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Density-based spatial clustering of applications with noise (DBSCAN) is a commonly known and used algorithm for data
clustering. It applies a density-based approach and can produce clusters of any shape. However, it has a drawback—its
worst-case computational complexity is O(n2) with regard to the number of data items n. The paper presents GrDBSCAN:
a granular modification of DBSCAN with reduced complexity. The proposed GrDBSCAN first granulates data into fuzzy
granules and then runs density-based clustering on the resulting granules. The complexity of GrDBSCAN is linear with
regard to the input data size and higher only for the number of granules. That number is, however, a parameter of the
GrDBSCAN algorithm and is (significantly) lower than that of input data items. This results in shorter clustering time
than in the case of DBSCAN. The paper is accompanied by numerical experiments. The implementation of GrDBSCAN is
freely available from a public repository.
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1. Introduction

Clustering (cluster analysis) is a very important technique
in data analysis and machine learning. The task aims at
gathering objects into a collection in such a way that items
in one cluster (group) are more similar to each other than
to any item in other clusters. In very general terms, data
in the same cluster are similar and data in different clusters
are dissimilar. This very general rule results in a plethora
of clustering algorithms. Below we shortly describe the
main classes of clustering algorithms.

Density-based clustering algorithms discover regions
with higher density of items. Algorithms in this class can
produce arbitrarily shaped clusters. Items in regions of
lower density are often classified as noise. In data sets
with highly overlapping clusters, the algorithms do not
always identify cluster borders correctly. Some influential
algorithms in this group are DBSCAN (Ester et al., 1996),
GDBSCAN (Sander et al., 1998), DENCLUE (Hinneburg
and Keim, 1998), or OPTICS (Ankerst et al., 1999).

Grid-based clustering algorithms first split the input
domain into a grid of orthogonal hyperboxes and then
analyse each hyperbox. They are commonly applied
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to high-dimensional problems. Some of them can
identify the importance of attributes in multi-dimensional
spaces (subspace clustering). Important representatives
are CLIQUE (Agrawal et al., 1998), ENCLUS (Cheng
et al., 1999), and STING (Wang et al., 1997).

An important class of clustering algorithms is one
based on minimisation of performance criteria. The value
of the criterion drops if similar items are assigned to the
same cluster. The properties of the produced clusters
heavily depend on the criterion applied. The function
is minimised iteratively. There is no guarantee that
the resulting clusters are the optimal ones. Commonly
the algorithms take the number of clusters to produce
as a parameter. Notable algorithms in this family are
fuzzy C-means (FCM) (Dunn, 1973), fuzzy C-medians
(FCMed) (Jajuga, 1991), Gustafson–Kessel (Gustafson
and Kessel, 1978), possibilistic FCM (Krishnapuram
and Keller, 1993), FCOM (Leski, 2016), and RSFCM
(Siminski, 2014).

Hierarchical algorithms start with a set of
one-element clusters that are then merged into more
complex ones. The merger depends on the distance
between clusters to be merged. The process of
clustering is graphically represented as a dendrogram.
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Important representatives are SLINK (single linkage)
(Sibson, 1973), complete linkage (Defays, 1977; Wu
et al., 2021), CURE (Guha et al., 2001), and
CHAMELEON (Karypis et al., 1999).

Biclustering algorithms use an interesting technique.
They are clustered simultaneously. Objects and
attributes are treated in the same way, and they can be
transposed. Biclustering is used in (but is not limited to)
bioinformatics. Some examples of biclustering algorithms
are HroBi (Michalak and Stawarz, 2013), eBi (Stawarz
and Michalak, 2012), or FuBi (Siminski, 2022a).

The above list of clustering algorithms is not
exhaustive. More algorithms have been proposed, such
as spectral (Shi and Malik, 2000), gravitational (Wright,
1977; Junlin and Hongguang, 2011) graph based (Hartuv
and Shamir, 2000), and more.

The paper focuses on the DBSCAN algorithm. It
is a density-based algorithm that can produce clusters
(groups) of any shape. Unfortunately, the worst-case
complexity of DBSCAN is O(n2) for a data set with
n data items (for details of the complexity issue, see
Section 3.1.2). In the paper, the granular computing
paradigm is applied to reduce the complexity.

The paper is organized as follows. In Section 2
we briefly introduce the granular computing paradigm.
In Section 3 we describe DBSCAN and GrDBSCAN-
–the new granular density-based clustering algorithm. In
Section 4 we present experiments on GrDBSCAN.

2. Granular computing
Granular computing (GrC) is simultaneously an old and
a new paradigm. It was introduced by Zadeh (1979)
more than 40 years ago. However, for many years it
seemed to hibernate and evoked a very sparse scientific
response. The idea stated by Lotfi Zadeh was very
innovative and reaching far into the future, whereas
techniques, methods, and algorithms were scarce. This is
why granular computing did not develop from the start.
A few decades later, after many techniques, methods,
paradigms, and algorithms had been developed and data
had exploded in size, granular computing was revived
and made huge progress (Yao et al., 2013). Now it is a
new emerging field of research and study in data mining
(Yao, 2007).

Zadeh (1997) enumerates three concepts of
human cognition addressed by granular computing:
decomposition of a whole into parts (granulation),
integration of parts into a whole (organisation), and the
cause–effect relation (causation).

Granular computing is an umbrella term and
generalisation (Salehi et al., 2015) for various techniques,
algorithms, and models. It is simultaneously a starting
point for new concepts like computation with words
(Zadeh, 2002). Granular computing is experiencing

its revival nowadays when a plethora of algorithms,
techniques, and models are at our disposal. They have
a common denominator: granularity.

