
Int. J. Appl. Math. Comput. Sci., 2023, Vol. 33, No. 2, 219–228
DOI: 10.34768/amcs-2023-0017

AN EFFICIENT FAULT TOLERANT CONTROL SCHEME FOR
EULER–LAGRANGE SYSTEMS

IVON E. LEAL-LEAL a, EFRAIN ALCORTA-GARCIA a,*

aFaculty of Electrical and Mechanical Engineering
Autonomous University of Nuevo Leon

Av. Universidad S/N, San Nicolas de los Garza, N.L., 66455, Mexico
e-mail: {ivon.lealll,efrain.alcortagr}@uanl.edu.mx

Every closed-loop system holds a level of fault tolerance, which could be increased by using a fault tolerant control (FTC)
scheme. In this paper, an efficient FTC scheme for a class of nonlinear systems (Euler–Lagrange ones) is proposed, which
guarantees high performance and stability in a faulty system. This scheme was designed on the basis of a cascade control
structure in which the inner loop is the closed-loop system and the external loop is the FTC, a generalized proportional
integral (GPI) observer-based controller, which manages the fault tolerance level increment. An important issue of the
proposed scheme is that the GPI observer-based controller jointly estimates disturbances and faults, providing information
about the state of health of the system, and then compensates their effect. The scheme is efficient because only the inertia
matrix is required for the controller design, it is able to preserve the nominal control law unchanged and can operate properly
without explicit information about system faults (fault diagnostic module). Simulation results, on a pendulum model, show
the effectiveness of the proposed scheme for tracking control.
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1. Introduction

With the emergence of increasingly complex industrial
processes, due to the large number of variables and
nonlinearities present, there is a greater probability of
undesirable system operation. Consequently, the growing
demand for safety and reliability in industrial processes
requires of the control approaches to be efficient, i.e., easy
to design and implement, and to can cope with faults on
their sensors, actuators and components. Note that the
word ‘efficient’ is being used in a colloquial sense. It is
important to stress that a fault is understood as a parameter
change beyond the designed tolerance limits.

In the control literature, several fault tolerant control
(FTC) approaches have been proposed, as can be seen
in the survey papers by Yu and Jiang (2015) or Gao
et al. (2015) and the references therein. However, most
of these FTC approaches are for linear systems or for a
class of nonlinear systems, and require modifications of
the close-loop system in order to achieve fault tolerance.
Furthermore, most of them need an exact mathematical
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model, built from the dynamics involved in the process.
Thus, the FTC problem has begun to attract increasing
attention in a wider range of industrial processes, due to
increased safety and reliability demands. Many research
papers have dealt with the design of FTC for a variety
of complex applications (e.g., Hamayun et al., 2015; Li
et al., 2018; Salazar et al., 2020).

In some industrial processes it is difficult or
impossible to modify the closed-loop system to add an
FTC one. For example, in flight control systems it
is more efficient to use an FTC design independently
of the existing nominal flight control, i.e., the control
law is reconfigured by adding an external FTC loop to
compensate the faults. This is an interesting aspect
of the design scheme, because the overall concept
ensures specified nominal flight performance in fault-free
situations (e.g., Cieslak et al., 2008; 2010). Therefore,
having an FTC scheme that keeps the closed-loop system
unchanged would be an important advantage. Also, in
the work of Rodriguez-Alfaro et al. (2013) a cascade
control structure for fault tolerance is proposed. This
structure uses an additional control loop and a new
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controller. As a result, the closed-loop system and
therefore the nominal control law remain unaltered
after reconfiguration. However, the approach requires
knowledge of the complete mathematical model and of
the nominal control law for the design.

The design of efficient controllers, with the least
possible amount of information about the system, is
a challenging problem. GPI observer-based control
is a robust control designed in the context of active
disturbance rejection control (ADRC) (Sira-Ramı́rez
et al., 2018), in which simplified models of systems
are used and no modeled dynamics, internal or external
disturbances of the system are estimated by a GPI
observer, i.e., the unknown variables are algebraically
observable (e.g., Flores-Flores and Martinez-Guerra,
2019).

