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This study discusses the use of quaternions and dual quaternions in the description of artificial fish kinematics. The investi-
gation offered here illustrates quaternion and dual quaternion algebra, as well as its implementation in the software chosen.
When it comes to numerical stability, quaternions are better than matrices because a normalised quaternion always shows
the correct rotation, while a matrix more easily loses its orthogonality due to rounding errors and oversizing. Although
quaternions are more compact than rotation matrices, using quaternions does not always provide less numerical computa-
tion and the amount of memory needed. In this paper, an algebraic form of quaternion representation is provided which is
less memory-demanding than the matrix representation. All the functions that were used to prepare this work are presented,
and they can be employed to conduct more research on how well quaternions work in a specific assignment.
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1. Introduction
Although quaternions were developed many years ago,
they are still not used very often in robotics and
autonomous vehicles due to the long tradition of
employing homogeneous transformations. Quaternions
and dual quaternions are utilised in quantum mechanics
(Horwitz and Biedenharn, 1984), rigid body dynamics
(Kiciński et al., 2021; Kluczyk and Grzadziela, 2015)
and for navigation purposes (Naus et al., 2021; Felski
et al., 2020; Jaskólski, 2017; Jaskólski et al., 2021) based
on an inertial measurement unit (Sola, 2017; Jaskólski
et al., 2019). In recent years quaternions have become
popular in computer graphics (Leclercq et al., 2013) for
body motion analysis (Pennestrı̀ and Valentini, 2010),
robot manipulators (Grzadziela et al., 2020) as well as
for neuroscience (Ling et al., 2022). Numerical precision
and efficiency of real-time calculations are critical for
robot control systems (Chen et al., 2020), particularly for
autonomous vehicles (Morawski et al., 2020; Hożyń and
Zalewski, 2020; Wawrzyński et al., 2022).

One of the best known advantages in comparison
with the Euler angle rotation matrix is the lack of
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ambiguous solutions. There is at least one point in every
Euler angle sequence that loses a degree of freedom
(Mouton, 2021). This is referred to as a gimbal lock (one
of the rotation axes realigns with another axis).

According to the study by Radavelli et al. (2012),
dual quaternions outperform the latter in terms of storage
because homogeneous matrices require 12 numbers to
express six degrees of freedom, whereas the former
require only eight. Furthermore, unlike 3D stiff
transformations controlled as a 4×4 homogeneous
(overhead) matrix, they can be maintained using two
independent components: a translation vector and
a quaternion.

Dual quaternions are employed similarly to
quaternions but have the added benefit of encapsulating
both translation and rotation into a unitary state that can
be easily concatenated and interpolated (Jarzebowska and
Klak, 2020). Due to this redundancy, there are constraints
on the eight values in a matrix to form a valid rotation
matrix. The matrix must be orthogonal, which means
that the row vectors must be orthonormal (each vector
has length 1, and the scalar product of each pair is 0).
Numerical errors are introduced while the rotation matrix
is updated, often by concatenating it with incremental
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rotation matrices. These inaccuracies build up with each
update and are determined by the precision of numerical
representations and the type of trigonometric function
calculations used (Taylor series or CORDIC algorithm).
The row vectors can go further and further away from
being orthonormal. When the matrix deviates sufficiently
from orthogonality, it can begin to visibly modify the
geometry to which it is applied (skew, scaling, etc).
When employing rotation matrices, these issues can
be addressed by orthonormalizing the row vectors on
a regular basis.

Rounding errors inevitably accumulate when
assembling multiple rotations on a computer. When
normalized, slightly offset quaternions still indicate
rotation, while a slightly offset matrix may no longer
be orthogonal and it is more difficult to convert it back
to a correct orthogonal matrix. Despite the fact that
quaternions are more compact than rotation matrices,
using quaternions does not necessarily result in less
numerical computation in the applications (Sarabandi and
Thomas, 2019).