Granular computing may be a starting point for a
human-centric data approach, because it mimics human
cognition (Pedrycz et al., 2015). Humans commonly
gather data into granules and then operate on them. This
enables zooming-in when more details are needed, or
zooming-out when details are not necessary or obfuscate
the problem and general issues are in focus.

Yao (2016) proposed a three-way approach to
granular computing (the triarchic theory of granular
computing) with three perspectives, each supporting the
other two. The philosophical perspective focuses on
structured thinking. It handles the meronym-holonym
concept with meronymy responsible for parts and
holonymy—for a whole. The direction from a whole
to parts addresses analysis whereas the direction from
parts to a whole—synthesis. The methodological
perspective focuses on structured problem solving. It
handles methods, techniques, algorithms, and tools used
for multilevel problem solving. The computational
perspective focuses on information processing. It
addresses the way information is handled from the
methodological perspective. Granular computing
commonly starts with creation of granules from data
(granulation) followed by computing with granules. The
latter is still a huge challenge for researchers.

2.1. Granules. A data granule is a crucial notion
in granular computing. Commonly, it is defined
as a collection of entities in the sense of similarity,
likeness, proximity, indiscernibility, identity, or adjacency
(Pedrycz, 2013; Yao and Zhong, 2007; Yao, 2008;
Siminski, 2022b; 2021b; Shifei et al., 2010). Data
granules have two very important properties that make
them different from data clusters. The first one is clear
semantics of data granules. They can be tagged with
semantically rich labels (Bargiela and Pedrycz, 2006).
The second property is a hierarchy of granules. A data
granule represents an entity and is composed of some
elements. The elements may be represented by lower level
granules. This leads to the conclusion that a granule is
composed of (sub)granules and simultaneously a granule
is a part of a (super)granule. Granularity enables operating
on various levels of detail (Keet, 2008). When a more
general view is needed, we simply climb up a hierarchy
of granules to more general ones. On the other hand,
when details are needed, we climb down a hierarchy
to address a problem with more specialised granules
(Yao, 2018; Ciucci, 2016).

2.2. Representation of granules. Representation
of granules is diverse. Common representations are
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intervals, sets, fuzzy sets, interval type-2 fuzzy sets
(Pedrycz et al., 2012), rough sets (Skowron et al., 2016),
intuitionistic sets, shadowed sets, clusters (Siminski,
2020), soft sets (Xia et al., 2022), and if-then rules
(Siminski, 2021a). A set is a simple representation of
a collection of related items. Fuzzy sets enable partial
membership, whereas rough sets address the case when no
“yes-no decision” can be made. They are a starting point
for the three-way decision approach (Yao, 2009; 2011;
Siminski, 2023).

Commonly, the first step in granular computing
is granulation of data. The aim of this step is to
form semantically rich granules from experimental data.
Techniques used heavily depend on the representation
of granules. Granules based on fuzzy sets may
be produced with clustering algorithms. Granules
represented with intervals may be produced through the
mean and standard deviation, a minimum–maximum
pair, etc. Other common techniques are discretization,
quantization, aggregation, or transformation (Yao, 2020).
Data items may be aggregated with binary relations
producing binary granules (Qian et al., 2011; 2010).

One more operation needs mentioning:
degranulation. It is a process that produces data
items from granules. Data granules have their internal
structure, the internal representation of data entities. It is
very important to highlight that a data granule is not an
archive, a zip, or a bag of data items (Siminski, 2021a).
This is why degranulation does not always produce
exactly the same data that had been granulated into
granules. The difference is called the degranulation error.

3. GrDBSCAN: Granular DBSCAN

In this section, we present a new granular density-based
algorithm—GrDBSCAN. First, we briefly describe the
DBSCAN algorithm in Section 3.1. Thereafter,
Section 3.2 presents the GrDBSCAN algorithm.

3.1. DBSCAN. Density-based spatial clustering of
applications with noise (DBSCAN) is an algorithm
proposed by Ester et al. (1996). The algorithm picks a
random point that belongs to no cluster. Then DBSCAN
finds all neighbours of the point in a hyperball with radius
ε. If the number of data items within the ball is lower than
Pmin, then the starting point is labelled as noise. If the
number of neighbours is large enough, the point is a seed
of a new cluster. All its neighbours that do not belong to
any cluster are now elements of a new clusterA. ClusterA
is then extended (if possible) by including of neighbours
for each neighbour of the seed. If any neighbours exist,
they are added to cluster A and the extension procedure is
run for them subsequently. The pseudocode of DBSCAN
is presented in Algorithm 1.

3.1.1. Properties of DBSCAN. A very important
feature of DBSCAN is the form of produced clusters.
There is no limitation on cluster shapes—DBSCAN can
elaborate clusters of any shape. Furthermore, DBSCAN

Algorithm 1. DBSCAN procedure.
Require: X = {x1,x2, . . . ,xX}: dataset
Require: ε, Pmin: DBSCAN parameters
Require: δ: metric

1: i← 0; {i-th cluster}
2: N← ∅; {noise is an empty set}
3: for all data item x in X do
4: H← findNeighbours (X, δ,x, ε); {see Alg. 2}
5: if |H| < Pmin then
6: N← N ∪ {x};{too few neighbours: x is noise}
7: else
8: i← i+ 1; {the next cluster, a new cluster}
9: ci ← ci∪{x}; {add data item to the i-th cluster}

10: X← X \ {x}; {remove data item from data set}

11: for all data item h in H do
12: ci ← ci ∪ {h}; {add neighbour to the i-th

cluster}
13: X ← X \ {h}; {remove neighbour from data

set}
14: if h in N then
15: N← N \ {h}; {h is not noise}
16: else
17: M ← findNeighbours (X, δ, h, ε); {find

neighbours of a neighbour, Algorithm 2}
18: if |M| ≥ Pmin then
19: H ← H ∪ M; {add a neighbour’s

neighbours to neighbours of the seed
item in the cluster}

20: end if
21: end if
22: end for
23: end if
24: end for

Algorithm 2. DBSCAN: findNeighbours procedure.
Require: X = {x1,x2, . . . ,xX}: dataset
Require: ε, Pmin: DBSCAN parameters
Require: δ: metric
Require: xp: point to find neighbours for

1: H← ∅; {empty set of neighbours}
2: for all data item x in X do
3: if δ(xp,x) ≤ ε then
4: H← H ∪ {x}; {x is a neighbour of xp}
5: end if
6: end for
7: return H; {neighbours of xp}
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does not need an input parameter for the number of output
clusters—their number is determined automatically. The
number is influenced by modification of DBSCAN
parameters (ε, Pmin, and the distance function).

