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This paper describes a numerical scheme for a class of fractional diffusion equations with fixed time delay. The study
focuses on the uniqueness, convergence and stability of the resulting numerical solution by means of the discrete energy
method. The derivation of a linearized difference scheme with convergence order O(τ 2−α + h4) in L∞-norm is the main
purpose of this study. Numerical experiments are carried out to support the obtained theoretical results.
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1. Introduction

Recently, significantly increased attention regarding
partial differential equations which contain fractional
derivatives (FPDEs) and integrals has been observed. Due
to their ability to model some phenomena more efficiently
than partial differential equations with integer derivatives,
FPDEs are utilized in many areas of science. Nowadays,
the interest of scientists in FPDEs in fields of science and
engineering involves anomalous diffusion mechanisms,
such as fluid flow in porous materials (Benson et al.,
2001), underground environmental problems (Hatano and
Hatano, 1998), anomalous transport in biology (Höfling
and Franosch, 2013), finance (Raberto et al., 2002; Scalas
et al., 2000), viscoelasticity (Bagley and Torvik, 1983),
etc., and many other scientific areas. Time delay
has been considered in numerous mathematical models,
e.g., physiological systems (Batzel and Kappel, 2011),
population dynamics (Liu, 2015; Tumwiine et al., 2008)
and HIV-infection modeling (Culshaw et al., 2003; Yan
and Kou, 2012). Relative controllability and relative
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constrained controllability of linear fractional systems
with delays in the state were discussed by Sikora (2016).

Sufficient conditions for the controllability of linear
and nonlinear fractional dynamical systems in finite
dimensional spaces were obtained by Balachandran and
Kokila (2012). The authors used Schauder fixed po-
int theorem and the controllability Grammian matrix
defined by the Mittag-Leffler matrix function. Some
theoretical analysis of fractional differential equations
with time delay was introduced by Lakshmikantham
(2008). Alternative results concerning the existence
and attractivity dependence of solutions for a class
of non-linear fractional functional differential equations
were presented by Chen and Zhou (2011). Some
numerical solutions for time delay differential equations
were proposed in the literature by means of finite
difference methods and others (Bellen and Zennaro, 2003;
Jackiewicz et al., 2014; Rihan, 2009; Solodushkin et al.,
2017).

Ferreira (2008) studied energy estimates for delay
diffusion-reaction. A backward Euler scheme with
L2-convergence order O

(
τ + h2

)
was proposed. Zhang
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and Sun (2013) introduced a linearized compact
difference scheme for a class of nonlinear delay
partial differential equations with initial and Dirichlet
boundary conditions. Karatay et al. (2013) predicted an
approximation for the time Caputo fractional derivative
at time tk+1/2 with fractional order 0 < α < 1.
They extended the idea of the Cranck–Nicholson method
to time fractional heat equations with convergence
order O

(
τ2−α + h2

)
. Some numerical contributions in

fractional functional differential equations with delay
based on BDF-type shifted Chebyshev polynomials were
discussed by Pimenov and Hendy (2015). A numerical
solution of a heat conduction equation with delay for the
case of a variable coefficient of heat conductivity was
proposed by Lekomtsev and Pimenov (2015).

The time fractional reaction diffusion wave equation

∂αu(x, t)

∂tα
= K

∂2u(x, t)

∂x2
+ f(x, t, u(x, t)) (1)

has appeared in a broad variety of engineering, biological
and physics processes where anomalous diffusion occurs
(Wyss, 1986; Schneider and Wyss, 1989), such as those in
sub-diffusive or super-diffusive processes.

When 0 < α < 1, Eqn. (1) is a time-fractional
diffusion equation, while if 1 < α < 2, it is a time
fractional wave-diffusion equation. In the case where
α = 1, we obtain the classical diffusion equation, and
when α = 2, we obtain the classical wave equation.

Some numerical methods are introduced in the
literature for different forms of (1) (Meerschaert and
Tadjeran, 2004; Ren and Sun, 2015). Recently, we
proposed a difference method for class of non-linear delay
distributed order fractional diffusion equations (Pimenov
et al., 2017). In this approach, a theoretical analysis of
the proposed linear difference scheme is made. Also, a
finite difference scheme for semi-linear space-fractional
diffusion equations with time delay is given by Hao et al.
(2016).

Based on the ideas of Zhang and Sun (2013) and
Karatay et al. (2013), we are interested in constructing a
linearized difference scheme for (1) which is induced with
fixed time delay in the source function as in the simulation
of dynamical systems. Specifically, we consider

∂αu(x, t)

∂tα
= K

∂2u(x, t)

∂x2
+ f(x, t, u(x, t), u(x, t− s)),

(2a)
with the following initial and boundary conditions:

u(x, t) = ψ(x, t), 0 ≤ x ≤ L, t ∈ [−s, 0), (2b)

u(0, t) = φ0(t), u(L, t) = φL(t), t > 0, (2c)

where s > 0 is the delay parameter and K is a positive
constant. The fractional derivative is introduced in the

Caputo sense (Miller and Ross, 1993), that is,

C
0 D

α
t u(x, t)

≡ ∂αu(x, t)

∂tα

:=
1

Γ(1− α)

∫ t

0

(t− ζ)−α ∂u(x, ζ)

∂ζ
dζ,

0 < α < 1.

