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The growing use of the Internet of Things (IoT) in smart applications necessitates improved security monitoring of IoT
components. The security of such components is monitored using intrusion detection systems which run machine learning
(ML) algorithms to classify access attempts as anomalous or normal. However, in this case, one of the issues is the large
length of the data feature vector that any ML or deep learning technique implemented on resource-constrained intelligent
nodes must handle. In this paper, the problem of selecting an optimal-feature set is investigated to reduce the curse of data
dimensionality. A two-layered approach is proposed: the first tier makes use of a random forest while the second tier uses a
hybrid of gray wolf optimizer (GWO) and the particle swarm optimizer (PSO) with the k-nearest neighbor as the wrapper
method. Further, differential weight distribution is made to the local-best and global-best positions in the velocity equation
of PSO. A new metric, i.e., the reduced feature to accuracy ratio (RFAR), is introduced for comparing various works.
Three data sets, namely, NSLKDD, DS2OS and BoTIoT, are used to evaluate and validate the proposed work. Experiments
demonstrate improvements in accuracy up to 99.44%, 99.44% and 99.98% with the length of the optimal-feature vector
equal to 9, 4 and 8 for the NSLKDD, DS2OS and BoTIoT data sets, respectively. Furthermore, classification improves for
many of the individual classes of attacks: denial-of-service (DoS) (99.75%) and normal (99.52%) for NSLKDD, malicious
control (100%) and DoS (68.69%) for DS2OS, and theft (95.65%) for BoTIoT.
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1. Introduction

Internet of Things (IoT) applications have grown in
popularity in the recent decade thanks to the introduction
of low-cost sensor devices which record IoT data, and
powerful servers which process these data to generate
actionable events. One of these IoT applications is a smart
air monitoring system, which uses numerous IoT sensors
to track, measure, and record the amount of dangerous
chemicals in the air (IoT data). The information gathered
by the sensors is then sent to intelligent IoT servers, which
estimate the air quality using various machine learning
(ML) algorithms and alert the populace if air pollution
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levels exceed a predetermined threshold.

Though IoT applications are very useful, they are
prone to security threats like worms, DoS, backdoors
and other attacks by malicious entities. Such threats
have the potential to devastate IoT services and smart
devices in significant ways. For mitigating such attacks on
IoT applications, one of the solutions is to prevent them
through the use of an anomaly-based intrusion detection
system (AIDS). Figure 1 shows a section of AIDS that
consists of AIDS nodes (or network monitoring gateways
or edge nodes) deployed at the gateway of each IoT
sensor node. They record and analyze incoming network
traffic packets to classify access attempts as elements of
normal or anomaly classes. Although the AIDS is a useful
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solution to detect attacks, it suffers from the problem of
data dimensionality. The deployed AIDS nodes often lack
the processing power to process huge data sets.

This problem can be mitigated by modifying the
architecture of the AIDS, where all the data recorded
by AIDS nodes are sent to the cloud node. Figure 1
depicts this architecture. The cloud node then executes
optimization algorithms (proposed in the present work) to
reduce and optimize the independent feature vector of the
network traffic. This significantly reduces the effective
size of the data set. This reduced optimal-feature vector
(demonstrated in Fig. 2, where 1 represents selection and
0 represents rejection of a feature) is then communicated
to each AIDS node. These nodes execute the ML
algorithm (using only this optimal-feature vector) to test
the incoming traffic and classify it as normal or anomaly.
In the present work, our focus is to develop algorithms
for the cloud node to effectively reduce and optimize
the independent feature vector of the network traffic and
improve the performance in terms of accuracy and other
metrics.

The present research contributes in the following
ways:

(a) We propose a novel algorithm called GWO-PSO
(RGPO) which utilizes the concept of four leader
wolves of gray wolf optimization (GWO) for
updating the position of particles in particle swam
optimization (PSO). Here, the weights assigned
to leader wolves differ in accordance with their
status within the hierarchy. Additionally, differential
weights are assigned to the global-best and local-best
positions in the proposed RGPO velocity equation.

(b) Algorithm H2TO is proposed, which employs the
random forest in the first tier, and the RGPO
algorithm in the second tier.

(c) A novel statistic called the reduced feature to
accuracy ratio (RFAR) is proposed for comparing the
proposed work with other similar results.

(d) The suggested approach is evaluated using three
different data sets—NSLKDD, DS2OS, and BoTIoT,
and the results show an improvement over existing
works.