Sensitivity to the value of ε is a disadvantage of
DBSCAN. The value of ε is not easy to set. It is
commonly specified by an expert with good understanding
of a data set to a cluster. DBSCAN is not fully
deterministic. Results may differ if the order of processed
data changes.

3.1.2. Computational complexity of DBSCAN.
Generally, for each data item all neighbours have to
be found. Therefore, the computational complexity is
O(n2), where n is the number of data points to cluster.
However, the authors of DBSCAN (Ester et al., 1996)
claim that it is possible to implement DBSCAN with
O(n log n) time complexity. Gunawan (2013) doubts the
line of reasoning of Ester et al. (1996) and estimates the
complexity of DBSCAN as O(n2). Gan and Tao (2015)
discuss the complexity issue of DBSCAN and state that
linarithmic O(n log n) complexity is a misclaim and the
true complexity is O(n2). Gunawan (2013) claims that
“there is no known algorithm that can compute exactly
the same clustering as the original DBSCAN algorithm
and whose running time is O(n log n) in the worst case”.
Schubert et al. (2017) doubt linearithmic O(n logn)
complexity of implementation based on index structures,
criticise mentioning it by secondary sources, and state
that “[t]his runtime complexity is formally incorrect since
there is no theoretical guarantee for the assumed runtime
complexity of range queries, and it should not be repeated
in this form”. Gunawan (2013) proposes a DBSCAN with
linarithmic complexity, but only for 2D datasets.

3.2. GrDBSCAN. This section presents a novel
granular density-based clustering algorithm. The
algorithm granulates numerical input data into fuzzy
granules and then runs density-based clustering on them.
We shortly discuss the representation of fuzzy granules,
fuzzy distance between granules, and the neighbourhood
used in the GrDBSCAN algorithm.

3.2.1. Representation of granules. The proposed
clustering algorithm works with fuzzy granules. They
are represented with Gaussian type-1 fuzzy sets. Each
attribute of a granule is defined by a pair of values: core
m and fuzzification σ of the attribute. Thus, a granule in
a D-dimensional space is represented by a vector of D
pairs: cores and fuzzifications. The membership function
for attribute d is defined as

ud (xd) = exp
(
− (xd −md)

2

2σd2

)
, (1)

where md stands for the core of a set for the d-th attribute
and σd for its fuzzification.

3.2.2. Distance between granules. DBSCAN works
with points and GrDBSCAN with fuzzy granules. In
the DBSCAN algorithm, any metric can be used. In
the implementation we employ, the Euclidean metric is
applied, but it can be easily changed to another. In the
GrDBSCAN, the distance is fuzzy in each orthogonal
dimension. There are some attempts to define a fuzzy
Euclidean distance between fuzzy sets. However, they
are commonly based on α-cuts and produce approximate
results or have high computational time (Diamond and
Körner, 1997; Chakraborty and Chakraborty, 2006), or
are limited to interval-value fuzzy sets (Luo and Cheng,
2015). This is why we define a new distance measure for
the GrDBSCAN algorithm. The function δ : G × G →
T denotes the distance between fuzzy granules. The
function takes two granules, ga = (ma, σa) ∈ G, gb =
(mb, σb) ∈ G, and outputs a triangular number t ∈ T

represented by a triangular fuzzy set:

δ ((ma, σa), (mb, σb))→ (smin, c, smax), (2)

where c is the core, smin is the minimum of the support,
and smax is the maximum of the support of the triangular
fuzzy set. The values are elaborated for each attribute
separately with the formulae

c = |mb −ma| , (3)
smin = c−max(σa, σb), (4)
smax = c+max(σa, σb). (5)

3.2.3. Neighbourhood. GrDBSCAN finds neighbours
for granule g. The neighbourhood H is defined as a set of
granules whose distance from the central granule is less
than ε. The distance between granules ga and gb is a
fuzzy value elaborated with Eqns. (3)–(5). In the next
step, the algorithm has to state whether granule gb is in
the neighbourhood Ha of granule ga. The radius ε of
ga’s neighbourhood is a crisp number. The membership
u
(d)
Ha

(gb) of granule gb to the neighbourhoodHa of granule
ga with regard to attribute d is a fuzzy value defined as

u
(d)
Ha

(gb)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, ε ≤ smin,
(ε− smin)

2

(c− smin)(smax − smin)
, smin < ε ≤ c,

1− (smax − ε)2
(smax − c)(smax − smin)

, c < ε < smax,

1, smax ≤ ε,
(6)

where (smin, c, smax) stands for the fuzzy distance
between granules ga and gb with regard to attribute d.
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Fig. 1. Distance is represented with a triangular fuzzy set. The
radius ε of a neighbourhood is a crisp value. The filled
area denotes the degree to which the distance is within
the radius ε. In the case (a) the distance is not within
the radius ε, so the area is 0. In the case (b) the distance
is partially within ε and the area is 1/8. In the case (c)
the distance is almost completely within ε and the area
is 7/8. In the case (d) the distance is completely within
ε, so the area is 1.