(3)

In this paper, we propose a high-order linearized
difference scheme for the time fractional diffusion
equation with delay. The degree of complexity is how
to approximate the time fractional derivative and the
non-linear delay source function. Throughout this work,
like Zhang and Sun (2013), we suppose that the function
f(x, t, μ, ν) and the solution u(x, t) of (2) are sufficiently
smooth in the following sense:

• Let m be an integer satisfying ms ≤ T < (m+ 1)s.
Define Ir = (rs, (r + 1)s), r = −1, 0, . . . ,m −
1, Im = (ms, T ), I =

⋃m
q=−1 Iq , and assume that

u(x, t) ∈ C(6,2)([0, L]× (0, T ]).

• The partial derivatives fμ(x, t, μ, ν) and
fν(x, t, μ, ν) are continuous in the ε0-neighborhood
of the solution. Define

c1 = sup
0<x<L, 0<t≤T
|ε1|≤ε0,|ε2|≤ε0

|fμ + ε1, u(x, t− s) + ε2)| ,

c2 = max
0<x<L, 0<t≤T
|ε1|≤ε0,|ε2|≤ε0

|fν + ε1, u(x, t− s) + ε2)| .

The rest of this paper is arranged in the following
way. We present the derivation of the difference scheme in
the following section. Next, in Section 3, the solvability,
convergence and stability for the difference scheme are
discussed. In Section 4, numerical examples are given
to illustrate the accuracy of the presented scheme and to
support our theoretical results. Finally, the paper ends
with conclusion and some remarks.

2. Derivation of the difference scheme

We aim to obtaining a numerical solution based on the
Crank–Nicholson method. We need some notation. Take
two positive integers M and n, let h = L/M, τ = s/n
and write xi = i h, tk = k τ and tk+1/2 =

(
k + 1

2

)
τ =

1
2 (tk + tk+1). Cover the space-time domain by Ωhτ =
Ωh×Ωτ ,where Ωh = {xi|0 ≤ i ≤M},Ωτ = {tk|−n ≤
k ≤ N}, N = �T/τ� . Let W = {ν|ν = vki , 0 ≤ i ≤
M,−n ≤ k ≤ N} be a grid function space on Ωhτ . For
ν ∈ W , we write vk+1/2

i = 1
2

(
vki + vk+1

i

)
and δ2xv

k
i =(

vki+1 − 2vki + vki−1

)
/h2.



A numerical solution for a class of time fractional diffusion equations with delay 479

Lemma 1. (Zhang and Sun, 2013) Let q(x) ∈
C6[xi−1, xi+1]. Then

1

12
(q′′(xi−1) + 10q′′(xi) + q′′(xi+1))

− 1

h2
(q(xi−1)− 2q(xi) + q(xi+1))

=
h4

240
q(6)(ωi),

where ωi ∈ (xi−1, xi+1).

We define the grid function on Ωhτ : U(i, k) =
u(xi, tk). In the work of Karatay et al. (2013), an
approximation to the time Caputo fractional derivative at
tk+1/2 with 0 < αl < 1 was given as

∂αu(xi, tk+1/2)

∂tα

= ω1U
k
i +

k−1∑

m=1

(ωk−m+1 − ωk−m)umi

− ωkU
0
i +

σ

21−α

(
Uk+1
i − Uk

i

)
+O

(
τ2−α

)
,

(4)

where

ωi = σ

((
i+

1

2

)1−α

−
(
i− 1

2

)1−α
)

, (5)

σ =
1

τα Γ(2− α)
, 0 ≤ i ≤M, 0 ≤ k ≤ N−1. (6)

We are now in a position to apply (4) to (2a) at the points
(xi, tk+1/2), and arrive at

[

ω1U
k
i +

k−1∑

m=1

(ωk−m+1 − ωk−m)Um
i − ωkU

0
i

+
σ

21−α

(
Uk+1
i − Uk

i

)
+O

(
τ2−α

)
]

+O (Δα)
4

= K
∂2u(xi, tk+1/2)

∂x2

+ f(xi, tk+1/2, u(xi, tk+1/2),

u(xi, tk+1/2 − s)).

(7)

Lemma 2. For g = (g0, g1, . . . , gM ), let the linear oper-
ator A be defined as

Agi =
1

12
(gi−1 + 10gi + gi+1), 1 ≤ i ≤M − 1.

Then we have

A

[

ω1U
k
i +

k−1∑

m=1

(ωk−m+1 − ωk−m)Um
i − ωkU

0
i

+
σ

21−α

(
Uk+1
i − Uk

i

)
]

= Kδ2xU
k+1/2
i

+ Af
(
xi, tk+1/2,

3

2
Uk
i − 1

2
Uk−1
i ,

1

2
Uk+1−n
i +

1

2
Uk−n
i

)
+Rk

i ,

(8)

where
∣∣Rk

i

∣∣ = O
(
h4 + τ2−α

)
, (9)

1 ≤ i ≤M − 1, 0 ≤ k ≤ N − 1.