It can be tedious to reimplement all the basic
functions required when working with quaternions, such
as composition, conjugation, conversions to and from
rotation matrices, and Euler angles. For a review
of efficient floating-point algorithms for processing
quaternions, see the work of Joldeş and Muller (2020).
Because quaternions are a fairly common aspect of
engineers’ toolboxes, various libraries have been built for
a number of scientific programming languages (Piórek
and Jabłoński, 2020). However, it is not so simple to
comprehend how they work.

The idea of quaternions and dual quaternions is
presented in this paper, followed by an example of
an analysis of an artificial fish with a hull designed
from the connection of rigid components (Piskur et al.,
2020b). The artificial fish image captured during the
test in a swimming pool is shown in Fig. 1. The
same biomimetic underwater vehicle is shown in Fig. 2
for greater visualisation of each tail part connection.
The trajectory of each tail fin part in an artificial fish
movement control system must be changed as a function
of velocity with regard to water. Therefore, constructing
a control algorithm for the tail fin linkages requires
efficient computation (Piskur et al., 2020a; Piskur, 2022).

2. Fish-like propulsion system

The tail kinematic description for a fish-like movement
can be described using the Lightill equation (Lighthill,
1971):

y(x, t) = (c1x+ c2x
2) sin

(2π
λ
x+ 2πft

)
, (1)

Fig. 1. Artificial fish in a swimming pool with a link descrip-
tion.

Fig. 2. Image of the artificial fish.

where y(x, t) is the transverse displacement, x is the
independent spatial variable, t is time, the second
independent variable, c1 is the primary coefficient of the
wave envelope, c2 is the quadratic term coefficient of the
wave envelope, λ is the wavelength, f is the frequency the
tail fin movement.

The geometrical representation of Eqn. (1) is
depicted as a black curve in Fig. 1 with parameters
adopted from Jurczyk et al. (2020).

The fishtail kinematics are described by means of
three rigid links (L0, L1, L2, L3) analysed in the article.
The difficulty of mathematical description is proportional
to the number of links (Piskur et al., 2021). This is
addressed in the current study using dual quaternions’
theory.

3. Theory of quaternions and dual
quaternions

Quaternions are an extension of complex number theory
that allows the formulation of four-dimensional complex
numbers known as hyper-complex ones. They can be used
to describe the rotation of rigid bodies in a space around
a precisely oriented axis. Dual numbers and dual vectors
are special cases of a dual quaternion. A dual number is,
in reality, a dual quaternion with a zero vector portion. A
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dual vector is a dual quaternion with zero scalar part. The
quaternion q can be defined as

q = q0 + q1i + q2j + q3k, (2)

where q0, q1, q2, and q3 are real numbers, i, j, k are
imaginary units.

It follows from the above that the quaternion is
composed of a scalar part and a vector part:

q = q0 + vq = (q0, vq), (3)

where q0 is a scalar part and vq = q1i + q2j + q3k is
a vector part. A vector vq is called a pure quaternion in
the form of q = 0 + vq. The module of the quaternion
is defined as |q| =

√
q20 + q21 + q22 + q23 . If quaternion

|q| = 1 is a unit quaternion, it can be written as

q = cos

(
θ

2

)
+

vq
|vq| sin

(
θ

2

)
, (4)

where θ is in range [0, π].
Based on the normalisation process, the axis of

rotation is specified as a unit quaternion. When the
quaternion’s scalar part is compared to 1, it remains
unaffected. The quaternion conjugate is written as
follows:

q̄ = q0 − q1i − q2j − q3k = q0 − vq = (q0,−vq). (5)

If two quaternions q and p are given as

q = q0 + q1i + q2j + q3k = (q0, vq),

p = p0 + p1i + p2j + p3k = (p0, vp),
(6)

the following arithmetic operations can be performed:

• addition:

q+ p = (q0, vq)+ (p0, vp) = (q0 + p0, vq + vp) (7)

or

q+p = (q0+p0)+(q1+p1)i+(q2+p2)j+(q3+p3)k,
(8)