An example of applications of the formula (6) above is
presented in Fig. 1. In the case (a) the distance is not
within the radius ε, so the area is 0. In the case (b) the
distance is partially within ε and the area is 1/8. In the
case (c) the distance is almost completely within ε and
the area is 7/8. In the case (d) the distance is completely
within ε, so the area is 1.

The membership uHa(gb) of granule gb to the
neighbourhood of granule ga is elaborated as the t-norm	
of memberships elaborated for all attributes 1, 2, . . . , D:

uHa(gb) = u
(1)
Ha

(gb)	 . . .	u(D)
Ha

(gb)

=
⊙
d∈D

u
(d)
Ha

(gb). (7)

3.2.4. General idea of GrDBSCAN. The general idea
of the proposed algorithm is presented in Algorithm 3.
The first step is the granulation of input data (line 1).
In this paper, GrDBSCAN uses one of two algorithms:
FCM (Dunn, 1973) or FCOM (Leski, 2016), but any
technique that produces Gaussian granules described in
Section 3.2.1 can be applied. The goal of this step is
the reduction in the number of data items for the second
step, which is density-based clustering of fuzzy granules
(line 2).

Algorithm 3. GrDBSCAN.
Require: X = {x1,x2, . . . ,xX}: data set
Require: ε, Pmin, ξ, ψ: GrDBSCAN parameters
Require: δ: distance function

1: G← granulate(X); {data granulation}
2: C ← clusterGranules(G); {clustering of granules

with Algorithm 4}

3.2.5. Clustering of granules. Granules have fuzzy
memberships to clusters. In order to handle fuzzy
neighbourhoodness, the algorithm introduces two new
parameters:

• ξ: threshold membership below which a data item is
regarded as not belonging to any cluster;

• ψ: threshold membership above which a data item is
regarded as a neighbour of the seed of a cluster.

The relation between the values is ξ < ψ. If a granule is
a neighbour of the seed of a cluster, it belongs to a cluster
and its membership u > ψ. In such a case the granule
is not going to be a seed of a new cluster because that is
possible only if u < ξ.

The elaborated clusters are presented with
membership matrix U. Each row of the matrix represents
a cluster and each column—a granule. Each value in
a row is a membership value of a granule to a cluster.
Matrix U = (ucg) is composed of membership values
ucg of granule g to cluster c.

Procedure ‘clusterGranules’. This is a core procedure
of GrDBSCAN (Algorithm 4). The first step is a random
selection of a seed granule for the first cluster (line 3 in
Algorithm 4). Then, a loop is started (lines 4–12). First
the algorithm finds neighbours – it elaborates membership
values of all granules to the neighbourhood of the seed
granule (line 7). Then a neighbour with the highest
membership to the neighbourhood (the “best” neighbour)
is selected (line 8). Then follows an expansion of the
neighbourhood of the “best” neighbour (line 9). This
approach is repeated until there are no more “best”
neighbours. When neighbourhood expansion is no longer
possible, a new cluster is completed and added to the set
of clusters (line 10). Finally, a new seed granule is chosen
and the loop is repeated. If no more seed granules can be
found, the last step of the algorithm removes clusters with
too few granules inside (line 13).

Below we provide a more detailed description of
subprocedures used in form of Algorithm 4.

Procedure ‘findNeighboursMemberships’. This pro-
cedure (Algorithm 5, line 7) yields a value 1 for
true neighbours, 0 for true non-neighbours, and partial
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membership for granules within boundary region. It
applies Eqns. (3)–(5), (6), and (7).

Algorithm 4. clusterGranules.
Require: G = {g1, g2, . . . , gG}: data set
Require: ε, Pmin, ξ, ψ: parameters
Require: δ: distance function

1: {initialize algorithm}
2: U← [ ]; {empty membership matrix}
3: gs ← a random granule in G; {seed granule for a new

cluster}
4: while gs 
= null do
5: p← [false]; {flags for each granule denoting being

processed}
6: p[gs]← true; {currently processed}
7: us ← findNeighboursMemberships(gs,G); {find

neighbours of gs, Algorithm 5}
8: gh ← getBestNeighbour(G,us,p); {get

the neighbour with the highest membership,
Algorithm 6}

9: us ← expandCluster(gh,us,p); {expand the
cluster c with gh’s neighbours, Algorithm 7}

10: U ← [U us]
T; {us represents membership of

all granules to a completed cluster, we add a row
representing a cluster to membership matrix}

11: gs ← findNewSeed(U); {find a new seed granule
for a new cluster, Algorithm 9}

12: end while
13: U← pruneClusters(U); {Alg. 10}

Algorithm 5. findNeighboursMemberships.
Require: G = {g1, g2, . . . , gG}: set of granules
Require: ε, Pmin: DBSCAN parameters
Require: gs: seed granule to elaborate neighbours for
Require: tnorm

1: {initialize algorithm}
2: for all granule g in G do
3: u← 1;
4: for all d in g’s attributes do
5: {applied to each attribute d}
6: ld ← δ(gs, g); {distance between gs and g with

regard to the d-th attribute, Eqns. (3), (4), (5)}
7: ud ← calculate membership for ld and ε with

Eqn. (6);
8: u← tnorm (u, ud); {Eqn. (7)}
9: end for

10: u[g] ← u; {membership of granule g to the
neighbourhood of seed granule gs}

11: end for
12: return u; {memberships of all granules to the

neighbourhood of seed granule gs}

Procedure ‘getBestNeighbour’. This procedure
(Algorithm 6) is responsible for identification of
a neighbour with the highest membership to the
neighbourhood. It finds an unprocessed neighbour with
the highest membership to the neighbourhood and whose
membership is greater than the threshold value ψ (cf.
Section 3.2.5).