Proof. We use Taylor expansions

∂2u(xi, tk+1/2)

∂x2

=

(
∂2u(xi, tk)

∂x2
+
∂2u(xi, tk+1)

∂x2

)
+O

(
τ2
)
,

u(xi, tk+1/2) = U
k+1/2
i

=
3

2
Uk
i − 1

2
Uk−1
i +O

(
τ2
)
,

u(xi, tk+1/2 − s) = U
k−n+ 1

2
i

=
1

2
Uk+1−n
i +

1

2
Uk−n
i +O

(
τ2
)
,

in (7) and obtain

[

ω1U
k
i +

k−1∑

m=1

(ωk−m+1 − ωk−m)Um
i − ωkU

0
i

+
σ

21−α

(
Uk+1
i − Uk

i

)
+O

(
τ2−α

)
]

=
K

2

(
∂2u(xi, tk)

∂x2
+
∂2u(xi, tk+1)

∂x2

)
+O

(
τ2
)

+ f

(
xi, tk+1/2,

3

2
Uk
i − 1

2
Uk−1
i ,

1

2
Uk+1−n
i +

1

2
Uk−n
i

)
,

where we use the continuity of the derivatives of f in its
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third and fourth components. We rewrite this as
[

ω1U
k
i +

k−1∑

m=1

(ωk−m+1 − ωk−m)Um
i − ωkU

0
i

+
σ

21−α

(
Uk+1
i − Uk

i

)
]

+O(τ2−α)

=
K

2

(
∂2u(xi, tk)

∂x2
+
∂2u(xi, tk+1)

∂x2

)

+ f

(
xi, tk+1/2,

3

2
Uk
i − 1

2
Uk−1
i ,

1

2
Uk+1−n
i +

1

2
Uk−n
i

)
+O

(
τ2
)
,

(10)

According to Lemma 1 we have

A
∂2u(xi, tk)

∂x2
= δ2xU

k
i +

h4

240

∂6u

∂x6
(θki , tk),

θki ∈ (xi−1, xi+1).

Thus, applying A to (10), we arrive at

A

[

ω1U
k
i +

k−1∑

m=1

(ωk−m+1 − ωk−m)umi − ωkU
0
i

+
σ

21−α

(
Uk+1
i − Uk

i

)
]

= Kδ2xU
k+1/2
i

+ Af

(
xi, tk+1/2,

3

2
Uk
i − 1

2
Uk−1
i ,

1

2
Uk+1−n
i +

1

2
Uk−n
i

)
+O

(
τ2−α + h4

)

as u(x, t) ∈ C(6,2)(I × (0, T ]). �

The final form of our difference scheme is obtained
by neglectingRk

i and replacing Uk
i with uki in (8):

A

[

ω1u
k
i +

k−1∑

m=1

(ωk−m+1 − ωk−m)umi − ωku
0
i

+
σl

21−αl

(
uk+1
i − uki

)
]

= Kδ2xu
k+1/2
i + Af

(
xi, tk+1/2,

3

2
uki −

1

2
uk−1
i ,

1

2
uk+1−n
i +

1

2
uk−n
i

)
, (11a)

and supplying appropriate initial and boundary
conditions:

uk0 = φ0(tk), ukM = φL(tk), 1 ≤ k ≤ N, (11b)

uki = ψ(xi, tk), 0 ≤ i ≤M, −n ≤ k ≤ 0. (11c)

3. Analysis of the difference scheme

Before introducing the uniqueness, convergence and
stability theorems in L∞ norm for the proposed difference
scheme using a discrete energy method, we introduce
some notation.

If the spatial domain [0, L] is covered by Ωh =
{xi|0 ≤ i ≤ M, }, let Vh = {v|v =
(v0, . . . , vM ), v0 = vM = 0} be a grid function space
on Ωh. For any u, v ∈ Vh, introduce the discrete inner
products and corresponding norms as

〈u, v〉 = −h
M−1∑

i=1

(Aui)(δ
2
xvi)

= h
M−1∑

i=1

(δxui+1/2)(δxvi+1/2)

− h2

12
h

M−1∑

i=1

(δ2xui)(δ
2
xvi),

|u|21 = h

M∑

i=1

(δxui−1/2)
2,

‖u‖2 = h

M−1∑

i=1

(ui)
2, ‖u‖∞ = max

1≤i≤M−1
|ui|.

According to Samarskii and Andreev (1976) or Zhang and
Sun (2013), for any u ∈ Vh the following inequalities are
fulfilled:

2

3
|u|21 ≤ 〈u, u〉 ≤ |u|21,

‖u‖∞ ≤
√
L

2
|u|1, ‖u‖2 ≤ L

6
|u|21. (12)

It is directly observed from (12) that

‖u‖2 ≤ L2

4
〈u, u〉, ‖u‖2∞ ≤ 3L

8
〈u, u〉. (13)

Lemma 3. For any v ∈ Vh, we have ‖Av‖2 ≤ ‖v‖2.
Lemma 4. For any u, v ∈ Vh, we have

−h
M−1∑

i=1

(δ2xui)vi = h
M∑

i=1

(δxui−1/2)(δxvi−1/2).

For the ease of further analysis, Eqn. (4) can be
rewritten as

∂αu(xi, tk+1/2)

∂tα

=
τ1−α

Γ(2− α)

[
aαk−m+1ut,m−1 + aα0ut,k

]

+O
(
τ2−α

)
,

(14)

such that

aα0 =
(1
2

)1−α

,
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aαl = (l + 1/2)1−α − (l − 1/2)1−α, l ≥ 1.

