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The aim of this paper is to build and validate a class of energy-preserving schemes for simulating a complex modified
Korteweg–de Vries equation. The method is based on a combination of a discrete variational derivative method in time
and finite volume element approximation in space. The resulting scheme is accurate, robust and energy-preserving. In
addition, for comparison, we also develop a momentum-preserving finite volume element scheme and an implicit midpoint
finite volume element scheme. Finally, a complete numerical study is developed to investigate the accuracy, conservation
properties and long time behaviors of the energy-preserving scheme, in comparison with the momentum-preserving scheme
and the implicit midpoint scheme, for the complex modified Korteweg–de Vries equation.
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1. Introduction

The goal of this paper is to derive an energy-preserving
finite volume element scheme for the nonlinear complex
modified Korteweg–de Vries (CMKDV) equation. More
specifically, we consider the following nonlinear equation:

∂u

∂t
+
∂3u

∂x3
+ α

∂(|u|2u)
∂x

= 0,

−∞ < x <∞, t > 0, (1)

where u(x, t) is a complex-valued function and α is a
real constant. CMKDV is an important mathematical
model, which is used to describe the nonlinear evolution
of plasma waves (Karney et al., 1979), the propagation of
transverse waves in a molecular chain model (Gorbacheva
and Ostrovsky, 1983) and in a generalized elastic solid
(Erbay and Suhubi, 1989; Erbay, 1998).

If we decompose u into its real and imaginary parts,
i.e.,

u = p+ iv (i2 = −1),

∗Corresponding author

we obtain the following coupled modified Korteweg–de
Vries (MKDV) equations:

pt + pxxx + α[(p2 + q2)p]x = 0,

qt + qxxx + α[(p2 + q2)q]x = 0.

The above coupled nonlinear equations describe the
interaction of two orthogonally polarized transverse
waves. In other words, p and q denote y-polarized and
z-polarized transverse waves, respectively, propagating in
the x-direction in an xyz Cartesian coordinate system.
The polarization angle θ is defined by tan θ = q/p.
In some special case, such as q = 0 or p = 0 or
θ = θ0, which respectively correspond to the 0, π/2 and
θ0 polarizations, the above coupled nonlinear equations
reduce to a single MKDV equation. In this case, the
CMKDV equation has the following analytical solution
(Muslu and Erabay, 2003):

u(x, t) =

√
2c

α
sech[

√
c(x − ct− x0)] exp(iθ0), (2)

which represents a solitary wave located around the
position x = x0 at time t = 0, moving to the right with
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velocity c and satisfying the boundary conditions u → 0
as x→ ±∞.

We now assume that u and all its derivatives converge
to zero rapidly enough as x → ±∞. Under these
boundary conditions, there are some quantities which are
of primary importance for Eqn. (1) (Karney et al., 1979):
the conserved quantities of the solution,

M =

∫ ∞

−∞
u dx, K =

∫ ∞

−∞
|u|2 dx, (3)

also respectively called the mass, the momentum, and the
energy

H =

∫ ∞

−∞

(
α

2
|u|4 −

∣∣∣∣∂u∂x
∣∣∣∣
2)

dx. (4)

The ability of a numerical scheme to reproduce these
quantities is extremely important, most particularly when
they are conserved.

Deriving accurate and efficient numerical schemes
which are well-adapted to describe the conservative
properties of the CMKDV equation is a meaningful
computational problem. For the numerical solution
of the CMKDV equation, several methods have been
developed. Muslu and Erabay (2003) proposed three
different split-step Fourier schemes for the the CMKDV
equation. Ismail (2008; 2009) derived a Petrov–Galerkin
method and a collocation method. Uddin et al. (2009)
proposed a mesh-free collocation method, while Korkmaz
and Dağ (2009) used a differential quadrature method
to solve the CMKDV equation. Cai and Miao (2012)
proposed an explicit multisymplectic Fourier scheme for
the CMKDV equation.

The discrete variational derivative method (DVDM)
is a class of structure-preserving methods, proposed
by Furihata and Matsuo (2010), and it can retain
the conservation/dissipation properties of the original
equations. Up to now, the DVDM has been applied
to many conservative or dissipative partial differential
equations (PDEs). For example, Furihata and Mori
(1996) designed a stable dissipative difference scheme
for the Cahn–Hilliard equation. Koide and Furihata
(2009) proposed four conservative difference schemes for
the regularized long wave equation. Further, Matsuo
and Furihata (2001) extended the general studies to
complex-valued PDEs, while Yaguchi et al. (2010)
extended the method to nonuniform grids. Matsuo
and Kuramae (2012) proposed an alternating DVDM.
Recently, Miyatake and Matsuo (2014) presented a
general framework for constructing energy dissipative or
conservative Galerkin schemes for time-dependent PDEs.

