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This paper deals with homogeneous and non-homogeneous fractional diffusion difference equations. The fractional opera-
tors in space and time are defined in the sense of Grünwald and Letnikov. Applying results on the existence of eigenvalues
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1. Introduction

The diffusion process is in general understood as
spontaneous spreading and permeation of particles from
a region of higher concentration to a region of lower
concentration. It is an irreversible phenomenon, as a
result of which the initially inhomogeneous distribution
of matter is evened out. Diffusion is a considerable part
of many biological processes, e.g., it can be observed
when matter, such as water, ions, and molecules needed
for cellular processes, enters and leaves cells. In fact, it
was discovered, that the diffusive motion of substances
occurring in cell biology is anomalous (Woringer et al.,
2020).

Mathematical models appropriate to analyze the
complexity of anomalous diffusion assume a non-linear
connection between the mean square displacement (MSD)
and time (given by a power-law relation), and employ
diffusion equations involving fractional (real or complex
order) differential operators (Metzler and Klafter, 2000).
This is in contrast to the normal diffusion systems,
which are characterized by the MSD linear in time
and are successfully modeled by integer-order diffusion
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equations. In this context, fractional diffusion equations,
are found to be particularly interesting for researchers and
one can notice an increasing number of papers in this
subject (see, e.g., Płociniczak and Świtała, 2022; 2018;
Płociniczak, 2019; D’Ovidio, 2012; Meerschaert, 2011;
Wu et al., 2015; Cresson et al., 2021; Ciesielski et al.,
2017). Because of their non-local character, however,
the problem of finding exact solutions of most fractional
diffusion equations still remains unsolved.

As a consequence, there has been a growing
interest in developing numerical schemes for such
equations (Hanert and Piret, 2012; Meerschaert
and Tadjeran, 2004; Bayrak et al., 2020; Ciesielski
et al., 2017). These numerical methods are often
based on the Grünwald–Letnikov approximations
of the Riemann–Liouville or the Caputo operators.
One can substitute the discrete unknowns for the
continuous ones and replace fractional derivatives
by the discrete Grünwald–Letnikov operators
(Podlubny, 1999; Meerschaert and Tadjeran, 2004).
Consequently, in this work, we study fractional diffusion
difference equations, where the fractional operators in
space and time are defined in the sense of Grünwald
and Letnikov. Precisely, we apply results on the
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discrete fractional Sturm–Liouville problem in order
to prove the existence of solutions of homogeneous
and non-homogeneous fractional diffusion difference
equations. A similar method was used by Klimek et al.
(2016), but they considered the fractional diffusion
equation that involved fractional derivatives in space and
time.

The article is organized as follows. In Section 2
we recall basic definitions of the Grünwald–Letnikov
fractional differences and bring back results concerning
the discrete fractional Sturm–Liouville problem and the
discrete fractional initial value problem. Section 3
is devoted to the homogeneous and non-homogeneous
fractional diffusion difference equations; all results
presented in this section are original. Finally, in Section 4,
we illustrate our results through an example.

2. Preliminaries
In this section, we gather all preliminary definitions
and theorems that are needed in the sequel. We
present definitions of the Grünwald–Letnikov fractional
differences and recall results regarding the discrete
fractional Sturm–Liouville problem and the discrete
fractional initial value problem (Miller and Ross, 1989;
Kaczorek, 2011; Mozyrska et al., 2013; Mozyrska and
Girejko, 2013; Almeida et al., 2017; Abdeljawad, 2011;
Atici and Eloe, 2009). For a comprehensive treatment of
discrete fractional calculus, we refer the reader to the book
by Goodrich and Peterson (2015).

2.1. Grünwald–Letnikov fractional differences. Let
T = {xk}k=0,...,M = {a + kh}k=0,...,M be the usual
regular partition of the interval [a, b] with M ≥ 2 and
h = (b− a)/M . Having in mind that all functions acting
from T to R

n are continuous, we denote by C(T,Rn) the
set of all those functions. Moreover, for α > 0, we set

(wα
i )

:=

⎧
⎨

⎩

1 if i = 0

(−1)i
α(α − 1) · · · (α− i+ 1)

i!
if i = 1, 2, . . . .