Generalized PI observers are linear observers
characterized by an internal, self-updating,
time-polynomial model of unknown, uniformly
bounded, disturbances. The main application of the
GPI observer is when it is used in line with its controller
(generalized PI observer-based control), where the
unknown variables are rejected jointly and approximately.
Recently, GPI observer-based control has been utilized
to improve tracking performance of robot manipulators
(Gutiérrez Giles et al., 2016). This controller has the
advantage of requiring little amount of information about
the mathematical model of the system—only the inertial
matrix. However, a robust controller designed for a
closed-loop system generally works fine for the nominal
system, but fails for a faulty system. Therefore, it is
necessary to develop and incorporate, increasingly, FTC
approaches which can be applied to a wide range of
nonlinear systems to ensure effectiveness and improve
the system’s reliability.

In the present paper we propose an efficient FTC
scheme to increase fault tolerance, which seeks to achieve
performance and stability typical for a nominal system
in a faulty system, for a class of non-linear systems
called Euler–Lagrange (EL) ones (Van der Schaft, 2000).
This idea will be implemented using the theory of
GPI observer-based control, which has very interesting
robustness properties, where we want to take advantage
of the approximation of the disturbances that the GPI
observer allows us to have in order to also approximate
faults and then compensate their effect in the control stage.
The proposed scheme was designed on the basis of a
cascade control structure, in which a new control loop
is proposed, feeding back the actual output and making
the difference with the nominal output. The “plant” for
this new loop corresponds to the original closed-loop
system. As a result, the proposed approach was able
to preserve the inner loop formed by the closed-loop
system unchanged. The scheme utilizes an external GPI
observer-based control as FTC, which manages the fault

tolerance level increment.
The paper is organized as follows. After

Introduction, the preliminaries related to FTC, the cascade
control structure and GPI observer-based control are
reviewed in Section 2. The proposed approach is
presented and justified in Section 3. A simulation example
with a pendulum model (described by Sira-Ramı́rez et al.,
2010) is shown in Section 4. Finally, the conclusions are
presented in Section 5.

2. Preliminaries
2.1. GPI observer based control. The so-called
GPI observer-based control has been established as an
efficient control technique which is robust to classical
disturbances (Sira-Ramı́rez et al., 2010). The GPI
observer-based control proposed by Gutiérrez Giles et al.
(2016) considers E–L systems given by

H(q)q̈+C(q, q̇)q̇+ g(q) = τ , (1)

where q ∈ R
n is the vector of the generalized

coordinates, H(q) ∈ R
n×n is the generalized inertia

matrix, C(q, q̇)q̇ ∈ R
n is the vector of Coriolis and

centrifugal forces, g(q) ∈ R
n are the forces generated by

potential fields such as the gravitational field, and τ ∈ R
n

is the vector of control inputs.
The basic design of a GPI observer can be carried

out with only the knowledge of the position vector, q,
and the inertia matrix, H(q). The goal of this design is
to compute estimates for the uncertain terms and for the
error dynamics, denoted by ξ and ė, respectively. Then
ξ ∈ R

n represents the unknown perturbation vector and
can be expressed as

ξ(t) =

p−1∑

i=0

ait
i + r(t), (2)

with each ai being an n-vector of constant coefficients
(and at least the first p derivatives of the residual term
r(t) exist). The GPI observer-based control is based on
integral re-constructors and is given by

τ (t) = H(q)
[
−2ζωn

ˆ̇e(t)− ω2
ne(t)− ξ̂(t)

]
, (3)

˙̂e1(t) = ê2(t) + λp+1ẽ(t),

˙̂e2(t) = H−1(q)τ (t) + ξ̂1(t) + λpẽ(t),

˙̂
ξ1(t) = ξ̂2(t) + λp−1ẽ(t),

...
˙̂
ξp−1(t) = ξ̂p(t) + λ1ẽ(t),

˙̂
ξp(t) = λ0ẽ(t),

where ξ̂(t) = ξ̂1(t), ˆ̇e(t) = ê2(t). The GPI control
globally asymptotically drives the error vector, ẽ(t) =
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e(t) − ê1(t), and its time derivative, ˙̃e(t) = ė(t) −
ê2(t), to an arbitrary small neighborhood of the origin
of the reconstruction error of the tracking error vector
space, (ẽ, ˙̃e). Therefore the diagonal, constant matrices
{λ0,λ1, · · · ,λp+1} ∈ R

n×n are chosen in such a way
that all the non-zero components of the n× n complex
valued diagonal matrix, po(s), defined as

po(s) = sp+2I+ λp+1s
p+1 + · · ·+ λ1s+ λ0, (4)

are Hurwitz polynomials of degree p+2 with roots located
sufficiently far into the left half of the complex plane.