2. Literature review
The literature has provided numerous ML and deep
learning (DL) solutions for feature selection and
classification tasks for various applications. Kusy and
Zajdel (2021) used a fusion of three different techniques
to optimize the feature-length using a convolutional neural
network (CNN) as the classification technique. The
weighted wrapper concept was used in this paper, and a

comparison was made with sequential wrapper methods.
Siwek and Osowski (2016) applied feature selection
on a vast air pollution data set to derive meaningful
insights and predict the coming days’ pollution index.
Two methods were applied by the authors: the genetic
algorithm and stepwise fit, to find the best predictive
feature set.

These methods have also shown promise in the
field of network and IoT security. Bhattacharjya (2022)
studied the use of the blockchain technology in CPS
and IoT architectures, maintaining the CIA triad in
data communication. Gu and Lu (2021) used the
NSLKDD data set to test their ML based approach and
reported better results. Shafiq et al. (2022) employed
a pretrained auto encoder to transfer the characteristics
to similar IoT nodes for detection purposes. The data
sets of the Mirai and Bashlite regarding infected devices
were used for validation purposes. A finding was
considerable reduction in complexity due to the use of
pre-trained models in other models. In the work of
Kim and Heo (2022), unrelated features were selected
using correlation coefficients and the Boruta algorithm
was applied to hydraulic IoT sensor data. Linear
discriminant analysis (LDA), linear regression (LR), and
a support vector classifier (SVC) were used for the
classification task giving TPR performance up to 94%.
In their study, Kumar et al. (2021b) combined several
methodologies, such as the information gain and the
correlation coefficient measure, to choose the most crucial
feature set using the AND function. Through the use of
the kNN, extreme gradient boosting (XGboost), etc., the
classification was accomplished. Perceptron and hybrid
deep neural networks were used on the DS2OS data
set by Huma et al. (2021) and the accuracy achieved
was 98%. Pahl and Aubet (2018) applied the idea of
clustering for categorization. In particular, they combined
the standard deviation with the BIRCH and k-means
concepts. They evaluated their suggested methodology
on IoT microservices and discovered an accuracy of up
to 96.3%. Kumar et al. (2021a) used an ensemble of
kNN, naive Bayes (NB), XGBoost and random forest (RF)
classifiers in a fog environment. They tested their method
on the DS2OS data set, achieving the accuracy up to
99.41%.

Numerous literary works have made substantial use
of swarm intelligence algorithms. The binary version of
the PSO method was created by Kennedy and Eberhart
(1997) to enable feature selection. In their research, the
authors used the coding mechanism to mask and unmask
the features. In the work of Safaldin et al. (2021), a variety
of wolf densities in GWO were taken into account, and
the findings were promising. Another swarm intelligent
algorithm, GWO, was proposed by Mirjalili et al. (2014).
GWO is based on the concept of collective hunting by
leader wolves, i.e., a collective search process. Singh and
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Fig. 1. Two-tier framework of the system.

Fig. 2. Feature optimization process.

Singh (2017) developed HPSOGWO by combining GWO
and PSO. Using an iterative process, Chopra et al. (2016)
merged PSO and GWO. They utilized the output of one to
initialize the population of the other.

PSO was applied to various neural networks to yield
better results. Kowalski and Słoczyński (2021) modified
PSO in terms of regularization control, geometric swarm
centre determination, etc., and applied it to find an optimal
configuration of a fuzzy flip-flop, producing the least
training error. In the work of Carvalho and Ludermir
(2007), the concept of PSO-PSO was developed, wherein
inner PSO was used to optimize the weights of an MLP
neural network while outer PSO was used to optimize its

architecture. In the work of Band et al. (2020), PSO and
a deep neural network were ensembled together to model
gully erosion susceptibility using 13 independent features.

As regards work done on the DS2OS and BoTIot
data sets, Hasan et al. (2019) used the random forest and
decision tree techniques to classify the data of DS2OS.
For classifying the BoTIoT data sets, Soe et al. (2020)
used a correlation coefficient in conjunction with J48,
an RF and a very fast decision tree (VFDT). Most of
the works improved the classification efficiency; however,
they suffer from the problem of data dimensionality.

3. Proposed work
3.1. Definitions and formal representation.

IoT sensor node: an electronic device which is deployed
in the field to measure and record data.

IoT data: data recorded by the IoT sensor node.

IoT server: an intelligent device which processes IoT data
and generates actionable events.