(1)

Observe that if 0 < α < 1, then (wα
i ) < 0 and

limi→∞(wα
i ) = 0 for i = 1, 2, . . ..

Definition 1. Let y ∈ C(T,Rn). The left
Grünwald–Letnikov fractional difference of order α > 0
of function y is defined by

Δα
a+ y(xk) :=

1

hα

k∑

r=0

(wα
r )y(xk−r) (2)

for k = 1, . . . ,M , while the right Grünwald–Letnikov
fractional difference of order α > 0 of function y is

defined by

Δα
b−y(xk) :=

1

hα

M−k∑

r=0

(wα
r )y(xk+r) (3)

for k = 0, . . . ,M − 1.

Remark 1. Note that

Δα
a+ : C(T;Rn) → C(T \ {a};Rn)

(resp. Δα
b− : C(T;Rn) → C(T \ {b};Rn)).

Remark 2. For α = 1, Δα
a+ and Δα

b− recover the
backward and forward differences, i.e.,

Δ1
a+y(xk) =

y(xk)− y(xk−1)

h
= ∇hy(xk),

for k = 1, . . . ,M , and

Δ1
b−y(xk) =

y(xk)− y(xk+1)

h
= −Δhy(xk).

for k = 0, . . . ,M − 1.

Remark 3. In Definition 1 we consider the
Grünwald–Letnikov fractional differences on the finite set
T. However, analogous definitions can be formulated
for functions acting on hN := {hn : n ∈ N} =
{0, h, 2h, . . .} for h > 0 (Kaczorek, 2011; Mozyrska and
Wyrwas, 2015). In this case, we have

Δα
a+y(xk) =

1

hα

k∑

r=0

(wα
r )y(xk−r)

=
1

hα

(
y(xk) +

k∑

r=1

(wα
r )y(xk−r)

)
.

Note that as α → 1, the first two coefficients in the
above sum have the highest absolute values and the
remaining coefficients rapidly converge to 0. As α →
0, the first coefficient (being 1) in the above sum has
the highest absolute value and the remaining coefficients
rapidly converge to 0 (Ostalczyk, 2015). Obviously, the
Grünwald–Letnikov fractional difference of order 0 of y
is a simply input function y.

We also define the left and right Grünwald–Letnikov
fractional sums of order α > 0 by replacing α by −α in
(2) and (3).

Definition 2. For y ∈ C(T,Rn) the left Grünwald–Let-
nikov fractional sum of order α > 0 of function y is given
by

Δ−α
a+y(xk) :=

1

hα

k∑

r=0

(w−α
r )y(xk−r)
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for k = 1, . . . ,M , while the right Grünwald–Letnikov
fractional sum of order α > 0 of function y by

Δ−α
b− y(xk) :=

1

hα

M−k∑

r=0

(w−α
r )y(xk+r)

for k = 0, . . . ,M − 1.

Now, following Ostalczyk (2008), we present
definitions of the partial Grünwald–Letnikov fractional
differences in a two-dimensional finite domain. Let T1 =
{xk1}k1=0,...,N = {a1 + k1h1}k1=0,...,N and T2 =
{xk2}k2=0,...,M = {a2 + k2h2}k2=0,...,M be the usual
regular partitions of the intervals [a1, b1] and [a2, b2],
respectively, with M,N ≥ 2 and h1 = (b1 − a1)/N ,
h2 = (b2 − a2)/M . Moreover, we set D = T1 × T2 =
{(xk1 , xk2) : xk1 ∈ T1 ∧ xk2 ∈ T2}, which is a complete
metric space with the metric defined by

d((xk1 , xk2), (x
′
k1
, x′

k2
))

=
√
(x′

k1
− xk1)

2 + (x′
k2

− xk2 )
2

for (xk1 , xk2), (x
′
k1
, x′

k2
) ∈ D. Given ε > 0, we define

the ε-neighborhood of (t′k1
, t′k2

) by

Uε(x
′
k1
, x′

k2
)

:=
{
(xk1 , xk2 ) ∈ D : d((xk1 , xk2), (x

′
k1
, x′

k2
)) < ε

}
.