In the controller design In ∈ R
n×n denote the

identity matrix and ζ ∈ R
n×n and ωn ∈ R

n×n are chosen
in such a way that all the elements of the diagonal matrix
of the polynomial of Eqn. (5) are second degree Hurwitz
polynomials

pc(s) = s2In + 2ζωns+ ω2
n. (5)

2.2. Fault tolerant control (FTC). The objective of
FTC is to minimize the degradation in performance in
the closed-loop system when a fault occurs. Moreover,
a reliable FTC scheme maintains the relation between
safety and fault tolerance. The safety system and the
FTC work in separate regions and satisfy complementary
aims, as can be seen in Fig. 1 (taken from Blanke et al.
(2016)), where the system performance is described. In
the region of required performance, the system satisfies
its function, and it is the region where the system should
remain during its time operation. Note that, because of
robustness properties of the closed-loop system, almost
every system holds a level of tolerance with respect to a
given fault. Consequently, the nominal control may even
hold the system in the region of required performance
if small faults occurs, although this is not its primary
goal. Alternatively, the FTC should be able to initiate
recovery actions that prevent further degradation of the
performance towards unacceptable or dangerous regions,
and it should move the system back into the region of
required performance.

Region of  danger

Region of degraded performance
unnaceptable
region of 

performance

Fault

recoverable fault

Threshold where safety 
system is involved

region of 
required
performance

Fig. 1. Regions of required and degraded performance.

Consider a nonlinear system given by

ẋ(t)=Γ(x,u, f), (6)
y(t)=h(x,u, r), (7)

where x ∈ R
n is the state vector, u ∈ R

m is the input
vector, f ∈ R

ns is the fault vector. Note that fi represents
the i-th element of the fault vector f .

In this paper the following definitions are used to give
a framework for the results.

Definition 1. (Fault tolerance) Given a feedback
Euler–Lagrange system and an unknown fault fi(t),
the system is called fault tolerant to the fault fi(t) if
in the presence of this fault the closed-loop system
remains inside the region of required performance and the
following is satisfied:

1. The feedback Euler–Lagrange system remains
stable.

2. The system output remains within an admissible
tolerance margin with respect to the nominal output.

3. The nominal control law τ (t) is kept bounded and
physically realizable.

The last definition gives us a criterion to know if a
system tolerates a specific fault.

Definition 2. (Recoverable fault) A fault fi(t) which
makes the nominal closed-loop system not fault tolerant
(the system is in the region of degraded performance), is
called “recoverable” if there exists supplementary control
effort (τ FTC(t)) that, when applied in form of a new
control loop (see Fig. 2), the resulting closed-loop is fault
tolerant with respect to the fault considered (holds the
system in the region of required performance).

2.3. Cascade control structure. The cascade control
structure (Bolton, 2021) is not new in general but it has
not been used intensively in fault tolerance. The cascade
control structure initially described by Acosta-Santana
et al. (2013), formed by an inner loop (closed-loop
system) and an external loop (reconfiguration control), is
used to increase fault tolerance in control systems (e.g.,
Rodriguez-Alfaro et al., 2013; Krokavec et al., 2016).

Fig. 2. Structure to get recoverable faults.
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Figure 2 shows the cascade control structure for FTC,
which uses the nominal system output as reference to
be followed when a fault occurs. The estimation error,
which is obtained from the difference between the faulty
and nominal output, is used as basis for the correction.
Then, change a in the nominal system reference in closed
loop is carried out and the action of FTC is added
to the nominal reference. With this internal reference
change, the effect of the fault is eliminated and the faulty
system performance is kept very close or equal to the
nominal system performance. The cascade structure has
the advantage of not modifying the nominal control law.
Accordingly, it can be useful in a physical implementation
of the fault tolerant scheme.

3. Proposed approach
The state space representation of the system of equations
(1) is expressed as

ẋ1 = x2, (8)

ẋ2 = H−1(x1,α)(τ −C(x1,x2)x2 − g(x1)) + Δd,

where x = [qT q̇T ] = [xT
1 xT

2 ] ∈ R
n is the state vector

of the system, and Δd represents the uncertainties, the
unmodeled dynamics and the disturbances in the system.

In this paper additive and multiplicative faults are
considered, and it is assumed that the fault occurs at time
tf .