Procedure ‘expandCluster’. This procedure (Al-
gorithm 7) is responsible for expansion of a new cluster.
It takes membership values us of all granules to the
seed granule of the cluster that is being expanded and
a vector p of flags that signify if a granule has already
been processed. It also takes a granule gh that belongs to
the cluster and tests if it is possible to expand the cluster
with gh’s neighbours. Therefore, neighbours of gh are
elaborated (line 2 in Algorithm 7). Their membership

Algorithm 6. getBestNeighbour.
Require: G = {g1, g2, . . . , gG}: set of granules
Require: us: neighbours memberships
Require: p; flags for each granule denoting being

processed
1: vmax ← 0; {maximal value}
2: imax ← null; {index of maximal value}
3: for k ← 1 to G do
4: {for each granule}
5: u← us[k];
6: if u > vmax and u > ψ and p[k] = false then
7: vmax ← u;
8: imax ← k;
9: end if

10: end for
11: return gimax ;

Algorithm 7. expandCluster.
Require: G = {g1, g2, . . . , gG}: data set
Require: gh: a neighbour of seed granule gs whose

neighbours are used to expand cluster
Require: us: membership values to the neighbourhood

of the seed granule of the cluster
Require: p; flags for each granule denoting being

processed
1: while gh 
= null do
2: uh ← findNeighboursMemberships(G, ε, gh);

{find neighbour’s neighbours, Algorithm 5}
3: update us with uh; {Algorithm 8}
4: p[gh] ← true; {gh is processed and will not be

processed again}
5: gh ← getBestNeighbour(G,us,p); {get

the neighbour with the highest membership,
Algorithm 6}

6: end while
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to the neighbourhood of gh is stored in vector uh. Then
memberships to the seed granule have to be updated (line
3). If a granule is a neighbour of a neighbour of the seed
granule, it is also a neighbour of the seed granule.

Algorithm 8 and Fig. 2 present the idea of the
membership update. Let ga be a seed of a new
cluster. For all granules we elaborate memberships to ga’s
neighbourhood. Let the values for granules gb and gc be
ua(b) = 1 and ua(c) = 0.3, respectively. In the next step,
we try to extend the cluster and elaborate neighbours of
granule gb (which is a neighbour of granule ga). Let the
elaborated value of the membership of granule gc to the
neighbourhood of granule gb be ub(c) = 0.8. Now we
update the membership ua(c) = 0.3 with the formula

ua(c)← max (ua(c), ua(b)	 ub(c)) , (8)

where 	 stands for a t-norm. In the example, the original
value ua(c) = 0.3 is updated to ua(c) ← 0.8 (the
minimum t-norm is used).

The last two steps of the ‘expandCluster’ procedure
are line 4 where we set the processed flag for granule
gh and line 5 where we choose a new neighbour to
expand the cluster with. When no more expansion is
possible, the procedure ends and returns to line 10 in
the ‘clusterGranules’ procedure (Algorithm 4). The row
representing the cluster is elaborated and added to the
membership matrix U (line 10).

Procedure ‘findNewSeed’. The next step is a selection
of a new seed granule for a next cluster (Algorithm 9). The
procedure chooses a granule with a minimal membership
to all clusters. For each granule its memberships to all

ga

gb

gc

ua(b) = 1

ub(c) = 0.8

ua(c) = 0.3→ 0.8

Fig. 2. Update of the membership value of gc to the cluster
whose seed is ga. The membership is updated from orig-
inal 0.3 to 0.8.

Algorithm 8. updateMembership.
Require: ugs : membership values to the neighbourhood

of the seed granule of the cluster
Require: ugh : membership values to the neighbourhood

of the neighbour of the seed granule
1: for all g do
2: ugs(g)← max (ugs(g), ugs(gh)	ugh(g)) ;
3: end for

clusters are aggregated with an s-norm. Granules with
aggregated membership greater than or equal to ξ cannot
be candidates for a new seed granule (cf. Section 3.2.5).
A candidate cannot also be a seed of any already existing
cluster.

Procedure ‘pruneClusters’. The very last step in
the GrDBSCAN algorithm is the pruning of clusters
(Algorithm 10). If the cardinality of a cluster is lower
than Pmin, it is removed from a set of clusters.

3.2.6. Complexity of GrDBSCAN. Before we analyse
the complexity of the GrDBSCAN algorithm, let us recall
the notation: X stands for the number of input data and
G is the number of granules. GrDBSCAN consists of two
parts: the first one is granulation (line 1 in Algorithm 3),
the second—the clustering of fuzzy granules (line 2 in
Algorithm 3).

In the experiments for granulation, the FCM
algorithm is used (although the implementation is ready
for other clustering algorithms). It is based on
minimisation of a criterion function. The function is
minimised in the Picard iteration procedure. FCM holds
data in a membership matrix. The matrix has G rows
(a separate row for each granule) and X columns (each
column for each object). The value in the g-th row and the
x-th column denotes the membership of the x-th data item
to the g-th granule. Each iteration of the FCM algorithm
has three steps: (i) determination of granule centres with
time complexity O(XGD), (ii) computation of distances
of data items from granule centres: O(XGD), and
(iii) modification of the partition matrix O(XGD). If
the algorithm is run I times, its time complexity is

Algorithm 9. findNewSeed.
Require: U

1: u ← aggregate each column if U separately with an
s-norm; {each column represents memberships of one
granule to all cluster}

2: g ← choose a granule (that is not a seed granule for
any cluster) with minimal aggregated value in u that
is less than ξ;

3: return g;

Algorithm 10. pruneClusters.
Require:

1: for all rows in U do
2: w ← sum up values in a row;
3: if w < Pmin then
4: remove the row from U;
5: end if
6: end for
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O(XGDI). This is the complexity of the first step of
the algorithm.