AIDS node (network monitoring gateway/edge node):
an electronic device that records and analyzes incoming
network traffic packets to classify them into normal or
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Algorithm 1. H2TO.
Input:D = {I1, I2, . . . , Ip, Class}
1. Load the data set D
2. D ←encoding(D)
3. {I1, I2, . . . , Ip} ← Scale/Normalize{I1, I2, . . . , Ip}
4. Split D as {DTrain ∪ DTest}

Tier 1:
5. Select best n features using RFMDA metrics:

5.1 Train the classifier C1(RF)
5.2 Predict the class of test data.
5.3 Calculate prediction accuracy.

Output of 1st tier:
�Freduced ⊆ {I1, I2, . . . , Ip}

Tier 2:
6. Call algorithm RGPO with parameters:

6.1 �Freduced,
6.2 Fitness function fitfn and
6.3 ML classifier C2 =kNN

Output of 2nd tier:
�Ffinal ← Ψα,
Accuracy, DR, FPR, FNR, TNR, PR, F1.

Table 1. Cardinality of the data sets.
NSLKDD Probe-11656, DoS-45927, U2R-52,

R2L-995, Normal-67343
DS2OS DoS-5780, MC-889, MO-805,

Probe-342, Normal-347935, Scan-1547,
Spy-532, WS-122

BoTIoT DDoS-1926624, DoS-1650260,
Recon.-91082, Normal-477, Theft-79

anomaly classes.

Cloud node: a computationally powerful node which
runs optimization techniques to optimize the input feature
vector.

Input feature vector: D = {I1, I2, . . . , Ip, Class}, where
D represents the entire data set, {I1, I2, . . . , Ip} is the
set of independent features, Ij are n-dimensional column
vectors of (n × 1) dimension for j = 1, 2, . . . , p,
Class is the dependent label, being an n-dimensional
column vector and Class ∈ {C1, C2, . . . , Ck}, where
Ci are distinct classes present under label Class for i =
1, 2, . . . , k.

3.2. Data set description. In the present work, three
data sets: DS2OS (Pahl and Aubet, 2018), NSLKDD
(Tavallaee et al., 2009) and BoTIoT (Koroniotis et al.,
2019) are used. Table 1 describes these data sets.

NSLKDD: The NSLKDD data set is a collection of
multiple different incursions that were simulated in a
military network environment. It is a modified version
of the original KDD Cup 1999 data set. The authors can
thoroughly compare their work with that of others using
this well-known legacy network data set. The NSLKDD
data set’s independent input feature vector is made up of
41 different features or traffic attributes. Attacks can be
divided into four primary categories: DoS, root to local
(R2L), user to root (U2R), and probe.

DS2OS: In DS2OS, traces originated from the application
layer and were captured in an IoT context, distinguishing
them significantly from standard network traces. The
independent input feature vector of the DS2OS data set
consists of 12 distinct features/traffic attributes. DoS, data
type-probing (probe), malicious control (MC), malicious
operations (MO), scan, spying and wrong set-up (WS) are
attack types in DS2OS.
BoTIoT: BoTIoT was recorded in a real-world network
setting with both botnet and common traffic. Forty
three unique features or traffic attributes make up
the independent input feature vector of BoTIoT. The
four types of attacks are denial-of-service (DoS),
distributed-denial-of-service (DDoS), reconnaissance,
and theft.

Therefore, a thorough validation of the proposed
work using three different natured, different
timeline-based, different layered and different sized
data sets enable comprehensive analysis.

3.3. Pre-processing of the data set. This first step is
subdivided into the following three substeps:

Missing fields in datasets: There are no missing fields
in the BoTIoT and NSLKDD data sets, whereas in
the DS2OS data set, missing fields are imputed with
“missing”.

Mapping from non-numerical form to numerical form:
In the NSLKDD data set, non-numerical features are
“service”, “flag” and “protocol type”, while in the DS2OS
these are “source ID”, “source Type” and others. These
attributes must be transformed into numerical form.
In this work, mapping is accomplished using ordinal
encoding, so UDP is assigned the value of 1 and TCP as
2 for the feature “protocol type”. The ordinal encoding
technique does not produce a sparse data set, unlike one
hot encoding.

Data normalization: It is important to scale the values
of a feature using normalization or scaling techniques to
provide consistency to the otherwise large range of values.
The feature values in the current study are scaled using the
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Algorithm 2. RGPO.