Definition 3. Assume that y ∈ C(D,Rn). The left
Grünwald–Letnikov partial fractional difference of order
α > 0 with respect to xk1 of function y is defined by

Δα
a1+,k1

y(xk1 , xk2) :=
1

hα
1

k1∑

r=0

(wα
r )y(xk1−r, xk2),

k1 = 1, . . . , N , while

Δβ
a2+,k2

y(xk1 , xk2) :=
1

hβ
2

k2∑

r=0

(wβ
r )y(xk1 , xk2−r),

k2 = 1, . . . ,M , denotes the left Grünwald–Letnikov
partial fractional difference of order β > 0 with respect
to xk2 of function y.

Definition 4. Assume that y ∈ C(D,Rn). The right
Grünwald–Letnikov partial fractional difference of order
α > 0 with respect to xk1 of function y is defined by

Δα
b1−,k1

y(xk1 , xk2 ) :=
1

hα
1

N−k1∑

r=0

(wα
r )y(xk1+r, xk2 ),

k1 = 0, . . . , N − 1, while

Δβ
b2−,k2

y(xk1 , xk2) :=
1

hβ
2

M−k2∑

r=0

(wβ
r )y(xk1 , xk2+r),

k2 = 0, . . . ,M − 1 denotes the right Grünwald–Letnikov
partial fractional difference of order β > 0 with respect to
xk2 of function y.

Remark 4. Note that in Definitions 3 and 4
the Grünwald–Letnikov partial fractional differences are
considered on the finite sets T1 and T2. Still such
definitions can be formulated for infinite sets h1N and
h2N with h1, h2 > 0 (see Remark 3).

2.2. Fractional Sturm–Liouville difference equation.
Let us recall the important result, proved by Almeida
et al. (2017), concerning the existence of eigenvalues
and eigenfunctions of the following Sturm–Liouville
fractional difference equation:

Δα
b−(p(xl)Δ

α
a+y(xl)) + q(xl)y(xl) = λy(xl),

l = 1, . . .M − 1, (4)

with boundary conditions

y(x0) = y(xM ) = 0, (5)

where p(xi) > 0 and q(xi) are defined and real valued for
all xi, i = 0, . . .M , and λ ∈ R is a parameter. Precisely,
the following result holds, see Theorem 2.4 by Almeida
et al. (2017).

Theorem 1. The Sturm–Liouville problem (4)–(5) has
M − 1 real eigenvalues denoted by

λ1 ≤ λ2 ≤ · · · ≤ λM−1.

The corresponding eigenfunctions

y1, y2, . . . , yM−1 : {x1, . . . , xM−1} → R,

are mutually orthogonal: if i �= j, then

〈yi, yj〉 :=
M−1∑

l=1

yi(xl)yj(xl) = 0,

and they span R
M−1: any vector ϕ = (ϕ(xl))

M−1
l=1 ∈

R
M−1 has a unique expansion

ϕ(xl) =

M−1∑

i=1

ciyi(xl), 1 ≤ l ≤ M − 1.

The coefficients ci are given by

ci =
〈ϕ, yi〉
〈yi, yi〉 .

2.3. Discrete fractional initial value problem. For
the Grünwald–Letnikov fractional difference operator one
can formulate the following results (see, e.g., Kaczorek,
2011, Theorem 1.2; Mozyrska and Girejko, 2013,
Proposition 5.5).
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Theorem 2. Let β ∈ (0, 1]. The initial value problem

Δβ
0+,kT (tk+1) = −λT (tk), (6)

T (0) = c0, c0 ∈ R, (7)

where k = 0, 1, 2, . . . , has the unique solution given by

T (tk+1) = c0Φβ,λ(tk+1) (8)

and the transition function Φβ,λ is determined by the re-
currence formula

Φβ,λ(tk+1) = (β − λhβ)Φβ,λ(tk)

−
k+1∑

s=2

(wβ
s )Φβ,λ(tk−s+1), (9)

k = 0, 1, 2, . . . , with Φβ,λ(0) = 1.

The next theorem states that a unique solution to the
non-homogeneous initial value problem exists and can be
determined by a recurrence formula.