• subtraction:

q−p = (q0−p0)+(q1−p1)i+(q2−p2)j+(q3−p3)k
(9)

or

q−p = (q0, vq)−(p0, vp) = (q0−p0, vq−vp), (10)

• multiplication:

q · p = (q0p0 − q1p1 − q2p2 − q3p3)

+ (q1p0 + q0p1 + q3p2 − q2p3)i
+ (q2p0 + q3p1 + q0p2 − q1p3)j
+ (q3p0 − q2p1 + q1p2 + q0p3)k

(11)

or

q ·p = q0 ·p0−vq ·vp+q0 ·vq+p0 ·vp+vq×vp, (12)

where
q0 · p0 − vq · vp

is a scalar part, and

q0 · vq + p0 · vp + vq × vp

is a vector part of the new quaternion.

It is worth mentioning that quaternion multiplication
is not commutative

q · p �= p · q. (13)

Taking Eqns. (11) and (12) into account, it can be seen that
the manner of defining mathematical relations determines
the memory required for quaternion definitions. As
a result, while determining which type of description
is more successful, the form of the mathematical
presentation and the amount of memory required should
be considered.

Taking into consideration the multiplication of
quaternion

q =

⎡
⎢⎢⎣

q0 −q3 q2 q1
q3 q0 −q1 q2
−q2 q1 q0 q3
−q1 −q2 −q3 q0

⎤
⎥⎥⎦ (14)

by the column vector p,
⎡
⎢⎢⎣

q0 −q3 q2 q1
q3 q0 −q1 q2
−q2 q1 q0 q3
−q1 −q2 −q3 q0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
p0
p1
p2
p3

⎤
⎥⎥⎦ , (15)

gives the same results as Eqns. (11) and (12).
The quaternion presented in the matrix form (14)

requires more memory space than the quaternion supplied
in the equation form (2). As a result, the quaternion
representation as a matrix is only used in this study to
better explain the notion of imaginary units: i, j, and k.

If only one component is equal to 1 and the others are
equal to 0, this yields the following quaternion represented
as a matrix:

i =

⎡
⎢⎢⎣

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎤
⎥⎥⎦ , (16)

j =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦ , (17)
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k =

⎡
⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ . (18)

It can be seen that the following conditions are true:

i2 = j2 = k2 = i · j · k = −1 (19)

and

ij = k,
jk = i,
ki = j,
ji = −k,
kj = −i,
ik = −j.

(20)

Also, it is worth mentioning that

i0 = 1,

i1 = i,

i2 = −1,

i3 = −i,

i4 = 1,

...

(21)

The aforementioned relation is utilised for
quaternion multiplication and also helps to clarify
the meaning of relations equal to −1 .

The multiplication table for quaternions and dual
quaternions is shown in Table 1. Due to changes in
multiplication order (see Eqn. (13)), the suffixes a.ε and
b.ε are placed in the table.

3.1. Rotation point. In a three-dimensional space,
a vector is expressed as a pure quaternion (a quaternion
with no real part). A rotation is denoted by a quaternion n,
with the additional constraint that its norm equals 1.
Rotation point P = (xp, yp, zp) around vector �n =
[nx, ny, nz] of length |n| by angle θ, can be provided
based on Algorithm 1. Also, the code function is suffixed
in Appendix A. The following quaternion multiplication
is provided to orient a vector p using a rotation:

pR = q p q̄, (22)

where p is is the point before rotation, specified as
a quaternion, q is the axis of rotation encapsulated as
quaternion, q̄ is the quaternion conjugate, p and p̄ are
represented as pure quaternions, i.e., quaternions whose
real part are zero:

p = xpi + ypj + zpk. (23)

The imaginary component describes the point
coordinates.

3.2. Interpolation of the rotation. Quaternions
are highly efficient for angle interpolation. Based on
Algorithm 2 the point P = (1, 0, 0) has been rotated
90 deg around the vector v = (1, 1, 1) in 100 equal
steps to demonstrate angle interpolation (see the results
in Fig. 3). The code can be found in Appendix B. This
algorithm takes only two quaternion multiplications, as
shown in Eqn. (22); hence modest computing costs and
memory utilisation can be predicted.