The idea of the granule clustering part of the
GrDBSCAN algorithm is similar to that of DBSCAN.
However, its complexity requires a more in-depth
discussion. Similarly to the complexity issue of
DBSCAN, theoretical complexity is difficult to find. Let
us focus on the worst-case scenario. In each iteration all
neighbours of an item in question are found. This step has
O(G2) complexity. The number of iterations equals that
of final clusters. It is (in the worst-case) G, thus resulting
in O(G3) complexity for the clustering part.

The complexity of the clustering part of the
GrDBSCAN algorithm is higher than that of the
DBSCAN algorithm since no items can be discarded
from further analysis after a membership assignment. In
the new granular algorithm, one object can determine a
member of multiple clusters with different memberships.
For each granule we have to determine distances to
all other granules. Furthermore, when expanding the
neighbourhood, the distances are determined once again
for every neighbour granule. In the worst case, the number
of neighbours approaches that of granules. Finally, the
operations mentioned will be repeated for every core
granule, that is, for every output cluster (including that
pruned in Algorithm 10). In the worst case, the number of
output clusters approaches that of granules. All the above
operations seem to require worst-case O(G3) time. The
reasoning above should be expanded, though. A granule
can be a seed granule for a cluster only once. If a granule
is in a cluster (the granule’s membership to the cluster
is no less than ψ), it will not be a seed of a new cluster
(cf. Section 3.2.5). Thus, even worst-case complexity
will be lower. In many cases the number of clusters is
lower than the number of items to cluster – this is the
idea of clustering. Therefore, the complexity of this part
of the GrDBSCAN algorithm is lower than O(G3) and
is O(G2 · K), where K stands for the final number of
clusters.

Finally, the complexity of the GrDBSCAN algorithm
is O(XDIG + G2K). It is worth noting that the
complexity of GrDBSCAN is linear with respect to the
size X of the input data set and quadratic (cubic in
the worst-case scenario) for the number of granules G.
Commonly, the number of granules is lower than that of
input dataG < X (or evenG� X), andG is a parameter
of the GrDBSCAN.

4. Experiments
The GrDBSCAN algorithm has been implemented as part
of a library for fuzzy and neuro-fuzzy systems (Siminski,
2019) freely available from the GitHub repository.1

1http://github.com/ksiminski/neuro-fuzzy-libr
ary.

GrDBSCAN works with fuzzy values. It applies t-norms
and s-norms for modelling ‘and’ and ‘or’ operators,
respectively. Theoretically, any t-norm and s-norm can
be used. In our experiments, the minimum t-norm and
maximum s-norm are used.

4.1. Data sets. Both synthetic and real-life data sets
are used in the experiments. The synthetic data sets with
known numbers of clusters are inspired by Karami and
Johansson (2014) as well as Starczewski et al. (2020). The
data sets (2D “lagoon”, “two crescents”, “four angles”,
“two circles”, “various sizes”, and 3D “spheres”) are
visualised in Fig. 3. Each data set holds 1 000, 2 000,
5 000, 10 000, 20 000, 30 000, 40 000, and 50 000 data
items. The real-life data sets with an unknown number
of clusters are available from public websites: “gowalla”2

and “brightkite”.3 These are two-dimensional data sets
with 6.4 million (“gowalla”) and 4.7 million (“brightkite”)
entries (Cho et al., 2011).

4.2. Granulation. The GrDBSCAN algorithm has two
steps: the granulation of input data and the clustering
of granules. For the first step any algorithm that yields
granules represented by Gaussian fuzzy sets can be used.
In the experiments, the FCM (Dunn, 1973) and FCOM
(Leski, 2016) algorithms are applied. Both share two
parameters: the exponent for the distances and the number
of groups to elaborate. The exponent value is set to m =
2. This value is supported by many clustering experiments
run by various researchers. The value is also applicable
for the granulation step of GrDBSCAN. However, higher
values of this parameter (e.g., m = 4) were also used
to get more concise granules (e.g., for the “gowalla” and
“brightkite” data sets).

FCM and FCOM cannot find an optimal number
of groups and this value has to be passed as an input
parameter. The experiments were run for various
numbers of groups. The FCOM algorithm has one more
parameter: the loss function. The original paper on
FCOM (Leski, 2016) describes several loss functions
but without any recommendation. In the experiments,
the logarithmic-linear loss function was used. This
choice was supported by the remarks stated by Siminski
(2017). FCM and FCOM are iterative algorithms. In the
experiments, the number of iterations is set to 100.

4.3. Preliminary experiments. The preliminary
experiments focused on parameters ξ and ψ. They were
run on the “two circles” data set for the values 0.1 ≤ ξ ≤
ψ ≤ 0.9. High values of ψ produce smaller clusters and

2https://snap.stanford.edu/data/loc-gowalla.h
tml.

3https://snap.stanford.edu/data/loc-brightkit
e.html.

http://github.com/ksiminski/neuro-fuzzy-library
http://github.com/ksiminski/neuro-fuzzy-library
https://snap.stanford.edu/data/loc-gowalla.html
https://snap.stanford.edu/data/loc-gowalla.html
https://snap.stanford.edu/data/loc-brightkite.html
https://snap.stanford.edu/data/loc-brightkite.html
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Fig. 3. Visualisation of data sets: “lagoon” (a) “four angles” (b)
“two crescents” (c) “various sizes” (d) “two circles” (e)
“spheres”(f).
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Fig. 4. Comparison of execution times of the GrDBSCAN,
SLINK, and CompleteLINK algorithms for the “various
sizes” and “two crescents” data sets.

low values of ψ result in larger overlapping clusters. High
values of parameter ξ tend to produce more clusters. while
low values of parameter ξ tend to produce fewer clusters,
but more overlapping ones, The experiments reveal that
GrDBSCAN is not very sensitive to these parameters (ε is
more influential). The values ξ = 0.4 and ψ = 0.6 are
used in the following experiments.