The finite volume element method (FVEM), as a
type of important numerical tool for solving differential
equations, has a long history. This method is also
known as a box method in early references (Bank and
Rose, 1987; Hackbusch, 1989; Costa et al., 2015), or

as a generalized difference method (Li et al., 2000) in
China. Cai (1991) and Ewing et al. (2000) presented
the general error estimation framework for the FVEM for
solving elliptic boundary value problems. The method
has been widely used in several engineering fields, such
as fluid mechanics, heat and mass transfer or petroleum
engineering. Perhaps the most important property of
the FVEM is that it can preserve the conservation laws
(mass, momentum and heat flux) on each computational
cell. This important property, combined with adequate
accuracy and ease of implementation, has encouraged
more people to do research in this field. It is worth noting
that Zhang and Lu (2012) proposed a quadratic finite
volume element scheme for the improved Boussinesq
equation. Yan et al. (2016) reported a two-grid finite
volume element scheme for nonlinear Sobolev equations.
Wang et al. (2014) proposed an energy-preserving finite
volume element scheme for the improved Boussinesq
equation. In this paper, based on the DVDM and the
FVEM, we develop an energy-preserving scheme which
is accurate, unconditionally stable (with a long time
computation ability) to solve the CMKDV numerically.
On the other hand, for comparison, we also propose a
momentum-preserving finite volume element scheme and
an implicit midpoint finite volume element scheme.

The paper is organized as follows. In Section 2,
we present the framework of the FVEM and define some
notation. In Section 3, we derive the numerical schemes
and prove the conservation properties. In Section 4,
we present various numerical simulations to validate the
accuracy, conservation properties and long time behaviors
of our numerical schemes. Finally, we end the paper by a
conclusion in Section 5.

2. Notation and preliminaries

For the application of the numerical method, we truncate
the infinite interval to a finite interval [a, b]. In order
to determine the solution of (1), we assume that u(x, t)
satisfies the periodic boundary condition u(a, t) = u(b, t)
for (x, t) ∈ [a, b]× [0, T ]. In addition, we assume that the
interval [a, b] is sufficiently large, such that the solution
(2) is a good approximation to the periodic solution for
quite a large time interval.

Firstly, we discretize the domain I = [a, b] into a grid
Th with nodes

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

where h = xi − xi−1 denotes the length of the element Ii
and h = (b− a)/N .

Then we place a dual grid T ∗
h with nodes

a = x0 < x1/2 < x3/2 < · · · < xn−1/2 < xn = b,

where xi−1/2 = (xi−1 + xi)/2, I∗i = [xi−1/2, xi+1/2],
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i = 1, 2, . . . , N . I∗0 = [x0, x1/2], (i = 1, 2, . . . , N − 1),
and I∗N = [xN−1/2, xN ] denote the dual elements.

The trial spaceUh is taken as the linear element space
with respect to Th. The basis function with respect to xi
is

φi(x) =

{
1− h−1|x− xi|, xi−1 ≤ x ≤ xi+1,

0, elsewhere,

and any uh ∈ Uh has the following expression:

uh =

N∑
i=1

uiφi(x),

where ui = uh(xi, t). On the element Ii we have

uh = ui−1(1 − ξ) + uiξ,

u′h =
1

h
(ui − ui−1) , x ∈ Ii,

where i = 1, 2, . . . , N and ξ = (x− xi−1) /h.
Analogously, the test function space Vh is chosen as a

space of piecewise constant functions. The basis function
at xi is

ψj(x) =

{
1, xj−1/2 ≤ x ≤ xj+1/2,

0, elsewhere,

and any vh ∈ Vh has the form

vh =

N∑
i=1

viψi(x),

where vi = vh(xi, t).
The numerical solution is denoted by Um

k =
u(kΔx,mΔt), where Δx is the space mesh size and
Δt is the time mesh size. Here we adopt a uniform
time discretization t0, t1, . . . , with a constant time step
Δt > 0.

3. Numerical schemes

In this section, we develop the proposed schemes for the
CMKDV equation and prove its conservation properties.

3.1. Derivation of the proposed schemes. In order to
derive the proposed schemes, we define the “local energy”
of the CMKDV equation (1) as

G(u, ux) =
α

2
|u|4 −

∣∣∣∣∂u∂x
∣∣∣∣
2

.