Theorem 3. Let β ∈ (0, 1]. Then a unique solution to the
non-homogeneous initial value problem

Δβ
0+,kd(tk+1) = −λd(tk) +A(tk), (10)

d(0) = c0, c0 ∈ R, (11)

where k = 0, 1, 2, . . . , exists and is given by

d(tk+1) = c0Ψβ,λ(tk+1), (12)

where the transition function Ψβ,λ is determined by the
recurrence formula

Ψβ,λ(tk+1) = (β − λhβ)Ψβ,λ(tk) + hβA(tk)

−
k+1∑

s=2

(wβ
s )Ψβ,λ(tk−s+1), (13)

k = 0, 1, 2, . . . , with Ψβ,λ(0) = 1.

Proof. By the definition of the operator Δβ
0+,k we have

1

hβ

k+1∑

r=0

(wβ
r )d(tk+1−r) = −λd(tk) +A(tk)

and, consequently,

d(tk+1) = (β − λhβ)d(tk) + hβA(tk)

−
k+1∑

r=2

(wβ
r )d(tk+1−r).

�
For a treatment of more general cases of fractional

difference linear systems, we refer the reader to the works
by Kaczorek (2011; 2018; 2019) and Ostalczyk (2012).

3. Main results
In this section, we prove that solutions to the
homogeneous and non-homogeneous diffusion difference
equations exist and are given by finite series. In what
follows, suppose that h1 > 0, a, b ∈ R, a < b,
and h2 = (b − a)/M , with M ≥ 2. Moreover,
let T̃1 = {tk}k=0,1,... = {0 + kh1}k=0,1,..., T̃2 =
{xl}l=0,1,...,M = {a+ lh2}l=0,1,...,M be the usual
regular partition of the interval [a, b] and D̃ = T̃1 \ {t0}×
T̃2.

3.1. Homogeneous fractional diffusion difference
equation. Consider the following fractional diffusion
difference equation:

Δβ
0+,ku(tk+1, xl)

= −Δα
b−,l(p(xl)Δ

α
a+,lu(tk, xl))− q(xl)u(tk, xl),

k = 0, 1, 2, . . . , l = 1, . . .M − 1, (14)

subject to the boundary and initial conditions

u(tk, a) = u(tk, b) = 0, k = 1, 2, . . . , (15)
u(0, xl) = f(xl), l = 0, 1, . . . ,M, (16)

where α, β ∈ (0, 1] and f ∈ C(T̃2,R) is such that f(a) =
f(b) = 0.

Theorem 4. Fractional diffusion difference equation (14)
with boundary and initial conditions (15) and (16) has a
solution u : T̃1 × T̃2 → R given by the following sum:

u(tk+1, xl) =
M−1∑

n=1

〈f, yn〉
〈yn, yn〉Φβ,λn(tk+1)yn(xl), (17)

where λ1, λ2, . . . , λM−1 are the eigenvalues,
y1, y2, . . . , yM−1 are the corresponding eigenfunc-
tions of the discrete fractional Sturm–Liouville problem,
and Φβ,λn are the transition functions corresponding to
the discrete initial value problem.

Proof. The proof is based on separation of variables, i.e.,
we expect the particular solution of (14)–(16) to have the
following form:

u(tk+1, xl) = T (tk+1)y(xl),

k = 0, 1, 2, . . . , l = 1, 2, . . . ,M − 1. (18)

Substitute (18) into (14). Then

1

T (tk)
Δβ

0+,kT (tk+1)

= − 1

y(xl)

(
Δα

b−,l(p(xl)Δ
α
a+,ly(xl)) + q(xl)y(xl)

)
,

(19)
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which is satisfied for all tk+1 and all xl. Note that the
left-hand side of (19) does not depend on xl and the
right-hand side of (19) does not depend on tk+1. Hence,
each side of (19) must be a constant. We will write this
separation constant as −λ, λ ∈ R (the minus sign is for
convenience). Then

1

T (tk)
Δβ

0+,kT (tk+1)

= − 1

y(xl)

(
Δα

b−,l(p(xl)Δ
α
a+,ly(xl)) + q(xl)y(xl)

)

= −λ.

