the performance of our
method with that of some of the existing methods. These
are curvature maximization (CM (Teh and Chin, 1989)),
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Fig. 13. Average deviation for various values of approxima-
tion parameter (τ ) for the image soldier (top) and
bird-children (bottom).

ant colony search (ACS (Yin, 2003)), area deviation (AD
(Wall and Danielsson, 1984)), perceptual organization
(PO (Hu and Yan, 1997)), and digital zone criteria (DZ
(Buzer, 2009)). Results obtained for these methods and
the proposed approach for two benchmark curves, namely,
chromosome and semi-circle, are presented in
Figs. 11 and 12, respectively. It is evident from these that
the sequence of vertices reported by the proposed method
for τ = 1 closely matches those obtained by the existing
methods.

4.3. Order of the AFT. For this application, we have
taken Farey order n = 200. Figure 1 shows the AFT, F4,
of order 4, where 48 possible slopes exist. As the order n
of Fn becomes large, the number of slopes increases
appreciably. For example, for n = 200, the number of
fractions in the first quadrant is 24465. Hence, the total
number of fractions in F200 is 4× 24465 = 97856. These
97856 slopes (fractions) partition the space of 360◦ into
97856 divisions. Theoretically, not all the divisions will
be of an equal degree. But as the number of divisions is
quite large, two ranks in a vicinity represent nearly equal
slopes.

For a slope not in Fn, its closest fraction is computed
and used subsequently. Results are shown for different
values of n in Fig. 16 and Table 5 for the image
soldier. It is evident from these that RFT-based
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Fig. 14. Error frequency distribution (ν versus τ and δ) for the
image soldier: algorithm of Bhowmick and Bhat-
tacharya (2007) (a), proposed algorithm (b).

polygonal approximation always preserves the overall
shape of the object irrespective of the value chosen for n.
Although the sequence of vertices for a very small value of
n (e.g., n = 10) is not the same as that for a larger value, it
becomes stable once n has a sufficiently large value (e.g.,
n = 50).

5. Application to skew correction

A skew creeps in unknowingly in a document image
during its scanning due to an improper placement of
the document page on the scanner bed, or due to some
technical malfunction or limitations of the acquisition
mechanism. Hence, efficient detection of the amount
of the skew is the very first step of preprocessing for
effective character and graphics recognition, document
layout analysis, etc.

Since the 1990s, several works have been done
on skew correction of document images with varying
accuracy and variegated techniques. These are mostly
based on the least-squares method, median gradient,
variance of black-white transition, Hough transform,
etc. (Jiang et al., 1997; Li et al., 2007; Pavlidis and
Zhou, 1991; Yan, 1993; Yu and Jain, 1996). Later,
other techniques have been proposed based on the
textual/non-textual classifier, line fitting, morphological
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Table 5. Effect of n on the result obtained by the algorithm for the image soldier. (CPU time is shown in seconds for the polygo-
nization part.)

τ = 2 τ = 5 τ = 8
Method m m′ CPU time m′ CPU time m′ CPU time

Proposed
n = 10 302 160 0.000083 96 0.000058 78 0.000051
n = 20 302 152 0.000075 90 0.000046 75 0.000044
n = 30 302 145 0.000070 89 0.000046 73 0.000042
n = 50 302 146 0.000064 87 0.000044 72 0.000050
n = 100 302 144 0.000063 87 0.000047 72 0.000051
n = 150 302 145 0.000062 87 0.000046 72 0.000051
n = 200 302 143 0.000061 87 0.000045 72 0.000055
Existing algorithm (Bhowmick
and Bhattacharya, 2007)

302 156 0.000094 90 0.000071 73 0.000068
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Fig. 15. Error frequency distribution (ν versus τ and δ) for
the image bird-children: algorithm of Bhowmick
and Bhattacharya (2007) (a), proposed algorithm (b).

operations, convex hull, etc. (Cao et al., 2003; Chaudhuri
and Pal, 1997; Chou et al., 2007; Das and Chanda, 2001;
Yuan and Tan, 2007).

All the above methods mostly work in the
real/Euclidean domain and are based on trigonometric
procedures. The algorithm proposed here, in contrast, is
based on the AFT. It detects the skew directly from the
gray-scale image by extracting and processing digitally
straight edges, without resorting to any preprocessing
like binarization or thinning. These straight edges

Algorithm 4. SKEW-DETECT-FT.