Input: Maxiter , Np, �Freduced, Fitfn, C2
1. Initialize each particle Ψk, k = 1 to Np as

1.1 �Fleft = {I1, I2, . . . , Ip} − { �Freduced}
1.2 Ψkpos = {x = 1 ∀x ∈ �Freduced} ∪
{y = 0 or 1 ∀y ∈ �Fleft}

1.3 Ψkvel = random()
1.4 LoBestkpos = Ψkpos

2. for all Ψk do
2.1 Fitk =Compute fitness of Ψkpos
2.2 LoBestkfit = Fitk

3. Sort(Fitk) in order and assign:
3.1 Ψα = Ψkpos having best(Fitk)
3.2 Ψβ = Ψkpos having 2nd best(Fitk)
3.3 Ψδ = Ψkpos having 3rd best(Fitk)
3.4 Ψω = Ψkpos having 4th best(Fitk)

4. GlBestpos = Use Eqn. (13)
5. GlBestfit = Compute fitness of GlBestpos
6. Initialize ξ, η1,η2

7. while iteration <Maxiter do
7.1 for all Ψk, k = 1 to Np do

7.1.1 Initialize x1, x2

7.1.2 Ψkvel = Eqn. (14)
7.1.3 Ψkpos = Eqn. (16)
7.1.4. Calculate Fitk=Compute fitness of Ψkpos
7.1.5 if Fitk < LoBestkfit then

7.1.5.1 LoBestkfit = Fitk
7.1.5.2 LoBestkpos = Ψkpos

7.2 Sort(Fitk) in order and update:
7.2.1 Ψα = Ψkpos having best(Fitk)
7.2.2 Ψβ = Ψkpos having 2nd best(Fitk)
7.2.3 Ψδ = Ψkpos having 3rd best(Fitk)
7.2.4 Ψω = Ψkpos having4th best(Fitk)

7.3. GlBestNpos = Eqn. (13)
7.4. GlBestNfit = Compute fitness of
GlBestNpos
7.5. if GlBestNfit < GlBestfit then

7.5.1 GlBestfit = GlBestNfit
7.5.2 GlBestpos = GlBestNpos

Output: �Ffinal ← Ψα,
Accuracy, DR, FPR, FNR, TNR, PR, F1.

min-max scaling method

Iscale =
I −min(I)

max(I)−min(I)
.

Here, I is the original value, Iscale is the scaled

value, min(I) is the minimum value and max(I) is the
maximum value.

3.4. H2TO. Algorithm 1 shows the pseudocode of
the H2TO algorithm. DTrain represents the training set
of the data set, DTest represents the testing set of the
data set, �Freduced represents the intermediate reduced
feature vector obtained from the first tier, �Fleft represents
features other than those present in �Freduced, �Ffinal

represents the final reduced optimal feature vector, C1
represents Classifier 1, C2 represents Classifier 2, Fitfn
represents the fitness function and Ψα represents particle
α. The algorithm returns accuracy, detection rate (DR),
false positive rate (FPR), false negative rate (FNR), true
negative rate (TNR), precision (PR) and F1-score (F1).
The pre processing processes used on the data set are
displayed in Steps 1–3. To divide the modified data set
into training and test sets in Step 4, random selection
is applied. According to other relevant works in the
literature, the ratio of 80:20 (train:test) is taken into
account for the current investigation for all three data sets.

The transformed data are then passed through two
tiers: Tier 1 and Tier 2. Step 5 implements Tier 1
which outputs feature set �Freduced using a random forest
classifier and RFMDA metrics. RFMDA (random forest
mean decrease accuracy) ranks all the features using
the concept of permutation (Hur et al., 2017). For
ranking each feature, accuracy is measured before and
after permuting the feature (under test), and based on
the difference in values the importance of that feature is
ascertained. Kumar et al. (2021b) showed how RFMDA
is useful to get a meaningful feature set. Regarding the
random forest, classification of data instances is made
using a collection of decision trees and a collective voting
pattern. As a result, it typically provides good accuracy,
is able to prevent overfitting and is free from the bias
of a single decision tree, which is advantageous for an
intrusion detection system.

Step 6 implements Tier 2, which obtains this
�Freduced feature set and utilizes it to initialize the
RGPO particle population. Specifically, PSO particles
are initialized by taking union of �Freduced and random
selection over �Fleft. Thus, instead of using the
original method of complete randomization, we have
used partial intelligent initialization. Notably, intelligent
initialization of particles is necessary to improve
algorithmic convergence and performance (Tian, 2018),
as here, the search mechanism of particles starts from
intelligently initialized positions.

With unique train:test sets created by using the
random selection strategy before each run, the H2TO
algorithm is run ten times to avoid a chance bias. Out
of these 10 runs, the shortest feature vector with the best
accuracy is chosen. Table 6 shows these optimal-feature
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vectors. To validate the effectiveness of the obtained
feature vectors, statistical analysis is performed, whose
results are given in Section 4.4.

