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The design of incentive-compatible mechanisms for a certain class of finite Bayesian partially observable Markov games is
proposed using a dynamic framework. We set forth a formal method that maintains the incomplete knowledge of both the
Bayesian model and the Markov system’s states. We suggest a methodology that uses Tikhonov’s regularization technique
to compute a Bayesian Nash equilibrium and the accompanying game mechanism. Our framework centers on a penalty
function approach, which guarantees strong convexity of the regularized reward function and the existence of a singular
solution involving equality and inequality constraints in the game. We demonstrate that the approach leads to a resolution
with the smallest weighted norm. The resulting individually rational and ex post periodic incentive compatible system
satisfies this requirement. We arrive at the analytical equations needed to compute the game’s mechanism and equilibrium.
Finally, using a supply chain network for a profit maximization problem, we demonstrate the viability of the proposed
mechanism design.
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1. Introduction
1.1. Brief review. Mechanism design emerges as a
framework for incentive compatible design of resource
allocation processes in the engineering and economic
theories. It has been already extended to other disciplines
(Gallien, 2006; Kakade et al., 2013; Nocedal and Wright,
2006). The main focus of the literature is on efficient
or optimal mechanism design with selfish agents. A
key difficulty in practical mechanism design is that they
are developed by trial and-error techniques (Hartline and
Lucier, 2015), which is not a method for finding the best
solution. We develop a theory of designing mechanisms
for frameworks with dynamic private information and
propose a mechanism that maximizes profit for a
particular class of finite Bayesian partially observable
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Markov games (BPOMGs).
The literature has usually reported the design of

(economics) mechanisms without careful consideration
of incentives and regardless of the differences with the
real-world. As a consequence, the design of mechanisms
needs to be related to an engineering approach.

There exists an extensive literature on mechanism
design. We refer the reader to Bergemann and Said
(2011) for a detailed survey on the mechanism design
literature. The main focus is usually on one of the
following approaches:

• models where mechanisms depend on
informativeness of the agent with private information
(Courty and Li, 2000; Battaglini, 2005);

• environments considering a continuum of agents
with independent and private information (Atkeson
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and Lucas, 1992);

• games with repetitions in which players observe
public outcome with imperfect signals and actions.

More precisely, Eső and Szentes (2007) extended
the study of analyzing a monopolist selling an indivisible
good to multiple players for optimal information
revelation in auctions, employing a two-period state
representation to orthogonalize an agent’s future
information. Board (2007) presented a multi-agent
framework with an infinite-time horizon. Kakade et al.
(2013) took into consideration a bandit auctions and
proved that the optimal mechanism is a version of
the dynamic pivot mechanism. Garg and Narahari
(2008) suggested a mechanism design for single
leader Bayesian Stackelberg problems. Gershkov and
Moldovanu (2009) described a mechanism design
approach for dynamic revenue maximization in which
the agents arrive stochastically over time. Athey and
Segal (2013) developed a Bayesian incentive-compatible
mechanism for a dynamic environment with quasilinear
payoffs in which agents observe private information
and decisions are made over countably many periods.
Pavan et al. (2014) considered a Myersonian mechanism
design approach, which studies dynamic quasilinear
environments where private information arrives over
time and decisions are made over multiple periods.
Board and Skrzypacz (2016,) suggested an approach
for mechanism design where players take into account
one piece of private information arriving stochastically
over time. Hartline and Lucier (2015) presented a
technique for transforming a potentially nonoptimal
algorithm approach to optimization into a Bayesian
incentive-compatible mechanism that improves the social
welfare and revenue.

1.2. Main results. This paper presents a dynamic
framework for incentive-compatible mechanism design
for a particular class of finite BPOMGs. The main results
are summarized as follows:

1. Provides a formal approach that preserve both, the
incomplete information of the Bayesian model and
the incomplete information over the states of the
Markov system,

2. Proposes a method involving Tikhonov’s
regularization technique for converging to a
Bayesian Nash equilibrium and the corresponding
mechanism for the game.

3. Ensures the strong convexity of the reward function
by a penalty approach and the existence of a solution
involving equality and inequality constraints.

4. Derives analytical expressions for computing the
mechanism and the equilibrium of the game.

1.3. Organization of the paper. The paper is
structured paper as follows. In Section 2, we formalize the
Bayesian Markov games defining incentive compatibility
and mechanism design. In Section3, we discuss our
approach for designing mechanisms in BPOMGs. The
concepts of mechanism and equilibrium for this game
are formalized in Section 4. In Section 5 the dynamic
approach is presented and the convergence analysis is
developed in Section 6. Section 7 provides an application
example of the proposed method involving a supply chain
network for profit maximization. Section 8 concludes
with some remarks. Appendix contains the proofs of the
lemmas and theorems.