The fact that quaternions are not commutative also
corresponds directly to the fact that rotations are not
commutative (see Eqn. (13)).

This can be insufficient to represent the kinematics
of a rigid body because motion is often a combination of
rotation and translation. Only the end of the tail link in
the artificial fish may be estimated using quaternions. The
displacement of the remaining links must be determined
using dual quaternions.

The theory of dual quaternions is explained in the
following paragraph for further rotation and translation
operations.

3.3. Dual quaternions. Dual quaternions are the
concatenation of quaternion and dual-number theory,
which means that quaternions represent the numbers in
the dual-number equation. For rotation and translation,
dual quaternions have the form

σ = p+ εq, (38)

where p and q are both quaternions and ε is the second
order nilpotent dual factor, with relation ε2 = 0 and ε �= 0.
They adhere to the quaternion algebra principles.

A dual quaternion can be represented as an
8-dimensional vector or as a juxtaposition of two
4-dimensional vectors representing the dual quaternion’s
two quaternion components (Leclercq et al., 2013). Using
the quaternions representation from Eqn. (6), the dual
quaternion can be expressed as follows:

σ = (p0, p1, p2, p3, q0, q1, q2, q3). (39)

By analogy with the operation on dual numbers, dual
quaternions σA = pA + εqA and σB = pB + εqB can
be added:

σA + σB = (p0 + q0) + ε(v1 + v2), (40)

and multiplied,

σA · σB = p0 · q0 + ε(v1 · v2 + v2 · v1). (41)

By setting the dual component to zero, the dual
quaternion can express pure rotation in the same way as
a quaternion. To represent a pure translation with no
rotation, the real part can be set to the identity, and the
dual part represents the translation.

There are three conjugates applied for calculation:
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Table 1. Multiplication table for dual quaternions.
a· b b.1 b.i b.j b.k b.ε b.ε i b.ε j b.ε k
a.1 1 i j k ε εi εj εk
a.i i −1 k −j εi −ε −εk εj
a.j j −k −1 i εj εk −ε −εi
a.k k j −i −1 εk −εj εi −ε
a.ε ε −εi −εj −εk 0 0 0 0

a.ε i εi ε −εk εj 0 0 0 0
a.ε j εj εk ε −εi 0 0 0 0
a.ε k εk −εj εi ε 0 0 0 0
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Fig. 3. Interpolation of point P , where point PR indicates the
final position.

• the conjugate of the dual number:

σ• = (p0, p1, p2, p3,−q0,−q1,−q2,−q3), (42)

• the conjugate adopted from the classical quaternion
conjugation:

σ∗ = (p0,−p1,−p2,−p3, q0,−q1,−q2,−q3),
(43)

• a combination of the first two conjugations:

σ◦ = (p0,−p1,−p2,−p3,−q0, q1, q2, q3). (44)

For each of the three conjugates, the conjugate of the
conjugate of σ is σ itself. The conjugate of the product
of dual quaternions equals the product of the individual
conjugates of these dual quaternions but in the reverse
form. In analogy to the quaternion, dual quaternions can
be used for calculation of coordinates by multiplication of
dual quaternions:

PR,T = q̂Rq̂TP q̂◦T q̂
◦
R, (45)
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Fig. 4. Rotation and translation based on dual quaternions (A:
rotational point, L: axis of rotation, P : point on the sur-
face of the rotation and translation).

where q̂R and q̂◦R stand respectively for the dual
quaternion and its conjunction that describe the rotational
movement, q̂T and q̂◦T mean the dual quaternion and its
conjunction that describe the translational movement.

An example of the rotation and translation of
the pointA made in 1000 steps is shown in Fig. 4. Just like
a 4×4 matrix stores rotation and translation information
about an object, a dual quaternion stores the same type of
information but in two different quaternions.