Then

∂αu(xi, tk+1/2)

∂tα
=

τ1−α

Γ(2− α)

k∑

m=0

C
(k+1)
k−m ut,m, (15)

such that
ut,m =

um+1 − um
τ

,

where c(k+1)
0 = aα0 for j = 0 and for j ≥ 1 we have

C(k+1)
m =

⎧
⎪⎨

⎪⎩

aα0 , m = 0,

aαm, 1 ≤ m ≤ k − 1,

aαk , m = k.

Then at 0 < α ≤ 1 and for u(x, t) ∈ C2[0, T ], we have

∂αu(xi, tk+1/2)

∂tα

=

k∑

n=0

g(k+1)
n

[
u(xi, tn+1)− u(xi, tn)

]
+O

(
τ2−α

)

:= Δα
tk+1/2

u+O
(
τ2−α

)
,

(16)

such that

g(k+1)
n =

τ−α

Γ(2 − α)
C

(k+1)
k−n .

Lemma 5. For any 0 < α < 1, C(k+1)
m (0 ≤ m ≤ k, k ≥

1), and if 3α ≥ 3/2, we have

Ck+1
k >

1− α

2
(k + 1/2)−α, (17)

C
(k+1)
0 > C

(k+1)
1 > · · · > C

(k+1)
k−1 > Ck+1

k . (18)

Proof. For k ≥ 1, we get

C
(k+1)
k = (1/2)1−α

[
(2k + 1)1−α − (2k − 1)1−α

]

>
1− α

2

(1
2

)−α
∫ 1

0

dη

(2k + 1− η)α

>
1− α

2

(1
2

)−α

(2k + 1)−α

>
1− α

2

(
k +

1

2

)−α

.

Moreover

C
(k+1)
0 = (1/2)1−α >

1− α

2

(1
2

)−α

,

so that (17) is achieved. Observe that C(k+1)
1 > · · · >

C
(k+1)
k−1 > Ck+1

k , because we have aαl > aαl+1, l ≥ 1.
Accordingly, the inequality (18) is achieved if aα0 ≥ aα1 ,
which is equivalent to 3α ≥ 3/2. �

Lemma 6. From Lemma 5 it follows that

g
(k+1)
k > g

(k+1)
k−1 > · · · > g

(k+1)
1 > g

(k+1)
0

and

g
(k+1)
0 =

τ−αC
(k+1)
k

Γ(2− α)

≥
1−α
2 (k + 1/2)−α

ταΓ(2− α)

≥ 1− α

2TαΓ(2− α)
= k0.

Lemma 7. (Alikhanov, 2015) If

{g(k+1)
k > g

(k+1)
k−1 > · · · > g

(k+1)
0 > 0,

k = 0, 1, . . . ,M − 1},
then for any function ν(t) defined on the mesh {tk : t0 <
t1 < t2 < . . . tM−1 < tM = T }, we have

νk+1Δα
tk+1/2

ν

≥ 1

2
Δα

tk+1/2
(ν)2 +

1

2g
(k+1)
k

(Δα
tk+1/2

ν)2,

νkΔα
tk+1/2

ν

≥ 1

2
Δα

tk+1/2
(ν)2 − 1

2(g
(k+1)
k − g

(k+1)
k−1 )

(Δα
tk+1/2

ν)2.

Based on Lemma 7, we can deduce the following
direct result.

Lemma 8. If

{g(k+1)
k > g

(k+1)
k−1 > · · · > g

(k+1)
0 > 0,

k = 0, 1, . . . ,M − 1},
then for any function ν(t) defined on the mesh {tk : t0 <
t1 < t2 < . . . tM−1 < tM = T } we have the following
inequality:

(1
2
νk+1 +

1

2
νk
)
Δα

tk+1/2
ν ≥ 1

2
Δα

tk+1/2
(ν)2.

Lemma 9. (Special Gronwall inequality) (Holte, 2009;
Kruse and Scheutzow, 2016) Let zk and gk be non-
negative sequences and such thatK is a non-negative con-
stant. If

zk ≤ K
∑

0≤i<k

gizi, k ≥ 0,

then
zk ≤ K exp

( ∑

0≤j<k

gj

)
, k ≥ 0.



482 V.G. Pimenov and A.S. Hendy

We start to prove that our difference scheme admits a
unique solution. Next we show that the obtained solution
solves (2).

Theorem 1. The difference scheme (11) is uniquely solv-
able.