3.5. RGPO Algorithm.

3.5.1. Prequisite. The global-best and local-best
positions in PSO are, respectively, the historical best
positions examined by the swarm and the historical best
positions explored by the k-th particle at any instance
(Kennedy and Eberhart, 1997). The position update of
the k-th particle depends on its local-best and global-best
position. It is important to note that this global-best is
based on the historical best position occupied by a single
particle of the swarm, considering all the particles. The
following equations depict this update process in PSO:

Ψkpos(iter+1) = Ψkpos(iter)+Ψkvel(iter+1), (1)

Ψkvel(iter + 1)

= ξ ×Ψkvel(iter)

+ η1 × x1 × (LoBestkpos(iter)−Ψkpos(iter))

+ η2 × x2 × (GlBestpos(iter)−Ψkpos(iter)),

(2)
where Ψkpos is the k-th particle position vector, Ψkvel
is the k-th particle velocity vector, LoBestkpos is the
local-best position vector of k-th particle, GlBestpos is
the global-best position vector over all the particles, ξ is
the inertial-weight parameter, η1 and η2 are optimization
parameters, x1 and x2 are numbers ∈ [0,1] and × denotes
the multiplication.

Unlike in PSO, in GWO the updating of every k-th
wolf (or particle in PSO) is dependent on three best
valued leader wolves instead of a single wolf (Mirjalili
et al., 2014). The update here is given as

Ψkpos(iter + 1) =
τk1 + τk2 + τk3

3
, (3)

τk1 = Ψα −A1 ×Distα, (4)
τk2 = Ψβ −A2 ×Distβ , (5)
τk3 = Ψδ −A3 ×Distδ, (6)

Ai = 2× a× random1i − a, i = 1, 2, 3, (7)
where Distα, Distβ , Distδ are the distances of the k-th
wolf from the α, β, δ wolves,

Distα = |C1 ×Ψα −Ψkpos|, (8)

Distβ = |C2 ×Ψβ −Ψkpos|, (9)
Distδ = |C3 ×Ψδ −Ψkpos|, (10)

Ci = 2× random2i, i = 1, 2, 3. (11)
Here, Ψα,Ψβ and Ψδ represent positions of wolves α,
β and δ, respectively, a linearly decreases from 2 to 0
over the course of iterations, random1i and random2i
are random numbers uniformly distributed over [0, 1] for
i = 1, 2, 3.

3.5.2. Proposed alterations. In the current study, the
modifications in PSO create a wider search space as well
as improve the exploitation process as detailed below.

(i) We use four leader particles α, β, δ and ω to
compute the global-best position at each iteration, in
contrast to the classic PSO, where a single particle
is used to determine the global-best position. This
improves the exploration process of the algorithm,
where dependence on one particle is substituted by
the collection of four leader particles, thus yielding a
wider search space to explore the optimal solution.

(ii) The relative ranking concept is applied for assigning
differential weights to the leaders, α, β, δ and ω,
in order of their ranks, with the maximum weight
assigned to α followed by β and so on. This
improves the focus of the exploration process. If all
the leaders are given equal weights, the exploration
process gets affected by less-accurate leaders in the
same proportion as high-accurate leaders.

(iii) Global-best and local-best positions are assigned
differential weights while updating the velocity of
the k-th particle. This is done to assign higher
importance to the global-best position, which is
better than or equal to all the local-best positions at
any given instance. This helps in further improving
the focus of the exploration process to reach the
optimal solution.

The following equations model this:

GlBestpos(iter + 1)

=
4×Ψα + 3×Ψβ + 2×Ψδ +Ψω

10
. (12)

The following equation converts GlBestpos(iter + 1) to
binary form:

GlBestpos(iter + 1)

=

{
1 if sigmoid

(
4×Ψα+3×Ψβ+2×Ψδ+Ψω

10

)
≥ rand,

0 otherwise.
(13)

Similarly, the velocity is updated as

Ψkvel(iter + 1)

= ξ ×Ψkvel(iter)

+ η1 × x1 × (u× LoBestkpos(iter)− Ψkpos(iter))

+ η2 × x2 × (v ×GlBestpos(iter)−Ψkpos(iter)),

(14)

where
u+ v = 1. (15)
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Finally, Ψkpos(iter + 1) is converted to binary form as

Ψkpos(iter + 1)

=

⎧⎪⎨
⎪⎩
1 if sigmoid(Ψkpos(iter)

+Ψkvel(iter + 1)) ≥ rand,

0 otherwise.