The multiplication shown in Eqn. (45) can be
applied as many times as the number of translations and
rotations required for kinematic description. The number
is determined by the number of frames that must be
rotated and the number of translations. In the following
paragraph, Eqn. (45) is used to describe the kinematics of
a fish-like propulsion system.

3.4. Fishtail kinematic description based on dual
quaternions. Rotation and translation in terms of
the description of the artificial fishtail kinematics is
a special case in which the displacement takes place
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Algorithm 1. Rotation of the point.
Rotation of the point P = [xp, yp, zp]

T around the vector:
n = [nx, ny, nz] of the length |n| by the angle 2θ.
Step 1. Compute the next values:
q0, q1, q2, q3, unit quaternion coefficients:

q0 = cos θ,

q1 =
nx

|n| sin θ,

q2 =
ny

|n| sin θ,

q3 =
nz

|n| sin θ,

(24)

where |n| =
√
n2
x + n2

y + n2
z .

Step 2a. Calculate Q, the rotation matrix:

Q =

⎡
⎣

1− 2(q22 + q23) 2(q1q2 − q3q0)
2(q1q2 + q3q0) 1− 2(q21 + q23)
2(q1q3 − q2q0) 2(q2q3 + q1q0)

2(q1q3 + q2q0)
2(q2q3 − q1q0)
1− 2(q21 + q22)

⎤
⎦ .

(25)

Step 3a. According to Eqn. (11) calculate the new
coordinates:

PR = Q · P. (26)

Step 2b. Define the next quaternions:
q, quaternion of rotation defined as

q = q0 + q1i + q2j + q3k, (27)

q̄, conjunction of quaternion q, equal to

q̄ = q0 − q1i − q2j − q3k, (28)

p, rotation point encapsulated as

p = 0 + xP i + yP j + zP k. (29)

Step 3b. According to Eqn. (22) calculate the new
quaternion:

pR = q · p · q̄, (30)

where pR = 0+ PRxi + PRy j + PRzk

Step 4b. After the quaternion encapsulation, the
vector parts of pR give the point coordinates PR =
(PRx, PRy, PRz) after rotation.

in the two-dimensional space. The forward kinematics
approach to the concatenating transform is the same
for dual a quaternions and matrices, and it uses
simple multiplication to propagate transforms between

Algorithm 2. Interpolation of the rotation.
Rotation of the point P = [xp, yp, zp]

T around the vector:
n = [nx, ny, nz] of the length |n| by the angle divided
into N equal angles.
Step 1. Compute the next values:

|q| =
√
q20 + q21 + q22 + q23 , |v| =

√
q21 + q22 + q23

(31)

θ = arc cos
q0
|q| , uq1 =

q1
|v| ,

uq2 =
q2
|v| , uq3 =

q3
|v| , (32)

and then

θN =
θ

N
,

q0N = cos(θN ),

q1N = uq1 sin θN ,

q2N = uq2 sin θN ,

q3N = uq3 sin θN .

(33)

Step 2a. Calculate QN , rotation matrices:
⎡
⎣

1− 2(q22N + q23N ) 2(q1N q2N − q3N q0N )
2(q1N q2N + q3N q0N ) 1− 2(q21N + q23N )
1− 2(q21N + q22N ) 2(q2N q3N + q1N q0N )

2(q1N q3N + q2N q0N )
1− 2(q21N + q23N )
1− 2(q21N + q22N )

⎤
⎦ .

(34)

Step 3a. Calculate N times P I , the coordinates of
rotation points:

P I
N = QN · P. (35)

Step 2b. Define the quaternion:

qN = q0N + q1N i + q2N j + q3N k,

its conjunction:

q̄ = q0N − q1N i − q2N j − q3N k,

and calculate N times

pIN = q · P · q̄, (36)

where pIN = 0 + P I
Nxi + P I

Ny j + P I
Nzk.