Thus Eqn. (1) can be written as

ut = − ∂

∂x

(
δG

δu

)
,

where δG/δu is the variational derivative of G (u, ux)
defined by

δG

δu
=
∂G

∂u
− ∂

∂x

(
∂G

∂ux

)
.

In order to derive the energy-preserving scheme, we first
define a scheme of the local energy as

Gd,k(U) =
α

2
|Uk|4 −

∣∣δ+k Uk

∣∣2 + ∣∣δ−k Uk

∣∣2
2

,

where δ+k Uk = (Uk+1−Uk)/h, δ−k Uk = (Uk−Uk−1)/h.
Then we can obtain a scheme of the variational

derivative

δGd

δ(U
(m+1)

, U
(m)

)k

=
α

2
(|U (m+1)

k |2 + |U (m)
k |2)U (m+ 1

2 )

k

+ δ
〈2〉
k U

(m+ 1
2 )

k ,

(5)

where δ〈2〉k is the standard central difference operator for

∂2/∂x2, and U
(m+ 1

2 )

k = (U
(m+1)
k + U

(m)
k )/2.

The scheme (5) is obtained by the following
difference (Furihata and Matsuo, 2010):

N∑
k=0

′′(Gd,k(U
(m+1))−Gd,k(U

(m))
)
Δx

=

N∑
k=0

′′{ δGd

δ(U (m+1), U (m))k
(U

(m+1)
k − U

(m)
k )

+
δGd

δ(U
(m+1)

, U
(m)

)k
(U

(m+1)

k − U
(m)

k )
}
Δx

+ (boundary terms),

where

N∑
k=0

′′fk � 1

2
f0 + f1 + · · ·+ fN−1 +

1

2
fN

is the trapezoidal rule and the boundary terms vanish due
to the periodic boundary condition.

On the other hand, for comparison, we derive another
scheme of the variational derivative corresponding to the
momentum-preserving scheme:

δGd

δ(U
(m+ 1

2 )

+ , U
(m+ 1

2 )

− )k

=
α

4
(|(U (m+ 1

2 )
+ )k|2 + |(U (m+ 1

2 )− )k|2)

× ((U
(m+ 1

2 )
+ )k + (U

(m+ 1
2 )− )k)

+
1

2
δ
〈2〉
k ((U

(m+ 1
2 )

+ )k + (U
(m+ 1

2 )− )k),

(6)
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where

(U
(m+ 1

2 )
+ )k =

1

2
(U

(m+1)
k+1 + U

(m)
k+1),

(U
(m+ 1

2 )− )k =
1

2
(U

(m+1)
k−1 + U

(m)
k−1).

From the previous discretization of the discrete
variational derivative given by Eqns. (5) and (6),
we introduce the following energy-preserving and
momentum-preserving finite volume element schemes:

(
δ+mU

(m), ψi

)
= −

(
∂

∂x

(
δGd

δ(U
(m+1)

, U
(m)

)

)
, ψi

)
,

(7)
(
δ+mU

(m), ψj

)
= −

(
∂

∂x

(
δGd

δ(U
(m+ 1

2 )

+ , U
(m+ 1

2 )

− )

)
, ψj

)
,

(8)
where we set δ+mU

(m) = (U (m+1) − U (m))/Δt, Um ∈
Uh, ψi, ψj ∈ Vh, i, j = 1, 2, . . . , N , and m =
0, 1, . . . , T/Δt.

Finally, for comparison, we also present an implicit
midpoint finite volume element scheme,
(
δ+mU

(m), ψk

)
= −(

(α|U (m+ 1
2 )|2U (m+ 1

2 ) + U
(m+ 1

2 )
xx )x, ψk

)
, (9)

where Um ∈ Uh, ψk ∈ Vh, k = 1, 2, . . . , N .

3.2. Conservation properties of the schemes.

Theorem 1. (Mass conservation law) Let U = U (m) be
the solution of (7), and assume that the boundary condi-
tions satisfy

[
− δGd

δ(U
(m+1)

, U
(m)

)

]b

x=a

= 0.

Then the solution of the scheme (7) satisfies∫ b

a

U (m) dx = const.

Proof. We have

1

Δt

∫ b

a

(
U (m+1) − U (m)

)
dx

=

∫ b

a

(
U (m+1) − U (m)

Δt

)
dx

= −
∫ b

a

∂

∂x

(
δGd

δ(U
(m+1)

, U
(m)

)

)
dx

=

[
− δGd

δ(U
(m+1)

, U
(m)

)

]b

x=a

= 0.