The faults in sensor and actuators are modeled as
[
ẋ1

ẋ2

]
=

[
x2

x2 +Δd

]
+

[
0

G(x)

]
(τ + fa) (9)

y = Cx+Df fs,

where y ∈ R
n is the output vector, fa ∈ R

m and
fs ∈ R

q are the actuator and sensor faults, respectively,
Df ∈ R

n×q denotes the sensor fault distribution matrix,
F(x) = H−1(x1,α)(−C(x1,x2)x2 − g(x1)) and
G(x) = H−1(x1,α).

The multiplicative faults are expressed as variations
in parameters

α = α0 +Δα, (10)

where α is the value of any parameter of the system, α0 is
the nominal parameter and Δα denotes the multiplicative
fault.

Moreover, the faults, the uncertainties, the
unmodeled dynamics and the disturbances are unknown
but bounded, that is, ‖fa‖ < f̄a, ‖fs‖ < f̄s, ‖Δα‖ < Δ̄α
and ‖Δd‖ < Δ̄d for all t.

3.1. Proposed fault tolerant control scheme. An
efficient FTC scheme which estimates and compensates
faults in real-time has been developed. The main idea is

to incorporate the FTC scheme in the closed-loop system
to increase the fault size that can be tolerated. Also,
this scheme should preserve the system in the region of
required performance to ensure effectiveness and stability
under faulty conditions. The proposed scheme has the
following desired features:

• Reduced knowledge of the system model is required,
i.e., only the inertia matrix.

• It does not require explicit use of the FDI module.
In contrast, the proposed scheme makes an estimate
of the fault effect and disturbances (an uncertain
polynomial, depicted in Fig. 4) regarding the
closed-loop system and uses it to compensate their
effect.

• It keeps the nominal control law unchanged. This is
an important feature in practical applications.

• Only the position measurement of the output is used
to design the FTC. Also, nominal output information
is required, which can be obtained from a simulation
system.

The proposed scheme is based on a cascade control
structure, which is connected all the time (not only when a
fault occurs), as shown in Fig. 3, where qn is the nominal
position, q is the position output measurements, y is the
real output and yd is the desired output. The output of
the GPI observed-based control represents the correction
input to the nominal control, τ FTC(t). The external loop
error, obtained to reduce the fault effect without changing
directly (only in an indirect form) the nominal control, is
given by

e(t) = q(t)− qn(t). (11)

There are a couple of assumptions related to the
proposed solution.

Assumption 1. Only systems with an Euler–Lagrange
structure are considered.

Assumption 2. The faults considered are reconfigurable
in the sense that there exists a control action to
compensate their effect (admissible faults).

The error of the nominal control loop is updated by
the correction factor as

eq(t) = τ FTC(t) + yd(t)− y(t). (12)

Fig. 3. Cascade control structure for the proposed FTC.
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The proposed FTC (GPI observed-based control) is
given by

τ FTC(t) = H(q)(t)
[
−2ζωn

ˆ̇e(t)− ω2
ne(t)− ẑ(t)

]
,

˙̂e1(t) = ê2(t) + λp+1ẽ(t), (13)
˙̂e2(t) = H−1(q(t))τ (t) + ẑ1(t) + λpẽ(t),

˙̂z1(t) = ẑ2(t) + λp−1ẽ(t),

...
˙̂zp−1(t) = ẑp(t) + λ1ẽ(t),

˙̂zp(t) = λ0ẽ(t)

where ẑ(t) = ẑ1(t), ˆ̇e(t) = ê2(t), ẽ(t) = e(t)− ê1(t).

The outputs of the GPI observer (the error dynamics
and the uncertain polynomial, denoted by ẑ1 and ˙̂e,
respectively) (see Fig. 4), are used by the controller to also
compensate the fault effect. The uncertain polynomial,

z(t) =

p−1∑

i=0

ait
i + r(t), (14)

lumps not only the effects of disturbances and unknown
terms, but also the fault terms.

The GPI observed-based control of Eqn. (3) is
a robust control (nominal control) which estimates
disturbances and uncertain terms; when it used as an
external control, it becomes an FTC, and therefore also
estimates faults, i.e., the proposed FTC of (13) is robust to
disturbances and fault tolerant.