Input: E, F(1)
n , Fn, w

Output: Skew slope

nB =
⌈
1
w |Fn|

⌉
for i← 0, 1, . . . , nB do

B[i].len← 0, B[i].wrank ← 0
ai ← w · i, bi ← min{ai + w − 1, |Fn|} �
[ai, bi] = range of ranks in B[i]

for each ej(v = (x, y), v′ = (x′, y′)) ∈ E do
dy = |y − y′|, dx = |x− x′|
lj ← max{dy, dx}
ρj ← F

(1)
n [dy][dx]

i← ⌈
1
wρj

⌉
B[i].len← B[i].len+ lj
B[i].wrank ← B[i].wrank + lj · ρj

select the principal bin B[s] � having maximum len
ρw ← B[s].wrank/B[s].len � Eqn. (11)
ps/qs ← Fn[ρw]
return ps/qs

are extracted from the line boundaries of digitized
engineering drawings, using periodic properties of digital
straightness (Klette and Rosenfeld, 2004) and exponential
averaging (Pratihar and Bhowmick, 2009). Subsequently,
these straight edges are analyzed to derive the principal
axes (skewed vertical and skewed horizontal axes) of the
drawing, needed to estimate the skew. The analysis is
done using the ranks of fractions corresponding to the
slopes of the edges. An illustration of our algorithm is
shown in Fig. 17.

5.1. Binning of straight edges and skew detec-
tion. While obtaining the set of straight edges, E :=
{e1, e2, . . . , em}, we also store their Farey ranks and
lengths. The length of an edge e(v, v′), where v = (x, y)
and v′ = (x′, y′), is measured as the L∞ norm (Klette



On the Farey sequence and its augmentation for applications to image analysis 653

τ = 2, n = 10 τ = 2, n = 30 τ = 2, n = 50 τ = 2, n = 100 τ = 5, n = 10 τ = 5, n = 30

τ = 5, n = 50 τ = 5, n = 100 τ = 8, n = 10 τ = 8, n = 30 τ = 8, n = 50 τ = 8, n = 100

Fig. 16. Results of polygonal approximation for different values of the Farey order, n.

(a) (b) (c) (d)

Fig. 17. Skew correction—step-wise snapshots of our algorithm: input (a), detected straight edges defining boundaries (b), principal
and its orthogonal direction shown in gray and in black, respectively (c), deskewed image (d).

and Rosenfeld, 2004), and so it is given by ‖e‖∞ =
max{|x − x′|, |y − y′|}. If the length of a straight edge
exceeds a threshold value, lmin, then it is included in
E. The value of lmin is set as twice the average font
height. The rank of each edge e is obtained from Fn by
single memory access, which saves time to a significant
amount in comparison with slope-angle computation by
trigonometric procedures linked to the math library.

Algorithm 4 shows the basic steps. We consider
a sequence B of nB =

⌈
1
w |Fn|

⌉
bins, each bin B[i]

corresponding to a range of ranks, namely, [ai, bi], where
|Fn| = is the number of fractions in Fn, ai = w · i
and bi = min{ai + w − 1, |Fn|}, so that each bin
has a fixed width, w. In our experimentation, we have

taken w = 100 and the order of Fn as n = 200,
whence |Fn| = 97856. Accordingly, two consecutive
fractions will approximately correspond to a difference
of 360◦/97856 = 0.003679◦, which is practically a very
small value. This fact has been exploited in binning. Since
there are w = 100 consecutive ranks in each B[i], they
approximately span over 0.003679×100 = 0.368◦, which
bounds the maximum possible binning error.

The entry of each bin B[i] is initialized as 0. For each
edge ej ∈ E having rank ρj ∈ [ai, bi] and length lj , the
entry of B[i] is increased by lj . Hence, after processing
all edges of E, each bin B[i] contains the sum of lengths
of all straight edges in E whose ranks lie in [ai, bi].
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Finding the principal bin. We take the bin B[i1] with
the maximum sum of lengths, and check whether there
exists a bin B[i′1] such that nB − 1 ≤ |i1 − i′1| ≤ nB + 1
and the sum stored in B[i′1] is a local maximum in B.
If so, then B[i1] is the principal bin which provides
the principal direction, and B[i′1] provides the direction
orthogonal to that of B[i1]. Otherwise, we iteratively
consider the bin B[i2] containing the next maximum and
check the existence of B[i′2] in a similar way. Within
three iterations, if we get a solution. Then the skew is
reported and the original image is de-skewed based on the
estimated angle of the skew, as explained next; otherwise,
no skew is reported.