�

Theorem 2. (Energy conservation law) Let U = U (m) be
the solution of (7), and assume that the boundary condi-
tions satisfy

[
−
∣∣∣∣∣

δGd

δ(U (m+1), U (m))

∣∣∣∣∣
2]b

x=a

= 0.

Then the solution of the scheme (7) satisfies

∫ b

a

Gd(U
(m)(x)) dx = const.

Proof. We have

1

Δt

∫ b

a

(
Gd(U

(m+1))−Gd(U
(m))

)
dx

=

∫ b

a

{ δGd

δ(U (m+1), U (m))

U (m+1) − U (m)

Δt

+
δGd

δ(U
(m+1)

, U
(m)

)

U
(m+1) − U

(m)

Δt

}
dx

= −
∫ b

a

{
δGd

δ(U (m+1), U (m))

∂

∂x

(
δGd

δ(U
(m+1)

, U
(m)

)

)

+
δGd

δ(U
(m+1)

, U
(m)

)

∂

∂x

( δGd

δ(U (m+1), U (m))

)}
dx

= −
∫ b

a

∂

∂x

(
δGd

δ(U (m+1), U (m))

δGd

δ(U
(m+1)

, U
(m)

)

)
dx

= −
∫ b

a

∂

∂x

(∣∣∣ δGd

δ(U (m+1), U (m))

∣∣∣2) dx

=

[
−
∣∣∣ δGd

δ(U (m+1), U (m))

∣∣∣2
]b

x=a

= 0.

�

Theorem 3. (Mass conservation law) Let U = U (m) be
the solution of (8), and assume that the boundary condi-
tions satisfy

[
− δGd

δ(U
(m)

+ , U
(m)

− )

]b

x=a

= 0.

Then the solution of the scheme (8) satisfies

∫ b

a

U (m) dx = const.

The proof is similar to that of Theorem 1.

Theorem 4. (Momentum conservation law) Let U =
U (m) be the solution of (8), and assume that the boundary
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conditions satisfy

[
− U

(m+1) δGd

δ(U
(m)

+ , U
(m)

− )

]b

x=a

= 0,

[
− U (m) δGd

δ(U
(m)
+ , U

(m)
− )

]b

x=a

,

[
Gd(U

(m+1)
)
]b
x=a

= 0,
[
Gd(U

(m))
]b
x=a

= 0.

then the solution of scheme (8) satisfies
∫ b

a

∣∣U (m)
∣∣2 dx = const.

Proof. We have

1

Δt

∫ b

a

[∣∣U (m+1)
∣∣2 − ∣∣U (m)

∣∣2]dx
=

1

Δt

∫ b

a

[
U (m+1)U

(m+1) − U (m)U
(m)]

dx

=

∫ b

a

[
U (m+1) − U (m)

Δt
U

(m+1)

+
U

(m+1) − U
(m)

Δt
U (m)

]
dx

=

∫ b

a

[
δ+mU

(m)U
(m+1)

+ δ+mU
(m)

U (m)
]
dx

= −
∫ b

a

[
∂

∂x

(
δGd

δ(U
(m)

+ , U
(m)

− )

)
U

(m+1)

+
∂

∂x

(
δGd

δ(U
(m)
+ , U

(m)
− )

)
U (m)

]
dx

=

∫ b

a

∂U
(m+1)

∂x

δGd

δ(U
(m)

+ , U
(m)

− )
dx

+

∫ b

a

∂U (m)

∂x

δGd

δ(U
(m)
+ , U

(m)
− )

dx

=

∫ b

a

∂Gd(U
(m+1)

)

∂x
dx+

∫ b

a

∂Gd(U
(m))

∂x
dx

=
[
Gd(U

(m+1)
)
]b
x=a

+
[
Gd(U

(m))
]b
x=a

= 0.

�

Theorem 5. (Mass conservation law) Let U = U (m) be
the solution of (9). Then the discrete mass M is constant,

∫ b

a

U (m) dx = const.

The proof is also similar to that of Theorem 1.