The FDI module is actually not required to activate
the FTC (note that the outer control loop processes the
difference between the nominal and the actual output,
and they play a similar role of a residual); however, it is
added because to know the presence of faults is a normal
requirement to make decisions about maintenance, as well
as to avoid possible faults or possible evolution of a fault
not attended. To detect faults, the uncertain polynomial
was used. In order to achieve this, a fixed threshold is
established (according to the designer’s criteria). Once the
signal of the uncertain polynomial exceeds the threshold,
it will indicate that a fault has occurred (by means of an
alarm); see Fig. 5.

Fig. 4. GPI observer.

Remark 1. The general scheme of the proposed approach
does not require the Euler–Lagrange formalism, but in this
work advantage is taken of the system model structure, so
that the GPI observer-based controller can be formulated
with reduced knowledge of the nominal system model
(only the inertia matrix H(q) is required). As pointed
out by Ortega et al. (2013), because of the facility
to manage passivity properties in the Euler–Lagrange
structure, regulation problems can be solved by increasing
dissipation and redesigning the gravity vector (g(q)).

3.2. Stability analysis in the presence of faults. For
the stability analysis, the results of Sira-Ramı́rez et al.
(2010) will be evoked. At this point, for the sake of
simplicity, the nominal control of the systems is restricted
to have an Euler–Lagrange structure, so the nominal
feedback system results also in an Euler–Lagrange
closed-loop system (see Ortega et al., 2013). In this
case, if the faults are absolutely uniformly bounded, then
the stability of the whole schema is guaranteed by the
results given by Sira-Ramı́rez et al. (2010) (see also
Gutiérrez Giles et al., 2016).

The stability proof is exactly taken from the work of
Sira-Ramı́rez et al. (2010), and it will be included here for
completeness.

Proof. Let the position error vector be defined by e1(t) =
q(t) − qn(t). Let e2 be the velocity tracking error, i.e,
e2(t) = q̇(t) − q̇n(t). The tracking error dynamics,
along with the predominantly time polynomial model
of perturbation input signal, z(t), becomes according to
Eqn. (14)

ė1(t) = e2(t), (15)

ė2(t) = H−1(q(t))τ FTC(t) + z1(t),

ż1(t) = z2(t),

...
żp−1(t) = zp(t),

żp(t) = rp(t).

�
Let z̃j = zj − ẑj , j = 1, 2, . . . , p. The

observer reconstruction error vectors ẽj associated with
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Fig. 5. Proposed FTC scheme.
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the generalized position and velocity tracking error, e,
ė, are easily seen to satisfy the following, predominantly
linear, perturbed injected dynamics:

˙̃e1(t) = ẽ2(t)− λp+1ẽ1, (16)
˙̃e2(t) = z̃1(t)− λpẽ1(t),

˙̃z1(t) = z̃2(t)− λp−1ẽ1,

...
˙̃zp−1(t) = z̃p(t)− λ1ẽ1,

˙̃zp(t) = rp(t)λ0ẽ1.

Eliminating the variables z̃(t), we obtain

ẽ(p+2)(t) + λp+1ẽ
(p+1)(t) + · · ·+ λ0ẽ

= rp(t) =
dp

dtp
z(t). (17)

Thanks to (a) our assumptions about the boundedness
of the components of the perturbation input vector,
z(t) ∈ R

n, (b) the boundedness of the continuously
updated residual term, r(t), in the local Taylor polynomial
approximation of the signal z(t), and (c) the well-known
results about bounded-input–bounded-output stability
theory for linear systems (Kailath, 1980) it is well known
that, if the set of matrix coefficients, {λp+1, . . . ,λ0}, of
the perturbed linear tracking error dynamics, (16), are
chosen so that the polynomials on the complex variable
s, in the diagonal of the complex valued diagonal matrix,

p(s) = sp+2I+ λp+1s
p+1 + · · ·+ λ1s+ λ0, (18)

are Hurwitz polynomials, with roots located sufficiently
far from the imaginary axis in the left half of the complex
plane, then the time responses in Eqn. (17) will be
asymptotically, exponentially, ultimately bounded by a
small disk centered around the origin of the tracking error
observer reconstruction error phase space, ẽ = ˙̃e =
. . . = ẽp+1 = 0. Moreover, the radius of the ultimate
bounding disk, in the phase space of ẽ, is proportional
to the inverse of the absolute value of the smallest real
part of the roots of the characteristic polynomials found
on the diagonal of the matrix (18). As a consequence
of the convergence, to an arbitrarily small neighborhood
of zero, of the observer reconstruction error for the
perturbed tracking error system model, the n-dimensional
observer states, ẑ1, become arbitrarily close estimates of
the perturbation input functions comprising the n-vector
z(t). Moreover, the consecutive time derivatives of the
vector of signals, z(t), i.e., zj(t), j = 1, 2, . . ., are also
approximately estimated via the corresponding observer
vector variables, ẑj+1(t), j = 1, 2, . . ..