Proof. Suppose that uki , 0 ≤ i ≤ M , is the solu-
tion for the obtained difference scheme (11). Using the
mathematical induction, the base step is fulfilled from the
initial condition (11c) as the solution uki is determined for
−n ≤ k ≤ 0. For the inductive hypothesis, let uki be
determined when k = l; then from (11a) we obtain a
system of linear algebraic equations with respect to uli.
The proof ends by the inductive step as the coefficient
matrix of this system is strictly diagonally dominant, so
there exists a unique solution ul+1

i .
We can arrange the system (11) as follows:
(
[ σ

21−α
− K

2h2

]
uk+1
i+1 +

[10
12

σ

21−α
+
K

h2

]
uk+1
i

+
[ 1

12

σ

21−α
− K

2h2

]
uk+1
i−1

)

+

(
[ 1

12
(ω1 − σ

21−α
)− K

2h2

]
uki+1

+
[10
12

(ω1 − σ

21−α
) +

K

h2

]
uki

+
[ 1

12
(ω1 − σ

21−α
)− K

2h2

]
uki−1

)

+ A

(
k−1∑

m=1

(ωk−m+1 − ωk−m)umi − ωku
0
i

)

= Af

(
xi, tk+1/2,

3

2
uki −

1

2
uk−1
i ,

1

2
uk+1−n
i +

1

2
uk−n
i

)
.

According to the system above, the coefficient matrix A =
(aij) is strictly diagonally dominant because

|aii| ≥
∑

j �=i

|aij | ,

aii =
10

12

σ

21−α
+
K

h2
,

ai+1,i =
1

12

σ

21−α
− K

2h2

= ai−1,i,
σl

21−α
> 0.

Therefore, the coefficient matrix is nonsingular and this
proves the theorem. �

Theorem 2. (Convergence theorem) Let u(x, t) ∈
C6,2([0, L] × (−s, T ]) be the solution of (2) such that
u(xi, tk) = Uk

i and uki (0 ≤ i ≤ M,−n ≤ k ≤ N)
is the solution of the difference scheme (11). Write eki =
Uk
i − uki for 0 ≤ i ≤M , −n ≤ k ≤ N . Then if

τ ≤ τ0 =
( ε0
4C

) 1
2−α

, h ≤ h0 =
( ε0
4C

) 1
4

, (19)

we have

‖ek‖∞ ≤ C̄
(
τ2−α + h4

)
, 0 ≤ k ≤ N, (20)

where C̄ is a positive constant independent of h and τ .

Proof. The difference scheme in (8) and (11a) can be
rewritten in terms of (16) as follows:

A

[
k∑

n=0

g(k+1)
n

(
Un+1
i − Un

i

)
]

(21)

= Kδ2xU
k+1/2
i + Af

(
xi, tk+1/2,

3

2
Uk
i − 1

2
Uk−1
i ,

1

2
Uk+1−n
i +

1

2
Uk−n
i

)
+R

k+1/2
i ,

A

[
k∑

n=0

g(k+1)
n

(
un+1
i − uni

)
]

= Kδ2xu
k+1/2
i + Af

(
xi, tk+1/2,

3

2
uki −

1

2
uk−1
i ,

1

2
uk+1−n
i +

1

2
uk−n
i

)
. (22)

The error difference scheme can be obtained by
subtracting (22) from (21), the latter with u replaced by
U , as follows:

A

[
k∑

n=0

g(k+1)
n

(
en+1
i − eni

)
]

= Kδ2xe
k+1/2
i +R

k+1/2
i + A

[

f
(
xi, tk+1/2,

3

2
Uk
i

− 1

2
Uk−1
i ,

1

2
Uk+1−n
i +

1

2
Uk−n
i

)

− f
(
xi, tk+1/2,

3

2
uki −

1

2
uk−1
i ,

1

2
uk+1−n
i +

1

2
uk−n
i

)
]

, (23)

and

ek0 = 0, ekM = 0, 1 ≤ k ≤ N, (24)

eki = 0, 0 ≤ i ≤M, −n ≤ k ≤ 0. (25)
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Multiplying (23) by −h(δ2xek+1/2
i ) and summing up for i

from 1 to M − 1 yields

− h

M−1∑

i=1

A

[
k∑

n=0

g(k+1)
n

(
en+1
i − eni

)
]

δ2xe
k+1/2
i

= −K‖δ2xek+1/2
i ‖2 − h

M−1∑

i=1

(R
k+1/2
i )δ2xe

k+1/2

− h

M−1∑

i=1

A

[

f
(
xi, tk+1/2,

3

2
Uk
i − 1

2
Uk−1
i ,

1

2
Uk+1−n
i +

1

2
Uk−n
i

)

− f
(
xi, tk+1/2,

3

2
uki −

1

2
uk−1
i ,

1

2
uk+1−n
i +

1

2
uk−n
i

)
]

δ2xe
k+1/2
i . (26)

We will prove (20) by strong mathematical induction.
The base case is evident: following (25), it is clear that
‖ek‖∞ = 0, −n ≤ k ≤ 0, so in particular we have
‖e0‖∞ = 0.

Next, suppose that (20) is fulfilled for 0 ≤ k ≤ �;
then we will show that (20) holds for k = �+ 1.