Step 3b. Encapsulate quaternions to obtain the
coordinates of rotation points:

P I
N = P I

Nx + P I
Ny + P I

Nz . (37)
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Fig. 5. Artificial fish graph with coordinate systems

the connected links. Each coordinate is calculated
in accordance with a specific convention for attaching
reference frames to each stiff section of the artificial
fish hull, as shown in Fig. 5. The fish-like description
kinematic is offered as a collection of transformations
connected with rotation and translations, similar to
D–H parameters (Denavit and Hartenberg, 1955). A
coordinate system for each joint, a coordinate system to
the end-effector, and a reference coordinate system are
required by the D–H approach. The coordinate system is
associated with each stiff part of the fishtail in this paper’s
analysis so that the x axis runs along each section and
all z axes are parallel to each other (see Fig. 5). The
point P3 is put in the centre of the flexible fin, and the
movement description is assumed to be the same as for
the rigid body. It rotates by θ3 degrees in reference to the
coordinate system x3, y3, z3. As a result, the following
mathematical relation based on dual quaternion algebra
can be used to define the coordinates P3 with reference to
the coordinate system x0, y0, z0:

P03 = q̂T0 q̂R1 q̂T1 q̂R2 q̂T2 q̂R3P3q̂
◦
R3

q̂◦T2
q̂◦R2

q̂◦T1
q̂◦R1

q̂◦T0
,

(46)
where point P3 is defined as a dual quaternion

P3 = [1, 0, 0, 0, 0, L3, 0, 0]

and all rotation and translation operations are described as
dual quaternions:

q̂R3 = [cos(θ3/2), 0, 0, sin(θ3/2), 0, 0, 0, 0],

q̂T2 = [1, 0, 0, 0, 0, L2/2, 0, 0],

q̂R2 = [cos(θ2/2), 0, 0, sin(θ2/2), 0, 0, 0, 0],

q̂T1 = [1, 0, 0, 0, 0, L1/2, 0, 0],

q̂R1 = [cos(θ1/2), 0, 0, sin(θ1/2), 0, 0, 0, 0],

q̂T0 = [1, 0, 0, 0, 0, L0/2, 0, 0],

q̂◦R, q̂◦T are the conjunctions of dual quaternions (see
Eqn. (44)).

Fig. 6. Final representation of point coordinates (L: the total
length of the fish body).

It is worth mentioning that in the coordinate
system x3, y3, z3 the point P3 is only rotated, and the
coordinate system x1, y1, z1 in reference to x0, y0, z0 is
only translated. The ready-to-use code is attached in
Appendix D, and the result of the provided analysis is
depicted in Fig. 6 for 20 angles changed by 1 degree in
each step.

4. Summary
This paper provided a concise explanation of quaternions
and dual quaternions, as well as an examination of the
kinematic description of a fish-like propulsion system. It
can be observed that the four-element rotation construct
is more compact than the nine-element rotation matrix.
Using efficient methods, any rotation represented by
quaternions can be linearly interpolated. In that situation,
quaternion algebra is more computationally efficient than
Euler angles since it does not employ trigonometric
functions but only basic operations on integers.

Quaternions are particularly efficient at describing
rotation but not translations. Therefore, dual quaternions
were used to describe the kinematics of the artificial
fishtail. The developed algorithm was shown on an
artificial fishtail modelled as a three-degree-of-freedom
manipulator with rotational joints. All calculation
functions are supplied in Appendices, allowing readers to
compare the efficiency of quaternion algebra with other
methods and with a more degree of freedom object of
analysis. The subject of the analysis can be studied
by assuming a greater number of degrees of freedom.
There are no built-in functions, only multiplication and
additions. Thus, the analysis can be used in environments
such as Matlab, Octave, Python with NumPy/SciPy
packages, SciLab, or others. All internal functions are
included in Appendices.

There are also some disadvantages when working
with quaternions, such as pre-processing required to
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begin with this representation and certain visualisation
challenges due to the four-dimension representation.
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Appendices
All the scripts included in Appendices can be obtained
upon sending a request to p.piskur@amw.gdynia.
pl.