We get the following two fractional difference
equations depending separately on tk and xl:

Δβ
0+,kT (tk+1) = −λT (tk), (20)

Δα
b−,l(p(xl)Δ

α
a+,ly(xl)) + q(xl)y(xl) = λy(xl),

y(a) = y(b) = 0. (21)

Note that, by Theorem 2, Eqn. (20) has a solution given
by

T (tk+1) = c0Φβ,λ(tk+1), k = 0, 1, 2, . . . . (22)

Furthermore, note that (21) is the Sturm–Liouville
problem of the form (4) and (5). Consequently, by
Theorem 1, there exists a non-decreasing sequence
of M − 1 eigenvalues λ1 ≤ · · · ≤ λM−1 and
the corresponding sequence of mutually orthogonal
eigenfunctions y1(xl), . . . , yM−1(xl) for (4) and (5).
Hence

u(tk+1, xl) = cnΦβ,λn(tk+1)yn(xl),

n = 1, . . . ,M − 1,

and plugging to (18), we obtain

u(tk+1, xl) =
M−1∑

n=1

cnΦβ,λn(tk+1)yn(xl).

Coefficients cn can be determined using the mutual
orthogonality of y1(xl), . . . , yM−1(xl) and the initial
condition (16). Precisely, we have

f(xl) = u(0, xl) =

M−1∑

n=1

cnyn(xl), l = 1, . . . ,M − 1.

(23)
Multiplying (23) by ym(xl), m = 1, . . . ,M − 1 and
summing the results we obtain

M−1∑

l=1

f(xl)ym(xl) =

M−1∑

n=1

cn

M−1∑

l=1

yn(xl)ym(xl).

Finally, using the orthogonality condition, we get

〈f, ym〉 =
M−1∑

n=1

cn 〈yn, ym〉 = cm 〈ym, ym〉 ,

which means that cm = 〈f, ym〉/〈ym, ym〉. �

Note that, if we choose β = 1, then the following can
be easily deduced from Theorem 4.

Corollary 1. Consider the fractional diffusion difference
equation

∇h,ku(tk+1, xl)

= −Δα
b−,l(p(xl)Δ

α
a+,lu(tk, xl))− q(xl)u(tk, xl),

k = 0, 1, 2, . . . , l = 1, . . .M − 1, (24)

subject to boundary and initial conditions (15) and (16).
Then Eqn. (24) subject to (15) and (16) has a solution
u : T̃1 × T̃2 → R given by

u(tk, xl) =

M−1∑

n=1

〈f, yn〉
〈yn, yn〉 (1− λnh)

kyn(xl),

where λ1, . . . , λM−1 are the eigenvalues and
y1, . . . , yM−1 are the corresponding eigenfunctions
of the discrete fractional Sturm–Liouville problem.

Proof. Set β = 1 in Theorem 4. Then the solution to (24)
subject to (15) and (16) is given by

u(tk+1, xl) =

M−1∑

n=1

〈f, yn〉
〈yn, yn〉Φ1,λn(tk+1)yn(xl),

where Φ1,λn(tk+1) is the transition function satisfying the
recurrence formula

Φ1,λn(tk+1) = (1− λnh)Φ1,λn(tk),

with Φ1,λn(0) = 1. Therefore, Φ1,λn(tk+1) = (1 −
λnh)

k+1. �

3.2. Non-homogeneous fractional diffusion dif-
ference equation. In this section, we consider
the following non-homogeneous fractional diffusion
difference equation:

Δβ
0+,ku(tk+1, xl) = −Δα

b−,l(p(xl)Δ
α
a+,lu(tk, xl))

− q(xl)u(tk, xl) + g(tk, xl),

k = 0, 1, 2, . . . , l = 1, . . .M − 1,
(25)

subject to boundary and initial conditions (15) and (16).
We assume that α, β ∈ (0, 1] and that the function g ∈
C(T̃1 × T̃2,R) is given as a series i.e.,

g(tk, xl) =

M−1∑

n=1

An(tk)yn(xl).
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We look for a solution of Eqn. (25) subject to (15)
and (16) in the form of the series

u(tk+1, xl) =

M−1∑

n=1

dn(tk+1)yn(xl), (26)

where y1, . . . , yM−1 are the orthogonal eigenfunctions
of the discrete fractional Sturm–Liouville problem.
Substituting (26) into (25), we arrive at the following
system of difference equations:

Δβ
0+,k(dn(tk+1)) = −λdn(tk) +An(tk),

n = 1, . . . ,M − 1. (27)

One can easily check that the solution to (27) is given
by

dn(tk+1) = c0Ψβ,λn(tk+1), n = 1, . . . ,M − 1.