From the inductive hypothesis, and when τ and h
satisfy (19), we obtain

‖ek‖∞ ≤ C
(
τ2−α + h4

) ≤ ε0
2
, 0 ≤ k ≤ �. (27)

From (27), we conclude that |ek| ≤ ε0/2, 0 ≤ k ≤ �,
and so |Uk

i − uki | ≤ ε0/2, |Uk−1
i − uk−1

i | ≤ ε0/2, 0 ≤
k ≤ �. Then | 32 (Uk

i −uki )− 1
2 (U

k−1
i −uk−1

i )| ≤ ε0/2, and
the following inequality is fulfilled |(32Uk

i − 1
2U

k−1
i ) −

(32u
k
i − 1

2u
k−1
i )| ≤ ε0, 0 ≤ i ≤ M, 0 ≤ k ≤

�. In the same way, we conclude that | 12 (Uk+1−n
i −

uk+1−n
i ) + 1

2 (U
k−n
i − uk−n

i )| ≤ ε0/2. Then the
following inequality is obtained: |(12Uk+1−n

i + 1
2U

k−n
i )−

(12u
k+1−n
i + 1

2u
k−n
i )| ≤ ε0, 0 ≤ i ≤ M, 0 ≤ k ≤ �.

Consequently,

∣∣
∣f
(
xi, tk+1/2,

3

2
Uk
i − 1

2
Uk−1
i ,

1

2
Uk+1−n
i +

1

2
Uk−n
i

)

− f
(
xi, tk+1/2,

3

2
uki −

1

2
uk−1
i ,

1

2
uk+1−n
i +

1

2
uk−n
i

)∣∣
∣

≤ c1

∣
∣
∣
3

2
eki −

1

2
ek−1
i |+ c2|1

2
ek+1−n
i +

1

2
ek−n
i

∣
∣
∣,

and then
∣
∣
∣A
[
f
(
xi, tk+1/2,

3

2
Uk
i −

1

2
Uk−1
i ,

1

2
Uk+1−n
i +

1

2
Uk−n
i

)

− f
(
xi, tk+1/2,

3

2
uki −

1

2
uk−1
i ,

1

2
uk+1−n
i +

1

2
uk−n
i

)]∣∣
∣

≤ A
(
c1

∣
∣
∣
3

2
eki −

1

2
ek−1
i

∣
∣
∣+ c2

∣
∣
∣
1

2
ek+1−n
i +

1

2
ek−n
i

∣
∣
∣
)
,

(28)

where 0 ≤ i ≤M, 0 ≤ k ≤ �.
Now, we will deal with each part of (26) individually,

η1 := −h
M−1∑

i=1

A

[
k∑

n=0

g(k+1)
n

(
en+1
i − eni

)
]

δ2xe
k+1/2
i

=

k∑

n=0

g(k+1)
n 〈en+1 − en, ek+1/2〉.

(29)

Using Lemma 8 in (29), we obtain

η1 ≥ 1

2

k∑

n=0

g(k+1)
n

(
〈en+1, en+1〉 − 〈en, en〉

)
. (30)

By the Cauchy–Schwarz inequality, we get

η2 := −h
M−1∑

i=1

(R
k+1/2
i )δ2xe

k+1/2

≤ K

2
|δ2xek+1/2‖2 + 1

2K
‖Rk+1/2‖2.

(31)

Moreover,

η3 := −h
M−1∑

i=1

A�
k+1/2
i δ2xe

k+1/2
i , (32)

such that

�
k+1/2
i

=

[

f
(
xi, tk+1/2,

3

2
Uk
i − 1

2
Uk−1
i ,

1

2
Uk+1−n
i +

1

2
Uk−n
i

)

− f
(
xi, tk+1/2,

3

2
uki −

1

2
uk−1
i ,

1

2
uk+1−n
i +

1

2
uk−n
i

)]

and
‖Rk+1/2‖2 ≤ Lc23(τ

2−α + h4)2.

Using (28), we can predict that

η3 ≤
〈

A
(
c1|3

2
eki −

1

2
ek−1
i |+ c2|1

2
ek+1−n
i

+
1

2
ek−n
i |

)
, δ2xe

k+1/2
i

〉

. (33)

For simplicity, the inner product in the right-hand side
of (33) will be denoted by 〈ξ1, ξ2〉. Then 〈ξ1, ξ2〉 ≤
1
2θ‖ξ1‖2 + θ

2‖ξ2‖2, and setting θ = K, we obtain

η3 ≤ 1

2θ
‖A
(
c1|3

2
eki −

1

2
ek−1
i |+ c2|1

2
ek+1−n
i

+
1

2
ek−n
i |

)
‖2 + θ

2
‖δ2xek+1/2

i ‖2.
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Recalling Lemma 3, we get

η3 ≤ 1

2θ
‖c1‖3

2
eki −

1

2
ek−1
i ‖

+ c2|1
2
ek+1−n
i +

1

2
ek−n
i |‖2 + θ

2
‖δ2xek+1/2

i ‖2,

η3 ≤ 1

2θ
h

M−1∑

i=1

(
c1|3

2
eki −

1

2
ek−1
i |

+ c2|1
2
ek+1−n
i +

1

2
ek−n
i |

)2
+
θ

2
‖δ2xek+1/2

i ‖2,

η3 ≤ 1

2θ

[
hc21

M−1∑

i=1

(3
2
eki −

1

2
ek−1
i

)2

+ c22h

M−1∑

i=1

(1
2
ek+1−n
i +

1

2
ek−n
i

)2]

+
θ

2
‖δ2xek+1/2

i ‖2,

η3 ≤ 1

2θ

[5
2
hc21

M−1∑

i=1

(
(eki )

2 + (ek−1
i )2

)