4.4. Running time. This experiment has two parts
for (a) a varying number of data items and (b) a varying
number of granules.

Number of data items. The experiments focus on
running time of DBSCAN and GrDBSCAN. They are run
for all data sets with 1 000, 2 000, 5 000, 10 000, 20 000,
30 000, 40 000, and 50 000 data items.

The comparison of execution times of DBSCAN and
GrDBSCAN is presented in Tables 1 and 2 for the “two
crescents” and “brightkite” data sets, respectively. The
symbol ‘[−]’ means that the execution time was very
long – for example, the estimated time of DBSCAN for
3 000 000 data items is approximately 17.5 days and for
4 000 000 it is about 31.25 days.

Figures 5–9 visualise execution times of DBSCAN
and GrDBSCAN for the “two crescents”, “two circles”,
“two crescents”, “spheres”, and “gowalla” data sets,
respectively. Figure 9 presents the execution time
for small numbers of data items. For those, DBSCAN
runs faster than GrDBSCAN. However, the square time
complexity of DBSCAN surpasses the execution time of
GrDBSCAN for bigger data sets.

Figure 4 compares the execution time of
GrDBSCAN with the SLINK (Sibson, 1973) and
CompleteLINK (Defays, 1977) algorithms. We used
these algorithms for the comparison because they can
elaborate groups of any shape, whereas algorithms in the
FCM family produce only hyperellipsoidal groups. It can
be observed that both SLINK and CompleteLINK have
superlinear time complexity. For small data sets, SLINK
is faster; however, for large data sizes, its execution time
surpasses that of GrDBSCAN. For this experiment we
used the scipy Python implementation. The absolute
execution time values may not be suitable for comparison,
as the implementation languages differ, but the observed
trend for the SLINK and CompleteLINK algorithms is
superlinear, whereas it is linear for GrDBSCAN.

The results for all data sets follow the same
pattern. This is why the results are presented only for
selected ones. The execution time of the DBSCAN
algorithm follows O(n2) complexity. The complexity of
the GrDBSCAN is in concordance with the theoretical
analysis given in Section 3.2.6.
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Table 1. Clustering time for the “two crescents”data set.
data running time [ms]
size DBSCAN GrDBSCAN

1000 119 98
2000 450 185
5000 2845 462

10000 11838 925
20000 47709 1914
30000 116582 3402
40000 208036 4265
50000 332864 5071

Table 2. Execution time for the “brightkite” data set.
data execution time [ms]
size DBSCAN GrDBSCAN

1000 122 238
2000 509 476
3000 1 008 689
4000 1 839 906
5000 2 995 1 199

10000 12 086 2 396
20000 49 827 4 686
30000 114 728 7 224
40000 211 008 9 744
50000 342 312 13 238

100000 1 417 806 25 388
200000 [−] 53 661
300000 [−] 80 650
400000 [−] 107 662
500000 [−] 139 438

1000000 [−] 277 234
2000000 [−] 557 470
3000000 [−] 835 631
4000000 [−] 1 144 224

Table 3. Execution time for the “two crescents” data set.
number of execution time [ms]

granules granulation clustering
20 1063.7 0.8550
50 2610.9 0.9547

100 5303.5 1.5423
200 10753.2 3.4178
400 21105.8 12.7719
500 27169.2 20.4674
600 31688.6 31.1268
800 48575.4 57.8904

1000 57786.0 98.6146

Table 4. Clustering quality matrix for the “two crescents”data
set.

GrDBSCAN groups
1 2

DBSCAN 1 248.505 0.498
groups 2 0.779 224.891

Number of granules. This section presents results for
the “two crescents” data set with a constant number of
data items: 10 000. The parameter values are ε = 5,
ξ = 0.4, and ψ = 0.6. The execution time is measured
separately for two steps of GrDBSCAN: granulation and
clustering of granules (cf. Algorithm 4). This is necessary
because each step operates on a significantly different
number of input objects: granulation runs for 10 000
data items, whereas clustering runs for a much smaller
number of granules. Therefore, the granulation time
is much longer and overshadows the clustering time.
The times for both steps are presented in Table 3 and
Fig. 10 for the clustering step only. The results are in
concordance with theoretically elaborated complexity of
GrDBSCAN (Section 3.2.6). If we set a constant number
of granules, GrDBSCAN runs in linear time with regard
to the size of input data. However, sometimes (depending
on the specific problem to solved) an increase in input
data may need a higher number of granules. In such a
case the quadratic component of the time complexity of
GrDBSCAN may more strongly influence the execution
time (Fig. 10).

4.5. Clustering quality measure. This section defines
a clustering quality measure to quantify the quality
of clustering with GrDBSCAN in comparison with
DBSCAN. We treat clusters produced by the DBSCAN
algorithm as the reference for the results of GrDBSCAN.

Let the value uc(x) be a membership of point x to
GrDBSCAN’s cluster c. It is evaluated as a maximum for
all granules of a product of membership ug(x) of point
x to granule g and of membership uc(g) of granule g to
cluster c:

uc(x) = max
g∈G

uc(g) · ug(x). (9)

Having produced the values with Eqn. (9), the
algorithm fills a correspondence matrix. Each column
represents a cluster elaborated by GrDBSCAN, and each
row represents a cluster elaborated by DBSCAN. Matrix
cell lab represents the number of items assigned to cluster
a by DBSCAN and to cluster b by GrDBSCAN. The value
in the cell is calculated with the formula

lab =

X∑
k=1

ub(xk) [xk ∈ a] , (10)

where [·] is the Iverson bracket defined as

[x] =

{
1, x is true,
0, x is false.