Hence

u(tk+1, xl) =

M−1∑

n=1

c0Ψβ,λn(tk+1)yn(xl).

Now, using similar arguments as in the proof of
Theorem 4, we get

u(tk+1, xl) =
M−1∑

n=1

〈f, yn〉
〈yn, yn〉Ψβ,λn(tk+1)yn(xl). (28)

Accordingly, we have just proved the following result.

Theorem 5. Equation (25) subject to (15) and (16) has
a solution u : T̃1 × T̃2 → R given by the sum (28) where
λ1, . . . , λM−1 are the eigenvalues and y1, . . . , yM−1 are
the corresponding eigenfunctions of the discrete fractional
Sturm–Liouville problem.

Corollary 2. Consider the following non-homogeneous
fractional diffusion difference equation:

∇h,ku(tk+1, xl) = −Δα
b−,l(p(xl)Δ

α
a+,lu(tk, xl))

− q(xl)u(tk, xl) + g(tk, xl),

k = 0, 1, 2, . . . , l = 1, . . .M − 1,
(29)

subject to boundary and initial conditions (15) and (16).
Then Eqn. (29) subject to (15) and (16) has a solution
u : T̃1 × T̃2 → R given by the following sum:

u(tk+1, xl) =

M−1∑

n=1

〈f, yn〉
〈yn, yn〉

(
(1 − λnh)

k+1

+ h

k∑

r=0

(1− λnh)
k−rAn(tr)

)
yn(xl).

(30)

where λ1, . . . , λM−1 are the eigenvalues and
y1, . . . , yM−1 are the corresponding eigenfunctions
of the discrete fractional Sturm–Liouville problem.

Proof. If we choose β = 1 in Theorem 5, then the
solution to (29) subject to (15) and (16) is given by

u(tk+1, xl) =
M−1∑

n=1

〈f, yn〉
〈yn, yn〉Ψ1,λn(tk+1)yn(xl),

where Ψ1,λn(tk+1) is the transition function defined
recursively by

Ψ1,λn(tk+1) = (1− λnh)Ψ1,λn(tk) + hAn(tk), (31)

with Ψ1,λn(0) = 1. According to Saber Elaydi (2005,
formula (1.2.5)), Eqn. (31) is satisfied by

Ψ1,λn(tk+1) = (1− λnh)
k+1

+ h

k∑

r=0

(1− λnh)
k−rAn(tr).

�

4. Illustrative examples
Consider the fractional difference diffusion equation (14)
subject to the boundary and initial conditions (15) and
(16), with T̃1 = {tk}k=0,1,... = {0 + kh}k=0,1,..., M =
4, a = 0, b = 4, p(xl) = 1, q(xl) = 0, f(xl) =
4 − (xl − 2)2, and α = 1. Specifically, we analyze the
following problem:

Δβ
0+,ku(tk+1, xl) = Δ1,l(∇1,lu(tk, xl)),

k = 0, 1, 2, . . . , l = 1, 2, 3, (32)

u(tk, 0) = u(tk, 4) = 0, k = 1, 2, . . . , (33)

u(0, xl) = 4− (xl − 2)2, l = 0, 1, 2, 3, 4. (34)

By Theorem 4, the solution to (32)–(34) is given by
the sum

u(tk, xl) =

3∑

n=1

〈f, yn〉
〈yn, yn〉Φβ,λn(tk+1)yn(xl), (35)

where λ1, λ2, λ3 are the eigenvalues and y1, y2, y3
are the corresponding eigenfunctions of the following
Sturm–Liouville problem:

Δ1(∇1y(xl)) = −λy(xl), l = 1, 2, 3, (36)
y(x0) = y(x4) = 0. (37)

Using the definitions of forward and backward
differences, Eqn. (36) can be rewritten as

y(xl+1) + y(xl−1) = (2− λ)y(xl), l = 1, 2, 3.

Hence
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• for l = 1, we have

y(x2) = (2 − λ)y(x1),

• for l = 2, we have

y(x3) = ((2− λ)2 − 1)y(x1),

• for l = 3, we have

y(x4) = (2− λ)
(
((2 − λ)2 − 1)− 1

)
y(x1).