4. Numerical experiments

In this section, we shall present some numerical examples
to validate the accuracy, conservation properties and long
time behaviors of the proposed schemes. In the sequel,
we will use L∞ = max0≤i≤N−1 |u(xi, tn) − U

(n)
i |

and order = log2
(‖un − U

(n)
2h ‖∞/‖u(n) − U

(n)
h ‖∞

)
to

evaluate the accuracy and the order of convergence of
the proposed methods. On the other hand, the conserved
quantities at the discrete level and the relative errors of the
invariants corresponding to (3) and (4) on the n-th time
level can be defined as

M(U (n)) = h
N−1∑
k=0

U
(n)
k ,

K(U (n)) = h

N−1∑
k=0

|U (n)
k |2,

H(U (n)) =
h

2

N−1∑
k=0

[
α|U (n)

k |4 − (|δ+k U (n)
k |2

+ |δ−k U (n)
k |2)],

relative error = lg

(
|I(n) − I(0)|

|I(0)|

)
,

where I(n) denotes the global quantities on the n-th time
level.

4.1. Single solitary wave. In this example, we adopt
α = 2 and choose the following initial condition:

u(x, 0) =
√
c sech[

√
c(x− x0)] exp(iθ),

where c denotes the speed of the wave, while θ represents
the phase.

We consider the following tests:

(i) We first consider the accuracy of the proposed
schemes. Here we choose x0 = −10m, c = 1.5m/s,
θ = π/2, and −30 ≤ x ≤ 30. Tables 1 and
2 present respectively the L∞ error and the order
of convergence of the three schemes in space and
time. It is very clear that the energy-preserving finite
volume element method (EFVEM) produces more
accurate solutions than the momentum-preserving
finite volume element method (MFVEM) and the
finite volume element method (FVEM). On the other
hand, it is noted that the L∞ error is exactly the same
for the EFVEM and the FVEM in Table 1. In fact,
this is because the EFVEM and the FVEM adopt a
similar FVEM discretization in space. In Fig. 1, we
display the L∞ errors of the proposed schemes at
time T = 8 s.
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(ii) Then we consider the conservation properties and the
long time behaviors of the proposed schemes. Here
we choose x0 = 15m, c = 1m/s, θ = π/2 and
0 ≤ x ≤ 30. Figure 2 presents the numerical
results of the energy-preserving scheme for t in
[0, 80]. It is clearly seen that the energy-preserving
scheme can precisely conserve the discrete mass and
energy. Figure 3 presents the conservation properties
of the FVEM and the MFVEM. Figure 4 presents
the numerical solution at time T = 1000 s and the
relative errors of the invariants for t in [0, T ].

4.2. Interaction of two solitary waves. In this
example, we first study the interaction between a
y-polarized solitary wave (θ1 = 0) and a z-polarized
solitary wave (θ2 = π/2). Here θ1 and θ2 denote the
polarization angles of the waves. This example is from
the work of Korkmaz and Dağ (2009). Here α = 2 and
the initial condition is given by

u(x, 0) =
√
2 sech

(√
2(x− 25)

)

+ i

√
2

2
sech

(√2

2
(x− 48)

)
.

This equation corresponds to two solitary waves, one
initially located at x1 = 25m and moving to the right with
speed 2m/s, the other initially located at x2 = 48m and
moving to the right with speed 0.5m/s. The problem is
solved on the interval 0 ≤ x ≤ 100 and the computations
are done up to time T = 30 s. Figure 5 presents the
modulus of the solution and the relative errors of the
invariants for the EFVEM. Figure 6 displays the real and
imaginary parts of the numerical solution. These results
are obtained using a space step h = 0.2 and a time step
Δt = 0.1. It is clearly seen that the taller wave is initially

0 2 4 6 8
0

0.05

0.1

0.15

0.2

t (s)

L ∞
 e

rr
or

 

 

EFVEM
MFVEM
FVEM

Fig. 1. L∞ error of the proposed schemes with h = Δt = 0.1,
x0 = −10m, c = 1.5m/s, θ = π/2, and T = 8 s.

located to the left of the shorter one. Then the taller one
gradually catches up the shorter one and an interaction
occurs, since the taller one is faster than the shorter one.
After the interaction, the taller wave again moves away
from the shorter one and continues to travel forward. In
addition, we note that there is a small tail after the shorter
wave, which is in agreement with the results of Ismail
(2008). On the other hand, the energy-preserving scheme
can also exactly conserve the mass and the energy at the
discrete level. It is also noted that the relative error of the
total momentum is bounded.

Finally, we also study the interaction of two
y-polarized solitary waves (θ1 = θ2 = 0) like Muslu and
Erabay (2003). The value of α is also chosen as α = 2,
and the initial condition is given by

u(x, 0) =
√
2 sech

(√
2(x − 25)

)

+

√
2

2
sech

(√2

2
(x− 48)

)
.