Let B[s] be the principal bin that corresponds to
the skew and B[s′] the one with orthogonal direction,
as explained above. Since as and bs(= as + w − 1)
are the minimum and maximum ranks corresponding to
B[s], we consider the weighted mean of the ranks in B[s]
to estimate the resultant skew. The weight of a rank
ρs ∈ [as, bs] is taken as the sum of all straight edges in
E having rank ρs. Hence, if esj is the j-th edge in E
having rank ρ(esj) = ρs, then the resultant skew of the
image concerned is estimated as ps

qs
, where

F(1)
n [ps][qs] =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
ρ(esj)=ρs

as≤ρs≤bs

‖esj‖∞ρs

∑
ρ(esj)=ρs

as≤ρs≤bs

‖esj‖∞

⎞
⎟⎟⎟⎟⎟⎟⎠

. (11)

5.2. De-skewing matrix. For de-skewing, we do not
have to compute the skew angle. Instead, we form
the rotation matrix from ps/qs. The orientation of the
principal direction can either be along the x-axis or along
the y-axis, depending on whether |ps| < |qs| or |ps| >
|qs|. Thus, finally, two cases arise from the orientation of
the principal direction. If the principal direction found is
along the x-axis, then the rotation matrix for de-skewing
is formed as[

qs/ts −ps/ts
ps/ts qs/ts

]
=

1

t s

[
qs −ps
ps qs

]
,

and when it is along the y-axis, then it is formed as
[

ps/ts −qs/ts
qs/ts ps/ts

]
=

1

t s

[
ps −qs
qs ps

]
.

Here, ts =
√
ps2 + qs2, which is computed only once.

5.3. Results of skew correction. For the 300-dpi
image shown in Fig. 18, we get 3962 straight edges.
Distribution of the ranks corresponding to these edges is

(a) (b)

(c) (d)

Fig. 18. Result on a document page with a mix of text and
graphics: input image (a), de-skewed image (b),
straight edges in E (cropped and zoomed from (a)) (c),
principal direction (shown in gray) and orthogonal di-
rection (shown in black) (d).

shown in Table 6 and in Fig. 19. As there are 97856
fractions in Fn spanning over 360◦, half (48928) of them
cover the range [0, 180◦) (see Fig. 19). As considering
θ ≥ 180◦ in an anticlockwise sense is equivalent to 360◦−
θ in a clockwise sense, we use these 48928 ranks only.
The bin width w = 100 makes nB = 490. It is evident
from the rank distribution in Table 6 and Fig. 19 that
the bin B[485] with the rank interval [48500, 48599] has
the maximum sum, 5239, contributed by 53 edges. The
weighted mean of the ranks of these 53 edges, as estimated
by Eqn. (11), is found to be 48549.251, which rounds off
to 48549, and corresponds to the fraction −7

197 , which is
used for de-skewing. The principal bin B[485] is verified
by the existence of B[240], since the bin indices differ by
485−240 = 245, which is within nB/2±1 (Section 5.1).
Figures 17 and 18 show the intermediate steps and the
final outputs after skew corrections. It is clear from
these results that the proposed technique is quite efficient
in detecting the skew in a digitized document image
that contains engineering drawings, or a mix of text
and drawings, or tabular structures bordered by straight
lines. Owing to primitive operations in the integer domain
and a linear-time binning procedure, the skew detection
algorithm runs significantly fast with the desired level
of precision. Experimental results on different datasets
demonstrate its elegance, efficiency, and robustness.
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Table 6. Distribution of straight edges found for the image of Fig. 18, in B[0], B[1], . . . , B[489], each bin being of width w = 100.
Bin B[485] corresponds to the principal direction and Bin B[240] to the orthogonal one (highlighted in gray).

rank bin #lines Σ len.
0– 99 1 22

300– 399 2 66
600– 699 1 37

2300–2399 1 53
2500–2599 1 57
2900–2999 1 45
3200–3299 1 41

...

rank bin #lines Σ len.
...

23700–23799 16 724
23800–23899 12 833
23900–23999 38 2768
24000–24099 50 5026
24100–24199 40 3398
24200–24299 8 441
24300–24399 1 75

...

rank bin #lines Σ len.
...