Appendix A

Rotation of a point

clc; clear; close all;
% Point to rotate P = [x, y, z]
P1 = [1, 1, 1];
% Point P encapsulated into quaternion :
pq = [0 P1(1) P1(2) P1(3)];
% axis of rotation :
v = [0, 0, 1];
% rotation angle :
θ = 90 ∗ (pi/180);
% half the angle of rotation :
θ2 = θ/2;
% the scalar part of the quaternion
% describing the axis of rotation :
so = cos(θ2);
% module of the vector part of the quaternion
% describing the axis of rotation :
vm = sqrt(v(1)2 + v(2)2 + v(3)2);
xo = (v(1)/vm) ∗ sin(θ2);
yo = (v(2)/vm) ∗ sin(θ2);
zo = (v(3)/vm) ∗ sin(θ2);
% quaternion :
q = [so xo yo zo];
% quaternion conjugated :
cq = [so − xo − yo − zo];
qt = Qmultiplication(q, pq);
p2 = Qmultiplication(qt, cq);
PR = p2(2 : 4);
% visualisation :
figure(1)
P0 = [0, 0, 0];
plot3([0P1(1)], [0P1(2)], [0P1(3)],′ g − o′)
text(P1(1), P1(2), P1(3),′ P ′)
hold on
plot3([0PR(1)], [0PR(2)], [0PR(3)],

′ b− o′)
text(PR(1), PR(2), PR(3),

′ P ′
R)

axis equal
grid on
hold off

Appendix B

Interpolation of a point rotation

clc; clear; close all;
% point to be rotated P = [x, y, z]
P1 = [1, 0, 0];
pq = [0, P1(1), P1(2), P1(3)]; v = [1, 1, 1];
% angle of rotation
θ = 90 ∗ (pi/180);
N = 100;% angle division
θN = (1/N) ∗ θ;

p.piskur@amw.gdynia.pl
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so = cos(θN );
vm = sqrt(v(1)2 + v(2)2 + v(3)2);
xo = (v(1)/vm) ∗ sin(θN );
yo = (v(2)/vm) ∗ sin(θN );
zo = (v(3)/vm) ∗ sin(θN);
% quaternion
q = [so xo yo zo];
% quaternion conjugated
qsp = [so, − xo, − yo, − zo];
% loop
for i = 1 : N
pq = Qmultiplication(q, pq);
pq = Qmultiplication(pq, qsp);

%point coordinates after rotation
P2(i, :) = pq(2 : 4);

end

Appendix C

Translation and rotation
clc; clear; close all;
% point
A = [0, 0, 2];
% point A as a dual quaternion
dqA = [1, 0, 0, 0, 0, A];
% axis of rotation
v1 = [0, 1, 0];
% angle of rotation
theta1 = 90 ∗ (pi/180);
% translation
d1 = 2;
P01 = [0, 0, 0];
dq1 = pdq(v1, theta1, d1, P01);
dqB = conversion(dq1, dqA);
PRT = dqB(6 : 8)

Appendix D

Fish tail kinematics
clc; clear; close all;
% link length :
l1 = 0.1;
l2 = 0.1;
l3 = 0.12;
% rotation angles :
θ1 = 1 ∗ (pi/180);
θ2 = 1 ∗ (pi/180);
θ3 = 1 ∗ (pi/180);
data as a dual quaternions :
dq3r = [cos(θ3/2), 0, 0, sin(θ3/2), 0, 0, 0, 0];
dq3t = [1, 0, 0, 0, 0, l3/2, 0, 0];
dq2r = [cos(θ2/2), 0, 0, sin(θ2/2), 0, 0, 0, 0];