Since y(x4) = 0, we have y(x1) = 0 or (2−λ)((2−
λ)2 − 2) = 0. If y(x1) = 0, then the solution to problem
(36) and (37) is trivial. Therefore, for y(x1) = c ∈
R\{0}, the eigenvalues of (36) and (37) are given by λ1 =
−√

2 + 2, λ2 = 2, λ3 =
√
2 + 2 and the corresponding

eigenfunctions by y1(xl) = sin lπ
4 , y2(xl) = sin lπ

2 ,
y3(xl) = sin 3lπ

4 , l = 1, 2, 3. Determining 〈y1, y1〉 =
2c2, 〈y2, y2〉 = 2c2, 〈y3, y3〉 = 2c2 and 〈f, y1〉 =
(4 + 3

√
2)c, 〈f, y2〉 = 0, 〈f, y3〉 = (−4 + 3

√
2)c, we

obtain

u(tk+1, xl) =
1

2c

[
(4 + 3

√
2)Φβ,−√

2+2(tk+1)y1(xl)

+(−4 + 3
√
2))Φβ,

√
2+2(tk+1)y3(xl)

]
,

that is,

u(tk+1, x1) =

√
2

4

[
(4 + 3

√
2))Φβ,−√

2+2(tk+1)

+(−4 + 3
√
2))Φβ,

√
2+2(tk+1)

]
,

u(tk+1, x2) =
1

2

[
(4 + 3

√
2))Φβ,−√

2+2(tk+1)

−(−4 + 3
√
2))Φβ,

√
2+2(tk+1)

]
,

u(tk+1, x3) =

√
2

4

[
(4 + 3

√
2))Φβ,−√

2+2(tk+1)

+(−4 + 3
√
2))Φβ,

√
2+2(tk+1)

]
,

for k = 0, 1, 2, . . . .

In numerical simulations, we analyze

(i) the diffusion concentration versus the discrete space
for different values of the derivative’s order β and
different values of the sampling time h;

(ii) the diffusion concentration versus the discrete time
for a fixed x and different values of the derivative’s
order β and different values of the sampling time h.

Figures 1 and 2 illustrate Case (i): the left panel for h =
0.0001, k = 20; the middle panel for h = 0.01, k = 20;
the right panel for h = 1, k = 20. Consequently, the
plots show the diffusion concentration versus the discrete

space for tk = 0.002, 0.2, 20 and β = 0.25, 0.5, 0.75, 1.
There is not a significant difference between Figs. 1 and 2.
The piecewise linear curve is introduced for the reader’s
convenience.

Figure 3 illustrates Case (ii): the left panel for h =
0.0001, k = 20, and x1 = 1; the middle panel for
h = 0.01, k = 20, and x1 = 1; the right panel for
h = 1, k = 20, and x1 = 1. Consequently, the
plots show the diffusion concentration versus the discrete
time t (with different sampling times) for x1 = 1 and
β = 0.25, 0.5, 0.75, 1.

It is worth noticing that the memory (expressed
by the order of the fractional difference β) makes the
diffusion process sluggish, tending to remain in the
previous state. As β approaches 1, the memory becomes
weaker and the viscosity becomes tinier.

Remark 5. Lin and Xu (2007) considered a
time-fractional diffusion equation, which was obtained
from the standard diffusion equation by replacing the
first-order time derivative with the Caputo fractional
derivative of order β, with 0 < β < 1. Roughly speaking,
they analyzed the continuous counterpart of (32). One
may observe that our numerical simulations presented in
Fig. 2 for small values of h are consistent with their
results (cf. Lin and Xu, 2007, Fig. 1). Clearly, the
behavior of the model strongly depends of the magnitude
of β. Our numerical simulation are also consistent
with those presented by Wu et al. (2015, Figs. 1 and
2), who considered a fractional diffusion model of time
discretization with the Caputo-like difference.