+
1

2
c22h

M−1∑

i=1

(
(ek+1−n

i )2 + (ek−n
i )2

)]

+
θ

2
‖δ2xek+1/2

i ‖2, (34)

which means that

η3 ≤ 1

2K

[5
2
c21

(
(||ek||2 + ||ek−1||2

)

+
1

2
c22

(
(||ek+1−n||2 + ||ek−n||2

)]

+
K

2
‖δ2xek+1/2

i ‖2. (35)

Substituting by (29), (31) and (35) into (26), we get

k∑

n=0

g(k+1)
n

(
〈en+1, en+1〉 − 〈en, en〉

)

≤ 1

K

[5
2
c21

(
(||ek||2 + ||ek−1||2

)

+
1

2
c22

(
||ek+1−n||2 + ||ek−n||2

)]

+
1

K
‖Rk+1/2‖2,

(36)

which can be written as follows:

g
(k+1)
k 〈ek+1, ek+1〉

≤
k∑

n=1

(
g(k+1)
n − g

(k+1)
n−1

)
〈en, en〉+ g

(k+1)
0 〈e0, e0〉

+
1

K

[5
2
c21

(
(||ek||2 + ||ek−1||2

)

+
1

2
c22

(
||ek+1−n||2 + ||ek−n||2

)]

+
1

K
‖Rk+1/2‖2.

(37)

Since

||ν||2 ≤ L2

4
〈ν, ν〉,

we obtain

g
(k+1)
k 〈ek+1, ek+1〉

≤
k∑

n=1

(
g(k+1)
n − g

(k+1)
n−1

)
〈en, en〉

+ g
(k+1)
0 〈e0, e0〉+ L2

4K

[5
2
c21

(
〈ek, ek〉

+ 〈ek−1, ek−1〉
)
+

1

2
c22

(
〈ek+1−n, ek+1−n〉

+ 〈ek−n, ek−n〉
)]

+
1

K
‖Rk+1/2‖2,

(38)

g
(k+1)
k 〈ek+1, ek+1〉

≤
k∑

n=1

(
g(k+1)
n − g

(k+1)
n−1

)
〈en, en〉

+ g
(k+1)
0 〈e0, e0〉+ η̄

(
〈ek, ek〉+ 〈ek−1, ek−1〉

+ 〈ek+1−n, ek+1−n〉+ 〈ek−n, ek−n〉
)

+
1

K
‖Rk+1/2‖2,

(39)

η̄ =
1

K
max

{5c1L2

8
,
c2L

2

8

}
.

Noting that g(k+1)
0 ≥ k0 > 0, and defining

Ek = max
0≤l≤k

{〈e0, e0〉

+
η̄

k0

(
〈el, el〉+ 〈el−1, el−1〉

+ 〈el+1−n, el+1−n〉+ 〈el−n, el−n〉
)

+
1

k0K
‖Rl+1/2‖2},

we can rewrite (38) as follows:

g
(k+1)
k 〈ek+1, ek+1〉

≤
k∑

n=1

(
g(k+1)
n − g

(k+1)
n−1

)
〈en, en〉+ g

(k+1)
0 Ek. (40)

Using the mathematical induction, we are going to
prove that

〈ek+1, ek+1〉 ≤ Ek, 0 ≤ k ≤ � ≤ N − 1. (41)
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For k = 0, it is easy to see that (41) can be obtained from
(40). Assume that

〈ek+1, ek+1〉 ≤ Ek, 0 ≤ k + 1 ≤ r.

Observing that (40), we can write

g(r+1)
r 〈er+1, er+1〉

≤
r∑

n=1

(
g(r+1)
n − g

(r+1)
n−1

)
〈en, en〉+ g

(r+1)
0 Er

≤
r∑

n=1

(
g(r+1)
n − g

(r+1)
n−1

)
Er + g

(r+1)
0 Er

= g(r+1)
r Er. (42)

Consequently, (41) is proved. Noting that 〈e0, e0〉 =
0, we have

〈e�+1, e�+1〉

≤ η̄

k0

( l0−n+1∑

r=l0−n

〈er, er〉+
l0∑

r=l0−1

〈er, er〉
)

+
1

k0K
‖Rl0+1/2‖2,

(43)

where l0 is a number at which the maximum of E� is
achieved. Since (43) fulfills all conditions of applying
Lemma 9, we obtain

〈e�+1, e�+1〉 ≤ 1

k0K
‖Rl0+1/2‖2 exp

(4η̄
k0

)

≤ C(τ2−α + h4)2,

C =
Lc23
k0K

exp
(4η̄
k0

)
. (44)

Recalling (44), we get

‖e�+1‖∞ ≤
√

3L

8
C
(
τ2−α + h4

)2
≤ C̄

(
τ2−α + h4

)
.

Thus, the inductive step for (20) is achieved and this
completes the proof. �

To discuss the stability of the difference scheme
(11a)–(11c), we also use the discrete energy method in
the same way like the discussion of the convergence.