(16)

Algorithm 2 presents the pseudocode of RGPO.
In the algorithm, GlBestfit denotes the global-best
fitness value, LoBestkfit denotes the local-best fitness
value of k-th particle, GlBestNpos denotes the new
global-best position and GlBestNfit denotes the new
global-best fitness value at each iteration. The inputs
to the algorithm are the maximum number of iterations
Maxiter , the number of particles of PSO Np, reduced
feature set �Freduced, classifier C2 (here a kNN) and
fitness function Fitfn. The kNN has the advantage of
dynamically classifying new instances effectively as it
does not generate any discriminative function (Kumar
et al., 2021a). This is beneficial for a system like the
AIDS, where new instances keep generating with an
increase in traffic. RGPO returns a reduced optimal
feature set, accuracy and other performance metrics as
output. Step 1 of the algorithm initializes the position
vector of each particle. Specifically, these are initialized
by taking the union of �Freduced and random selection over
�Fleft. Further, the initialized position of each particle is
also stored as its local-best position. Step 2 computes the
fitness value of each particle and stores it as its local-best
fitness value.

Step 3 sorts the computed fitness values. It further
assigns the best particle position (particle having the
best fitness value) to particle α, second the best to
β, third best to δ and fourth best to ω. At this
point Step 4 uses Eqn. (13) to compute the global-best
position. Step 5 computes the fitness value of the
global-best position. Step 6 initializes the parameters
of the algorithm. Iterations start from Step 7, where in
each iteration the velocity and position of k-th particle
are updated using equations as specified in the algorithm.
The fitness of all particles is recomputed; based on this
the local-best position of each particle is updated. The
particles are sorted in order of their fitness values and,
based on this, reassignment of α, β, δ and ω is done.
The global-best position is recomputed based on the
reassigned leader particles. At the end of the last iteration,
the position vector of α is returned as the optimal feature
vector.

Table 2 lists the parameters used in the proposed
work. The parameter values shown in the table are an
outcome of experimental analysis.

3.6. Fitness function used. The fitness value of a
given solution is measured using the fitness function

Table 2. Parameter table.
Parameters used Specification
First layer ML algorithm RF
Number of trees in RF 500
Second layer search algorithm RGPO
ML technique used in wrapper
approach

kNN

Fitness function Eqn. (17)
Number of particles used in
PSO

5,7,10,12

Value m in fitness function 0.9995
Value n in fitness function 0.0005
Number of leader particles 4
Value of inertial weights ξ 0.7
Values of η1, η2 0.5, 0.5
Values of u, v 0.4, 0.6

Table 3. Overall metrics for all classes.
Data
set

Feats. Acc. DR FPR PR F1

NSLKDD 9 99.44 99.43 0.34 99.43 99.43
DS2OS 4 99.44 99.45 19.39 99.44 99.44
BoTIoT 8 99.98 99.98 0.18 99.98 99.98

Table 4. Descriptive statistical results.
Optimal feature set All feature set

Data set mean sd mean sd
NSLKDD 99.44 0.02 99.46 0.03
DS2OS 99.44 0.03 99.44 0.02
BoTIoT 99.98 0.01 99.98 0.01

Table 5. Two sample t-test.
Data set t-value p-value C.I-95%
NSLKDD −2.01 0.05 [−0.03, 0.0]
DS2OS −0.64 0.53 [−0.02, 0.01]
BoTIoT −1.53 0.14 [−0.01, 0.0]

Table 6. Optimal-feature sets returned by the algorithm.
Data set Feats. Feature specification
NSLKDD 9 protocol type,land,

is host login, count, rerror rate,
same srv rate, dst host count,
dst host srv count,
dst host rerror rate

DS2OS 4 sourceID,
destinationServiceType,
operation, value

BoTIoT 8 proto, mean, stddev, srate,
drate,AR P Proto P SrcIP,
AR P Proto P DstIP,
Pkts P State P Protocol P SrcIP
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employed in optimization problems, and the solutions are
updated as a result. The fitness function to be minimized
is (Alzubi et al., 2020)

Fitfn = m× (1−Acc) + n× (len), (17)

where Acc denotes the accuracy, len denotes the length of
the feature vector, m and n are variables used to assign
different weights to the terms of accuracy and feature
length in the above equation, subject to the constraint that
m+ n = 1.