Now we analyze the following non-homogeneous
fractional diffusion difference equation:

Δβ
0+,ku(tk+1, xl)

= Δ1,l(∇1,lu(tk, xl)) + sin
πxl

4
+ tk sin

3πxl

4
,

k = 0, 1, 2, . . . , l = 1, 2, 3, (38)

subject to the boundary and initial conditions (33) and
(34). According to Theorem 5 and since g(tk, xl) =
y1(xl) + tky3(xl), the solution to (38) is given by

u(tk+1, xl) =
1

2c

[
(4 + 3

√
2)Ψβ,−√

2+2(tk+1)y1(xl)

+ (−4 + 3
√
2))Ψβ,

√
2+2(tk+1)y3(xl)

]
,

that is,

u(tk+1, x1) =

√
2

4

[
(4 + 3

√
2))Ψβ,−√

2+2(tk+1)

+(−4 + 3
√
2))Ψβ,

√
2+2(tk+1)

]
,

u(tk+1, x2) =
1

2

[
(4 + 3

√
2))Ψβ,−√

2+2(tk+1)

−(−4 + 3
√
2))Ψβ,

√
2+2(tk+1)

]
,



356 A.B. Malinowska et al.

Fig. 1. Diffusion concentration versus the discrete space x for β = 0.25, 0.5, 0.75, 1 and h = 0.0001, 0.01, 1 (in the case of Eqn. (32)).

Fig. 2. Diffusion concentration versus the discrete space x for β = 0.25, 0.5, 0.75, 1 and h = 0.0001, 0.01, 1 (in the case of Eqn. (32)).

Fig. 3. Diffusion concentration versus the discrete time t for x1 = 1, β = 0.25, 0.5, 0.75, 1 and h = 0.0001, 0.01, 1 (in the case of
Eqn. (32)).
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u(tk+1, x3) =

√
2

4

[
(4 + 3

√
2))Ψβ,−√

2+2(tk+1)

+(−4 + 3
√
2))Ψβ,

√
2+2(tk+1)

]
,

for k = 0, 1, 2, . . . .
For comparison purposes, we conduct similar

numerical simulations as in the case of the solution to
Eqn. (32). Namely, Figs. 4 and 5 illustrate Case (i): on the
left for h = 0.0001, k = 20; in the middle for h = 0.01,
k = 20; on the right for h = 1, k = 20. Hence, the
plots show the diffusion concentration versus the discrete
space for tk = 0.002, 0.2, 20 and β = 0.25, 0.5, 0.75, 1.
There is not a significant difference between Figs. 4 and 5.
The piecewise linear curve is introduced for the reader’s
convenience.

Figure 6 illustrates Case (ii): on the left for h =
0.0001, k = 20, and x1 = 1; in the middle for h = 0.01,
k = 20, and x1 = 1; on the right for h = 1, k = 20, and
x1 = 1. Thus, the plots show the diffusion concentration
versus the discrete time t (with different sampling time)
for x1 = 1 and β = 0.25, 0.5, 0.75, 1.

Finally, consider the fractional difference diffusion
equation of the form

Δβ
0+,ku(tk+1, xl) = −Δα

4−,l(Δ
α
0+,lu(tk, xl)),

k = 0, 1, 2, . . . , l = 1, 2, 3, (39)

subject to the boundary and initial conditions (33) and
(34). In this case, the fractional Sturm–Liouville problem
is

Δα
4−,l(Δ

α
0+,ly(xl)) = λy(xl), l = 1, 2, 3, (40)

y(x0) = y(x4) = 0. (41)

Problem (40) and (41) can be solved using methods
presented by Almeida et al. (2017). Specifically, by
Theorem 2.5 by Almeida et al. (2017), Eqn. (40) is the
Euler–Lagrange equation for the isoperimetric problem of
the form

min(max) J [y] =

4∑

l=1

h(Δα
0+,ly(xl))

2 (42)

subject to y(x0) = y(x4) = 0 and

I[y] =

4∑

l=1

h(y(xl))
2 = 1. (43)

Problem (42) and (43) can be replaced by the
finite-dimensional optimization problem

min(max) Φ(y1, y2, y3, λ)

=

4∑

k=l

h
(
(Δα

0+,lyl)
2 − λ((yl)

2 − 1)
)
.

subject to y0 = y4 = 0, where yl := y(xl). Using the
first-order necessary optimality conditions given by the
system of four equations, we obtain the eigenfunctions
and the eigenvalues of Eqn. (40). Then, the construction
of the solution to (39) goes as in the case of Eqn. (32).
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