(11)

Notation [xk ∈ a] evaluates to 1 if point xk belongs to the
a-th cluster elaborated by DBSCAN, otherwise its value
is 0.
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Fig. 6. Comparison of execution times with regard to the num-
ber of data items for the “two crescents” data set.

DBSCAN and GrDBSCAN form clusters
independently, so the correspondence between clusters
has to be found. In order to do this, first all columns are
sorted with respect to the maxima of each column, then
all rows are sorted with respect to the maxima of each
row. This step aims at maximising values on the diagonal
of the matrix. If the numbers of rows and columns
are not the same, extra rows or columns with zeros are
added to make the matrix a square. The quality index
is determined as the multiclass Matthews correlation
coefficient ϕ ∈ [−1, 1] (Matthews, 1975; Chicco and
Jurman, 2020).

4.6. Quality of clustering. When measuring the
quality of clustering, DBSCAN is used as a reference
algorithm. Our aim is to reduce the computational
complexity with granulation of data and keep the
elaborated clusters similar to those produced by
DBSCAN. Quality matrices are presented in Tables 4–9
for the “two crescents”, “four angles”, “lagoon”, “various
sizes”, “spheres”, and “two circles” data sets; Tables 10
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Fig. 7. Comparison of execution times with regard to the num-
ber of data items for the “spheres” data set.
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Fig. 8. Comparison of execution times with regard to the num-
ber of data items for the “gowalla” data set.

and 11 gather the values of the quality index ϕ. The
matrices show that GrDBSCAN can reproduce clusters
elaborated by the DBSCAN algorithm. Visualisations of
clustering results are presented in Figs. 11 and 16.

Granules are represented in a symbolic way. They
are modelled with Gaussian fuzzy sets and are plotted
as ellipses whose orthogonal sizes are fuzzifications of
attributes. The larger the ellipse, the more fuzzy granule
it represents.

4.7. Robustness to noise. In this section, we analyse
the robustness of the GrDBSCAN algorithm to noise.
Uniform noise has been added to the “two crescents”
data set with 1000 informative (non-noisy) data items.
The number of granules was set to 20. The results are
presented in Fig. 17. The first panel (a) presents results
for a data set with 200 noise points. The original crescents
were correctly identified. For 700 noise points (panel (b)),
two additional regions were identified as clusters despite
being built of noise points. Two crescents were identified.
In the panel (c), 1500 noise points distort the results: one
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Table 5. Clustering correspondence matrix for the “four an-
gles”data set.

GrDBSCAN groups
1 2 3 4

1 144.10 0.00 0.79 0.20
DBSCAN 2 0.00 143.06 0.00 0.06

groups 3 1.19 0.00 137.00 0.00
4 0.20 0.19 0.00 135.70

Table 6. Clustering correspondence matrix for the “lagoon”data
set.

GrDBSCAN groups
1 2 3

DBSCAN 1 374.957 0.000 0.000
groups 2 0.000 58.4854 0.000

3 0.000 0.000 56.2111

Table 7. Clustering correspondence matrix for the “various
sizes”data set.

GrDBSCAN groups
1 2 3

DBSCAN 1 520.593 0.000 0.000
groups 2 0.000 10.309 0.000

3 0.000 0.000 9.830

Table 8. Clustering correspondence matrix for the
“spheres”data set.

GrDBSCAN groups
1 2

DBSCAN 1 316.861 0.000
groups 2 0.000 95.823

of the crescents is split into two clusters. For 2500 noise
points, the results are even poorer. In order to get better
results, the number of granules needs to be increased.
In Fig. 17(e), for a data set with 2500 noise items, the
number of granules is set to 100. The output clusters
are filtered using the input parameter Pmin. Two of the
biggest clusters cover the informative data. Figure 17(f)
presents a similar case, but with 5000 noise items (and 100
granules). The two biggest clusters cover the informative
data (crescents). The values of the quality index ϕ for
experiments with granulation with the FCM and FCOM
(Leski, 2016) algorithms are presented in Table 12.

5. Conclusions
The paper presented a novel granular density-based
clustering algorithm—GrDBSCAN. The main motivation
was reduction in the execution time while preserving
the advantages of a density-based clustering approach
at the same time. In order to achieve this goal, the
algorithm is split into two parts: granulation and the
clustering of granules. The first step (granulation)
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Fig. 9. Comparison of execution times with regard to the num-
ber of data items for a small number of data items in the
“gowalla” data set.
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Fig. 10. Clustering time (second step of GrDBSCAN) with re-
gard to the number of granules for the “two crescents”
data set with 10 000 data items.

produces fuzzy granules from input data. The second step
(the clustering of fuzzy granules) produces fuzzy clusters
of the elaborated granules. The proposed GrDBSCAN
algorithm can elaborate clusters in shorter time than its
non-granular counterpart DBSCAN. When the number of
granules is constant, the GrDBSCAN algorithm is linear
with regard to the input data size. GrDBSCAN can
yield similar clusters to those discovered by the DBSCAN
algorithm. The implementation of GrDBSCAN is freely
available from a public repository.4
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Fig. 11. Clustering results produced by DBSCAN (a) and

GrDBSCAN (b) for the “two crescents” data set.
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Fig. 12. Clustering results produced by DBSCAN (a) and
GrDBSCAN (b) for the “lagoon” data set.
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Fig. 13. Clustering results produced by DBSCAN (a) and
GrDBSCAN (b) for the “four angles” data set.
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Fig. 14. Clustering results produced by DBSCAN (a) and
GrDBSCAN (b) for the “two circles” data set.
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