3.7. Performance metrics used. For experimental
evaluation and comparison, the following metrics are
used: accuracy, DR, FPR, FNR, TNR, PR and F1. These
common measures are employed to verify algorithms.
These measurements, however, fall short of fully
capturing an algorithm’s performance. For example,
if a proposed algorithm is able to reduce the length
of the feature vector, but in the process, accuracy is
compromised by a small proportion, there is no metric to
establish supremacy or inferiority of such an algorithm in
comparison with other existing algorithms. Motivated by
this problem, we have defined a novel metric:

RFAR =
OF len

AF len
× 1

OF acc
× 100, (18)

where OF len, AF len and OF acc are the lengths of the
optimal-feature vector and the all-feature vector as well
as accuracy obtained with the optimal feature vector,
respectively. A lower value of RFAR indicates better
performance.

4. Experimental results and a discussion
4.1. Overall performance of the algorithm. The
overall values of accuracy, length of the feature vector,
FPR, DR, F1-score, and PR for the three data sets are
displayed in Table 3. H2TO performs well overall,
returning the accuracy, DR, precision, and F1-score values
above 99%. H2TO is therefore effective in detecting
anomalies in network traffic.

4.2. Iterationwise performance metrics. The
convergence of H2TO can be gauged by plotting the
iterationwise results of various metrics (Fig. 3). For
NSLKDD and BoTIoT, the plot till the 30-th iteration is
shown, while for DS2OS, the plot till the 14-th iteration
is shown as the convergence towards the optimal solution
is faster in the case of DS2OS. For all the data sets,
the feature-length and FPR broadly tend to reduce as the
iteration progress. Similarly, for DR, accuracy, precision
and F1-score, the graph shows an overall upward trend as
iterations progress.

4.3. Performance of algorithm with varying values
of N and k. Experiments were conducted for k =
1, 3, 5, 7 and N = 5, 7, 10, 12. Figure 4 shows the
variation in results with values of k = 1, 3, 5, 7 (keeping
N as 10), N = 5, 7, 10 and 12 (keeping k as 1), as
they yield better results compared with other parameter
combinations. As seen in the figure, NSLKDD and
BoTIoT produce the best performance for k = 1 and
N = 10 in terms of the accuracy, feature-length and
other metrics. However, for DS2OS, the best accuracy
of 99.44% is obtained for k = 5 and N = 10, with the
feature-length of 5. For the same data set, k = 1 and
N = 10 yield an accuracy of 99.44%; however, in this
case, the feature-length is reduced to the value of 4.

4.4. Statistical analysis. Table 6 shows the lists of
optimal feature sets returned by the algorithm. Correlation
graphs of the above optimal-feature sets were plotted for
NSLKDD, DS2OS and BoTIoT as shown in Figs. 5, 6
and 7, respectively. The figures reflect the comparison
between the correlation graph of all-feature set with that
of the optimal feature set. By observing the color palette,
it is noticed that the white color is reduced in the optimal
feature set correlation graph as compared to the all-feature
set correlation graph, meaning that the highly correlated
features were filtered out in the optimal feature set in the
case of all the data sets. These highly correlated features
have little utility for training the ML model.

For statistical analysis of the accuracy obtained with
the optimal feature set as compared with that obtained
with the all-feature set, a sample size of 20 runs is
considered.

Table 4 compares the statistical results in terms
of accuracy and the standard deviation for the optimal
feature set and the all-feature set. For all the data sets,
the accuracy obtained with the optimal feature set is
marginally lower than that obtained with the all-feature
set; however, the proposed algorithm is able to reduce the
length of the feature vector by a substantial margin.

Table 5 gives the two-sample t-test results for the
hypothesis

H0 : Accuracy(all-features)
= Accuracy(optimal-features)

with a confidence level of 95%. Since the p-value exceeds
0.05 for all the data sets, this implies statistical evidence
to support the hypothesis.

Figure 8 shows the box plots of accuracy for the
three data sets. In the case of NSLKDD, the minimum,
maximum, median and mean values of accuracy obtained
with the optimal-feature set are 99.39%, 99.47%, 99.44%
and 99.44%, respectively. With the all-feature set these
are 99.41%, 99.49%, 99.45% and 99.46%, respectively. In
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Fig. 3. Iterationwise variation in results.

the case of DS2OS, with the optimal-feature set, they are
99.37%, 99.48%, 99.44% and 99.44%, respectively. Then
with the all-feature set they are 99.39%, 99.48%, 99.44%
and 99.44%, respectively. In the case of BoTIoT, with
optimal feature set these are 99.95%, 99.99%, 99.98%
and 99.98%, respectively, with the all-feature set 99.97%,
99.99%, 99.98% and 99.98%, respectively. The figures
show the consistency in the results of various runs except
for a few outliers.