4. Application example
The proposed approach is applied to a pendulum model.

4.1. System description. Consider the pendulum
system of Fig. 6, consisting of a solid metal bar of length
L = 0.24 m, mass M = 0.0883 kg and extra mass
m = 0.05 kg. The angular displacement of the motor
shaft is θ, the gear ratio is N = 26, the moment of inertia
is J = 0.0079 kg · m2 and the gravity is g = 9.8 m/s2.

The non-linear pendulum model is
[
J +

L2

N2

(
M

3
+m

)]

︸ ︷︷ ︸
Hn

θ̈

+
1

N

(
M

2
+m

)
gL

︸ ︷︷ ︸
Gn

Sen(θ)

+Bθ̇ + Fcsign(θ̇) = τ, (19)

where B is the coefficient of viscous friction and Fc is
the Coulomb friction.

Furthermore, consider the pendulum with two types
of nominal control. The first is a GPI observer based
control, described in Section 2. The second is a
proportional derivative control with compensation (PD+),
which is a motion control widely used in robots (Kelly and
Santibáñez, 2003), whose control law is given by

τ = Kpq̃+Kv
˙̃q+H(q)q̈d +C(q, q̇)q̇d + g(q). (20)

Therefore, for the pendulum system, the nominal control
(PD+) law is

τ = Kpq̃+Kv
˙̃q+Hn(q)q̈d +Gn(q)Sen(q). (21)

Remark 2. In this paper the nominal control law
was used to carry out the simulation. But for a physical

Fig. 6. Pendulum diagram.
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Fig. 7. Semi-active FTC applied to the pendulum (with PD+
control).
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implementation it is not required to know the nominal
control law.

4.2. System description.

4.3. Simulation. To perform the simulation, the
Scilab program was used. The pendulum model with
disturbances (19) was implemented.

For the implementation of the controller–observer
scheme represented in Eqn. (13), the polynomial order
of uncertain or unknown terms was selected as p = 3.
The controller design parameters were selected as ζ = 10
and ωn = 60, and the observer design parameters were
selected as ζo = 2, ωno = 10 and po = 10, with the
following polynomial gains:

po(s) = (s2 + 2ζoωnos+ ω2
no)

2(s+ po),

λ4 = po + 4ζoωno,

λ3 = 2ω2
no + 4ζ2oω

2
no + 4ζoωnopo,

λ2 = 4ζoω
3
no + 2ω2

nopo + 4ζ2oω
2
nopo,

λ1 = 4ζoω
3
nopo + ω4

no,

λ0 = ω4
nopo.

The resulting GPI observer-based FTC is

τFTC(t) = H(q)
[−2ζωnê2(t)− ω2

ne(t)− ẑ1(t)
]
,

˙̂e1(t) = ê2(t) + λ4ẽ(t),

˙̂e2(t) = H−1(q)τ (t) + ẑ1(t) + λ3ẽ(t),

˙̂z1(t) = ẑ2(t) + λ2ẽ(t),

˙̂z2(t) = ẑ3(t) + λ1ẽ(t),

˙̂z3(t) = λ0ẽ(t).

The control objective is to track the desired angular
displacement of Fig. 8.

4.4. Results and a discussion. Three simulation cases
were analyzed in order to demonstrate the fault tolerance
increase allowed by the proposed scheme. In Tables 1,
2, and 3 numerical results are shown, where the behavior
of the pendulum with two types of nominal control (Cn)
and with the proposed FTC (GPI observer-based control)
can be observed. The first nominal control is a GPI
observer-based control (CnGPI ); this control was selected
to compare its behavior when it acts as a nominal control
in the inner loop and as an FTC in the external loop.
The second nominal control is a PD+ control (CnPD+);
this control was selected because it is widely used in
the literature. For the first nominal control and for the
proposed FTC the same design parameters presented in
Section 4.3 were used. For the second nominal control
the design parameters were selected as Kp = 100 and

Kv = 50. Furthermore, the following restrictions were
assumed: the maximum torque which can be applied by
the actuator is 4.48 N·m ( ‖T ‖ ≤ 4.48), and the physical
application of the system does not allow a tracking error
greater than 2◦ (‖e‖ ≤ 2). In addition, a threshold
between the values ±1 was considered for fault detection.