The problem is also solved on the interval 0 ≤ x ≤ 100
and the computation is also performed up to time T =
30 s. Here the results are also obtained using the space
step h = 0.2 and the time step the Δt = 0.1. Figure 7
displays the modulus of the solution and the relative errors
of the invariants for the EFVEM. Figure 8 presents the
real and imaginary parts of the numerical solution. As
can be seen from Fig. 7, between the taller and shorter
waves there is an elastic interaction, and there is no small
tail following the shorter one. This phenomenon again
indicates that the interaction of two solitary waves is more
stable when the two solitary waves are polarized in the
same direction, which is in agreement with the findings of
Muslu and Erabay (2003).

4.3. Wave break-up. In this example, we study the
process of a solitary wave break up into two solitary
waves. This example is from the work of Korkmaz and
Dağ (2009). To this end, the initial condition is given by

u(x, 0) = 2 sech(x) exp(iθ0),

where the polarization angle is chosen as θ0 = π/4.
The problem is solved over the interval −30 ≤ x ≤
30 and the computation is performed up to time T =
2.5 s. Figure 9 presents the modulus of numerical
solution and the relative errors of the invariants for the
energy-preserving scheme. Figure 10 displays the real
part and the imaginary part of the numerical solution.
These results are obtained by using the space step h = 0.2
and the time step Δt = 0.01. As can be seen from Fig. 9,
initially the wave is a solitary one, but as time increases, it
breaks up into two solitary waves and becomes thinner
and higher compared with the initial state, which is in
agreement with the results of Korkmaz and Dağ (2009).



Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation 521

Table 1. Space L∞ errors of the proposed schemes with N = 1000, Δt = 0.0001, −30 ≤ x ≤ 30.
h EFVEM order MFVEM order FVEM order

1/2 7.7000e−03 — 1.5100e−02 — 7.7000e−03 —
1/4 2.5000e−03 1.6229 6.8000e−03 1.1509 2.5000e−03 1.6229
1/8 6.3800e−04 1.9703 1.5000e−03 2.1806 6.3800e−04 1.9703
1/16 1.6152e−04 1.9818 3.7071e−04 2.0166 1.6152e−04 1.9818
1/32 4.0359e−05 2.0008 9.1842e−05 2.0131 4.0359e−05 2.0008

Table 2. Time L∞ errors of the proposed schemes with h = 1/32, T = 1 s, −30 ≤ x ≤ 30.
Δt EFVEM order MFVEM order FVEM order

1/2 2.5000e−02 — 3.3000e−02 — 3.2600e−02 —
1/4 6.8000e−03 1.8783 9.4000e−03 1.8117 8.9000e−03 1.8730
1/8 1.7000e−03 2.0000 2.8000e−03 1.7472 2.3000e−03 1.9522
1/16 4.4875e−04 1.9216 1.1000e−03 1.3479 5.8345e−04 1.9790
1/32 1.2334e−04 1.8633 6.7736e−04 0.6995 1.5761e−04 1.8882
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Fig. 2. Numerical results of the energy-preserving scheme: numerical solution (a), relative errors of invariants (b), when h = 0.2,
Δt = 0.1, x0 = 15m, c = 1m/s, θ = π/2, T = 80 s, and 0 ≤ x ≤ 30.
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Fig. 3. Relative errors of the invariants: momentum-preserving scheme (a), finite volume element scheme (b), when h = 0.2, Δt =
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Fig. 4. Numerical results of the energy-preserving scheme: numerical solution (a), relative errors of invariants (b), when h = 0.2,
Δt = 0.1, x0 = 15m, c = 1m/s, θ = π/2, T = 1000 s, and 0 ≤ x ≤ 30.
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It is also noted that the distance between two solitary
waves becomes larger and larger as time increases. On the
other hand, during the whole process, the relative errors
of the total mass and energy approach machine precision
while the relative error of the total momentum is bounded.
In addition, the real and imaginary parts of the solution
exhibit the same behavior, see Fig. 10.

5. Conclusion

We have presented an accurate energy-preserving finite
volume element scheme for the CMKDV equation. The
method is based on the use of a discrete variational
derivative method (DVDM) in time and a finite
volume element approximation in space. The resulting
energy-preserving scheme can exactly conserve the mass
and energy at the discrete level. In addition, the scheme
shows good long time behaviors. The energy-preserving

scheme is compared with the momentum-preserving
scheme and the implicit midpoint scheme for solving
the CMKDV equation. The results show that the
energy-preserving scheme is the best of the three proposed
methods when it comes to energy conserving properties.
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