dq2t = [1, 0, 0, 0, 0, l2/2, 0, 0];
dq1r = [cos(θ1/2), 0, 0, sin(θ1/2), 0, 0, 0, 0];
dq1t = [1, 0, 0, 0, 0, l1/2, 0, 0];
N = 10;
for i = 1 : N
dq3r = [cos(i∗θ3/2), 0, 0, sin(i∗θ3/2), 0, 0, 0, 0];
dq3t = [1, 0, 0, 0, 0, L2/2, 0, 0];
dq2r = [cos(i∗θ2/2), 0, 0, sin(i∗θ2/2), 0, 0, 0, 0];
dq2t = [1, 0, 0, 0, 0, L1/2, 0, 0];
dq1r = [cos(i∗θ1/2), 0, 0, sin(i∗θ1/2), 0, 0, 0, 0];
dq1t = [1, 0, 0, 0, 0, L0/2, 0, 0];
dq1 = DQmultiplication(dq1t, dq1r);
dq1temp = DQmultiplication(dq1, dq2t);
dq63 = DQmultiplication(dq1temp, dq2r);
dq62 = DQmultiplication(dq63, dq3t);
dq3 = DQmultiplication(dq62, dq3r);
resultDQ61 = conversion(dq3, dqP3);
result61(i, :) = resultDQ61(:, 6 : 8);
resultDQ63 = conversion(dq63, dqP2);
result63(i, :) = resultDQ63(:, 6 : 8);
resulsDQ65 = conversion(dq1, dqP1);
result65(i, :) = resulsDQ65(:, 6 : 8);

end
%plotting the results
plot3(result63(:, 1), result63(:, 2), result63(:, 3),′ bo′)
hold on
plot3(result61(:, 1), result61(:, 2), result61(:, 3),′ rd′)
plot3(result65(:, 1), result65(:, 2), result65(:, 3),′ g∗′)
grid on
axis equal

Appendix E

Internal functions used

function q3 = Qmultiplication(q1, q2)
% Description :
% Two quaternions (q1 and q2)multiplication.
% The function gives the third quaternion q3.
% The both quaternions :
% q1 = [q1(1) q1(2) q1(3) q1(4)];
% and
% q2 = [q2(1) q2(2) q2(3) q2(4)];
% have a scalar part :
% s1 = q1(1); s2 = q2(1);
% and vector parts :
% v1 = q1(2 : end); v2 = q2(2 : end);
% As a result q3 is calculated :
% q3 = [s v];
% where :
% s = s1 ∗ s2 − dot(v1, v2);
% v = s1 ∗ v2 + s2 ∗ v1 + cross(v1, v2);

s1 = q1(1);
v1 = q1(2 : end);
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s2 = q2(1);
v2 = q2(2 : end);
s = s1 ∗ s2 − dot(v1, v2);
v = s1 ∗ v2 + s2 ∗ v1 + cross(v1, v2);
q3 = [s v];

end
function [dq] = pdq(v, theta, d, P0)
% parameters for dual quaternions
qr0 = cos(0.5 ∗ theta);
normv = norm(v);
L = (v/normv);
qr13 = L ∗ sin(0.5 ∗ theta);
qr = [qr0 qr13]; %rotation
qP0 = [0 P0];
qL = [0 L];
%dq = qr + 0.5 ∗ (d ∗ qL ∗ qr + P0 ∗ qr − qr ∗ P0)
dq(1, 1 : 4) = qr;
dq(1, 5 : 8) = 0.5 ∗ (Qmultiplication(qL ∗ d +

qP0, qr) − Qmultiplication(qr, qP0));
end

function cdq = cDQ(dq)
%conjuction of qual quaternions
cdq(1, 1) = dq(1, 1);
cdq(1, 2 : 4) = − dq(1, 2 : 4);
cdq(1, 5) = − dq(1, 5);
cdq(1, 6 : 8) = dq(1, 6 : 8);

end

function dq3 = DQmultiplication(dq1, dq2)
% dual quaternion multiplication;
q1 = dq1(1 : 4);
w1 = dq1(5 : 8);
q2 = dq2(1 : 4);
w2 = dq2(5 : 8);
dq3(1, 1 : 4) = Qmultiplication(q1, q2);
dq3(1, 5 : 8) = Qmultiplication(q1, w2)+

+Qmultiplication(w1, q2);
end

function dqB = conversion(dq, dqA)
DQromb = cDQ(dq);
temp = DQmultiplication(dq, dqA);
dqB = DQmultiplication(temp,DQromb);

end
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