Case 1. (Nominal operating conditions). In Table 1,
it can be seen that, with the nominal controls, the
system presents a small error, which can be caused by
disturbances, bad control tuning, among others. By
adding the FTC loop, or the error decreases because the
FTC action is present at all times and not only when the
fault occurs.

Case 2. (Presence of an additive fault f1). In Table 2
it can be seen that the FTC can tolerate almost the same
fault magnitude as the first nominal control (CnGPI) , but
the error is less than with the nominal control. Also, it can
be seen that the FTC can tolerate a higher fault magnitude
than the second nominal control (Cn PD+).

Case 3. (Presence of a multiplicative fault f2). In Table
3, it can be seen that the FTC can tolerate a higher fault
magnitude than the nominal controls—all this as long as
the control action is within the permitted limits.

Then, graphic results are presented for each case,
where only, the PD+ control was selected as the nominal
control.

In Case 1, for the fault-free system (nominal
operation), the tracking errors of Fig. 9 are presented,

where it can be seen that by adding the proposed FTC
the error is almost zero.

Table 1. Nominal system with disturbances.
Control ||T || [N·m] ||e|| [◦]
CnGPI 0.082 0.912
CnPD+ 0.059 0.031

FTC(Cn PD+) 0.060 0.005

Table 2. System with an actuator fault.
Control ||T || [N·m] ||e|| [◦] |f1|
Cn GPI 4.480 0.911 4.412
Cn PD+ 3.496 2.000 3.436

FTC(Cn PD+) 4.480 0.005 4.419

Table 3. System with a fault due to a mass increase.
Control ||T || [N·m] ||e|| [◦] |f2|
Cn GPI 0.332 2.000 3.339
Cn PD+ 3.879 2.000 26.220

FTC(Cn PD+) 4.480 0.247 49.230
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In Case 2, f1 occurs in the actuator, which delivers
3.4 Nm more than it should and occurs after 10 s (tf =
10).

In Fig. 10, it can be seen that, with the nominal
control, we have the maximum permissible error of
2◦ and, when we add the FTC, the fault effect is
compensated.

In Fig. 11, fault detection occurs when the proposed
threshold is exceeded.

In Case 3, f2 occurs due to a mass increase of 26 kg
and occurs after 10 s (tf = 10). In Fig. 12, it can be also
seen that, with the nominal control, we have the maximum
permissible error of 2◦, When we add the FTC, the fault
effect is compensated. In Fig. 13, fault detection occurs
when the proposed threshold is exceeded.

Note 3. It is important to detect the fault, otherwise only
by compensating its effect, and not repairing, there may
be a breakdown or a catastrophe observed.

With the simulation results it was observed that the
objective is to maintain the trajectory within an interval;
while it is maintained within this zone, we can say that
the fault is being tolerated.

5. Conclusion

This paper proposed an efficient FTC scheme for
trajectory tracking in Euler–Lagrange systems, which
increases the fault size that can be tolerated by a
close-loop system.

A supplementary control action is added in order
to compensate the fault effect when it is present in
the system. One outstanding feature of the proposed
scheme is that it integrates the benefits of robust GPI
observer-based control to estimate the faults and to
perform the compensation.

The proposed scheme performs better than a simple
GPI observer-based control when used as a nominal
control. The advantages of the proposed approach are
that it uses an additional control loop, which allows
keeping the nominal control law unchanged, and does not
require information from the entire mathematical model
(it only requires the inertial matrix). The simulation
results confirm satisfactory closed-loop performance in
terms of trajectory tracking and fault tolerance. Some
disadvantages could be the requirement of richness in
frequency components of the signals involved in the
GPI observer, and that the proposed approach does not
distinguish between perturbation and faults.

In our future work we will consider the possibility of
reducing model dependency for fault compensation.

Fig. 8. Nominal trajectory (yn).

Fig. 9. Tracking error (nominal conditions).

Fig. 10. Tracking error in the presence of f1.
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Fig. 11. Uncertain polynomial (f1).

Fig. 12. Tracking error in the presence of f2.

Fig. 13. Uncertain polynomial (f2).
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