4.5. Comparison of the proposed work with re-
lated research. Tables 7, 8 and 9 depict the classwise
comparison of the proposed H2TO with other algorithms
in terms of the detection rate. Regarding NSLKDD, the
proposed algorithm performs best in terms of detecting the
DoS and normal classes, producing values of 99.75% and
99.52%, respectively, while the worst DR is reported for
the U2R attack type with the value of 44.44%. Regarding
DS2OS, the proposed algorithm outperforms in terms of

detecting MC and DOS attack types, yielding the values
of 100% and 68.69%, respectively. For the Probe, Scan,
MO and WS classes, the DR values are 100%. However,
it underperforms for the Spying class, giving the value of
97.48%, which is lower than for a few other algorithms.
For BoTIoT, the proposed algorithm outperforms in terms
of detecting the theft attack type, returning the highest
value of 95.65%. For the classes DoS, Reconnaissance
and Normal, the returned DR values are 100%. The only
class where the algorithm underperforms is the DDoS
class, returning the value of 99.97%. Thus, the proposed
work is able to outperform the existing techniques for
most of the classes.

Similarly, Tables 10, 11 and 12 compare the
proposed algorithm with the existing works in terms of
accuracy, the length of the feature vector and RFAR.
Regarding NSLKDD, Wei et al. (2020) achieve the best
accuracy value of 99.47%. However, in this case, the
length of the feature vector is as high as 24 features. In
terms of the minimal feature length, Kunhare et al. (2020)
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Fig. 4. Variation in performance of H2TO with k and N .

achieve a value of 10; however, in this case, the accuracy
drops to 99.32%. H2TO, on the other hand, achieves the
accuracy of 99.44% with the number of features being
nine only. Thus, it can be concluded that, although the
accuracy using the proposed algorithm drops marginally
as compared with the results of Wei et al. (2020), the
feature-length improves substantially. Regarding DS2OS,
the proposed algorithm is able to outperform in terms of
both accuracy and the feature length. In this case, the
accuracy improves by 0.01% over the second best value
of 99.43%, while the feature set is optimized to four
features. Regarding BoTIoT, the best accuracy is achieved
by Kumar et al. (2016) and Ashraf et al. (2022) as
99.99%, with the length of the feature vector being 10.
Considering the minimal feature length, Soe et al. (2020)
perform best using only eight features, but the accuracy is
only 99.1%. Using the proposed algorithm, we achieved
accuracy up to 99.98% (marginally lower compared with
99.99%) with the length of the feature vector equal to 8
(Soe et al., 2020). Thus, we are able to reduce the length
of the feature vector, besides retaining almost the best
accuracy (unlike Soe et al. (2020), who compromised the
accuracy for optimizing the length of the feature vector).

5. Conclusions and future work
In the present study, we worked towards optimizing
the length of the feature vector without compromising
other performance metrics to reduce the curse of data
dimensionality related to huge network traffic. The
decreased optimal-feature vector can then be used
by low-performance devices (AIDS nodes) to identify
attacks. A two-tier algorithm termed H2TO is suggested
to accomplish this goal, and it makes use of the proposed
RGPO algorithm, an amended version of PSO, to return
an ideal feature vector along with other crucial metrics.
We also presented a novel statistic, called RFAR, for
comprehensive comparison with related publications. An
experimental analysis pointed to better results than those
produced earlier. With regard to the DoS and normal
classes in NSL-KDD, MC and the DoS class in DS2OS,
and theft class in BoTIoT, the detection rate specifically
improves. In terms of overall performance, H2TO
outperforms other works for NSLKDD in terms of the
length of the feature vector, in addition to obtaining
accuracy that is very near to the best. The feature
vector’s length was substantially optimized for DS2OS,
and accuracy was increased. The accuracy and length
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Fig. 5. Correlation graphs of the optimal-feature set vs. the all-feature set for NSLKDD.

Fig. 6. Correlation graphs of the optimal-feature set vs. the all-feature set for DS2OS.

Fig. 7. Correlation graphs of the optimal-feature set vs. the all-feature set for BoTIoT.
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Fig. 8. Accuracy metric box plots for the optimal-feature set vs. the all-feature set.

of the feature vector were successfully optimized for
BoTIoT.

As for the future, parameter tuning remains an
open problem for researchers. This will help in further
improving the performance of present algorithms. Also,
for a few classes like U2R, accuracy and the detection rate
can be improved with further research.
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