Let {νki |0 ≤ i ≤M, 0 ≤ k ≤ N} be the solution of

A
[
ω1ν

k +

k−1∑

m=1

(ωk−m+1 − ωk−m)νm − ωkν
0

+ σ
(νk+1

i − νki )

21−α

]

= Kδ2xν
k+1/2
i + Af(xi, tk+1/2,

3

2
νki − 1

2
νk−1
i ,

1

2
νk+1−n
i +

1

2
νk−n
i ),

(45)

νk0 = φ0(tk), νkM = φL(tk), 1 ≤ k ≤ N, (46)

νki = ψ(xi, tk) + ρki , 0 ≤ i ≤M, −n ≤ k ≤ 0,
(47)

where ρki is the perturbation of ψ(xi, tk).

Following the same steps as in the proof of
convergence theorem, the following result is obtained.

Theorem 3. (Stability theorem) Assume that θki = νki −
uki , 0 ≤ i ≤M, −n ≤ k ≤ N . There exist constants
c4, c5, h0, τ0 such that

‖θk‖∞ ≤ c4
√
τ

0∑

k=−n

‖ρk‖, 0 ≤ k ≤ N,

‖ρk‖ =

√√√
√h

M−1∑

i=1

(ρki )
2,

provided that

h ≤ h0, τ ≤ τ0, max
−n≤k≤0
0≤i≤M

|ρki | ≤ c5.

4. Numerical examples

Let uki be the solution of the constructed difference
scheme (11a)–(11c) with the step sizes τ and h. Define
the maximum norm error by

E(τ, h) = max
0≤i≤M
0≤k≤N

‖Uk
i − uki ‖∞.

Define the following error rates:

rate1 = log2

(
E(2τ, h)

E(τ, h)

)
,

rate2 = log2

(
E(τ, 2h)

E(τ, h)

)
.

Example 1. Consider the following test example:

∂αu(x, t)

∂tα
=
∂2u(x, t)

∂x2
+ f(x, t, u(x, t), u(x, t− s)),

t ∈ (0, 1), 0 < x < 2, (48)

f(x, t, u(x, t), u(x, t− s)

=
Γ(3)

Γ(3− α)
(2x− x2)t2−α

+ 2t2 − u(x, t− s) + x(2 − x)(t − s)2,

with the initial and boundary conditions

u(x, t) = t2(2x−x2), 0 ≤ x ≤ 2, t ∈ [−s, 0), (49)

u(0, t) = u(2, t) = 0, t ∈ [0, 1]. (50)

The exact solution to this problem is

u(x, t) = t2(2x− x2). (51)

�
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Example 2. Consider the following test example:

∂αu(x, t)

∂tα
=
∂2u(x, t)

∂x2
+ f(x, t, u(x, t), u(x, t− s)),

t ∈ (0, 1), 0 < x < 1, (52)

f(x, t, u(x, t), u(x, t− s)

=
Γ(7/2)

Γ(7/2− α)
(x2 − x)t5/2−α − 2t5/2

+ u2(x, t− s)− (x2 − x)2(t− s)5,

with the initial and boundary conditions

u(x, t) = t
5
2 (x−x2), 0 ≤ x ≤ 1, t ∈ [−s, 0), (53)

u(0, t) = u(1, t) = 0, t ∈ [0, 1]. (54)

The exact solution to this problem is

u(x, t) = t
5
2 (x2 − x). (55)

�
Tables 1, 2 and 3, 4 show the errors in maximum

norm and their convergence rates for time fractional
models 48–51 and 52–55, respectively. From these tables,
it can be seen that the orders of convergence of the
proposed numerical method are in good agreement with
the theoretical results in the theorem.

Table 1. Errors and convergence orders of the difference scheme
(11a)–(11c) in the time variable with h = 1/300 and
α = 0.25 with time delay s = 1.

τ E(τ, h) rate1
1
10

0.00113
1
20

0.00034 1.735
1
40

0.0001 1.742
1
80

0.00003 1.748
1

160
0.000009 1.752

Table 2. Errors and convergence orders of the difference scheme
(11a)–(11c) in the space variable with τ = 1/1000 and
α = 0.25 with time delay s = 1.

h E(τ, h) rate2
1
4

0.0025
1
8

0.00017 3.863
1
16

0.00001 3.895
1
32

0.0000007 3.942
1
64

0.0000004 3.975

Table 3. Errors and convergence orders of the difference scheme
(11a)–(11c) in the time variable with h = 1/500 and
α = 0.75 with time delay s = 0.5.

τ E(τ, h) rate1
1
10

0.00112
1
20

0.00047 1.245
1
40

0.00019 1.248
1
80

0.00008 1.249
1

160
0.00003 1.252

Table 4. Errors and convergence orders of the difference scheme
(11a)–(11c) in the space variable with τ = 1/2000 and
α = 0.75 with time delay s = 0.5.

h E(τ, h) rate2
1
4

0.0121
1
8

0.00076 3.980
1
16

0.00005 3.995
1
32

0.000003 3.998
1
64

0.0000001 4.010

5. Conclusion

The main contribution of this work lies in building a
linearized difference scheme to solve a class of time
fractional diffusion equations with non-linear delay. We
proved that our scheme is unconditionally convergent and
stable in the sense of the maximum norm. In our future
work, we plan to increase the time convergence order to
two instead of 2 − α, 0 < α ≤ 1, by using a suitable
approximation for the time Caputo fractional derivative in
the problem under consideration. The proposed numerical
test examples supported our theoretical results.
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