48100–48199 10 400
48200–48299 18 782
48300–48399 18 1098
48400–48499 30 2457
48500–48599 53 5239
48600–48699 37 2827
48700–48799 1 57

5.4. Comparison with the existing methods. Most
of the existing methods for document skew estimation
are based on the Hough transform (HT) (Amin and
Fischer, 2000; Chaudhuri and Pal, 1997; Hinds et al.,
1990; Manjunath et al., 2006; Le et al., 1994; Singh
et al., 2008; Srihari and Govindraju, 1989; Yin, 2001;
Yu and Jain, 1996). Hence, we have compared the
accuracy and computation time of our AFT-based method
with an HT-based one (see Chaudhuri and Pal, 1997,
Algorithm A2). Although the latter is usually robust, it
is computationally expensive. Recent methods, therefore,
consider a reduced point set to be input to the Hough
transform in order to reduce the computation time
(Chaudhuri and Pal, 1997; Hinds et al., 1990; Manjunath
et al., 2006; Le et al., 1994; Yin, 2001; Yu and Jain,
1996). To demonstrate the effectiveness of our method,
we have compared it with the Hough transform working
on a reduced input set comprising the edge pixels of the
straight line segments from the upper envelope of the
connected components (Chaudhuri and Pal, 1997). The
edge points constituting the straight edges belonging to
the principal bin are regarded as the reduced input set
to the HT-based method under our consideration. This
saves a significant amount of time while finding the peak
direction.

As shown in Fig. 17, the edge points (Fig. 17(b))
comprise the input for the HT-based method. Even so,
our AFT-based method shows better performance in terms
of both accuracy and computation time. This is evident
from the results shown in Table 7. For some manually set
skew angles, the statistics (mean and standard deviation
of estimated skews, with number of images = 20) for the
proposed method and the HT-based one are presented in
Table 8.

6. Concluding remarks

In this paper, we have proposed an efficient algorithm
for construction of an augmented Farey table (AFT).
We showed how the AFT can subsequently be used
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Fig. 19. Distribution of ranks of the straight edges correspond-
ing to Fig. 18(a). The straight edges corresponding to
the bins B[240] and B[485] are shown in black and
gray in Fig. 18(d).

Table 7. CPU time (in seconds) for skew estimation by the HT-
based method and the proposed one.

CPU Time
Image Image Size HT Proposed

01 249× 554 0.21 0.08
02 2256× 2160 1.10 0.57
03 2546× 3202 1.50 0.83
04 2240× 3050 1.16 0.77
05 2260× 3086 1.15 0.76
06 964× 978 0.43 0.30
07 789× 600 0.31 0.14
08 2380× 3212 1.33 0.86
09 698× 768 0.34 0.23
10 980× 403 0.42 0.26

for linearity checking, slope measurement, etc., while
solving various image-analytic problems like polygonal
approximation of digital curves and skew correction of
scanned engineering drawings.

Apart from the applications shown in this paper, an
AFT can be used to speed up many other computational
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Table 8. Mean and standard deviation (SD) of skew angles esti-
mated by the HT-based method and the proposed one.

Skew (Manual)
Method 2◦ 5◦ 10◦ 30◦ −5◦

HT Mean 2.14 5.17 10.21 29.84 −5.08
SD 0.24 0.35 0.25 0.34 0.24

Proposed Mean 1.98 5.10 10.12 30.06 −5.10
SD 0.35 0.13 0.18 0.13 0.19

procedures. One such procedure is the de-skewing of
scanned images of text documents; as shown by Pratihar
et al. (2013), the use of AFT makes the de-skewing
process significantly fast and efficient, often outweighing
the performance of the existing algorithms. Another
interesting application of the AFT lies in vectorization
of thick digital lines (and arbitrary curves), which was
reported earlier by Pratihar and Bhowmick (2010).

Based on our studies and experiments, we foresee
AFT as a potential tool for various applications related
to low-level processing and analysis of digital images.
We end our discussion here with its possible use in the
well-known problem of computing the convex hull of an
object in the digital plane.

While traversing along an object boundary,
‘convexity’ of a vertex is decided based on the angular
turn at that vertex, which is measured with respect
to its preceding and succeeding vertices. The related
computation can be done based on the ranks of the
fractions corresponding to the incoming and the outgoing
edges at the concerned vertex.

An AFT-based computation would eventually
facilitate the process of computing the convex hull of the
object in the digital plane. We also foresee that the AFT
can be used in fractal compression (Nikiel, 2007), which
is a lossy image compression technique, since fractal
compression has a theoretical connection with Farey trees
(Devaney, 1999).
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