2. Preliminaries: Bayesian Markov games
We consider a discrete-time repeated game played by a
set N = {1, . . . , n} of players indexed by l ∈ N .
Following standard practice, we shall say that at each time
t ≥ 1, the player l is privately informed about her type
θlt ∈ Θl

t. Players simultaneously take an action (make
decisions) alt ∈ Al

t. Let At = n
l=1A

l
t. We write Θt

for l∈NΘl
t, Θ

−l
t for h∈N ,h �=lΘ

h
t and Δ(A) for the set

of all probability distributions over A. We assume that Al
t

and Θl
t are finite sets for all l.

A social choice function κ is a mapping from the
profile of types to lotteries over alternatives if all players
report their type θlt ∈ Θt, i.e., κ : Θt → Δ(At). A
social choice function represents the goals of the game,
e.g., to maximize revenues, etc. Finally, each player
has a known valuation function ul(alt, θ

l
t) ≥ 0, which

determines the actual value (utility) for the player l. Each
ul : Al

t × Θl
t → R

+ is a mapping from the alternatives
and the set of type profiles to the set of non-negative real
numbers.

We assume that the type θlt of player l follows a
controllable Markov process on the state space Θl

t. A
controllable homogeneous Markov chain is a sequence
of θ-valued random variables θt, t ∈ T, satisfying the
Markov condition:

pl(θlt+1|θlt, alt, θlt−1, a
l
t−1 . . . , θ

l
0, a

l
0)

= pl
(
θlt+1|θltalt

)
, (1)

which represents the probability associated with the
transition function (or stochastic kernel) from state θlt to
state θlt+1, under an alternative alt. The common prior
(initial distribution) of the state-alternative process for
each player l is denoted by {(Θt, At) |t ∈ T }. In this case,
the process described by a Markov chain is completely
described by the transition function pl

(
θlt+1|θltalt

)
and

the initial distribution vector P l
(
θl0
) ∈ Δ(Θl

0) such that
P l
t

(
θlt
) ∈ Δ(Θl

t), where Δ(Θl
t) denotes the set of all

probability distributions over Θl
t. The Markov chains

are mutually independent. We assume that each chain
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(P l, p(θlt+1|θlt, alt)) is irreducible and aperiodic, and that
P l is its unique invariant distribution.

Definition 1. A mechanism μ in the above environment
assigns a set of possible messages M l

t to the player l.

At each time t, the player l sends a message ml
t

from this set and the mechanism μ responds with a
(possibly randomized) decision that may depend on the
entire history of messages sent up to time t, and on past
decisions. Hence, the mechanism μ(at|mt) has inputs at
that is the current allocation for the players and mt =
(m1

t , . . . ,m
n
t ), which is the joint set of messages made by

the player l.
Let us consider an allocation rule g, which represents

the probability measure associated with the occurrence of
an alternative at from the profile of messages mt at time
t ∈ T . It is a mapping from the message mt to lotteries
over alternatives Δ(At), i.e., g :Mt → Δ(At).

Formally, a mechanism μ is a pair (Mt, g) whereMt

is the set of messages for player l and g : Mt → Δ(At)
is the allocation rule. The mechanism μ is interpreted as
the probability that at will be the outcome if the profile of
types θt and messages mt are the players’ types.

Let U be a set of available mechanisms. We have that

Uadm =
{
μ(at|mt) ≥ 0 |

∑

at∈At

μ(at|mt) = 1, mt ∈ Θt

}
. (2)

We write μ(g,M1
t × · · · × Mn

t ) ∈ Uadm and g(mt) =
Δ(At), where mt ∈ Mt, Uadm is the set of feasible
mechanisms.

Note that the mechanism is common for all players,
i.e., it is independent of the individual index l ∈ N .

A dynamic mechanism induces a dynamic game
with incomplete information. The following sequence of
events takes place in each period t. At the beginning
of each period t, the designer announces publicly the
mechanism to the players and each agent privately learns
her current type θlt ∈ Θl

t drawn from pl
(
θlt+1|θlt, alt

)
.

Next, players sent messages ml
t simultaneously, and

the profile of messages is publicly observed mt. The
mechanism selects a decision at ∈ At according to
μ(at|mt) and the implemented alternative at is publicly
announced.

With this assumption, the public history in period
t is a sequence of messages ml

t and alternatives alt(θt)
until period t − 1. The state of an observer is the vector
hlt = (ml

0, a
l
0, . . . ,m

l
t−1, a

l
t−1,m

l
t), which is a trajectory

of length t called the history (public history) where:

(i) Ht is the set of possible states in period t, capturing
all information relevant to the decision by the
observer in that period, and

(ii) each mt = (ml
0, . . . ,m

l
t) is a report profile of the

player l.

The public history ht stands for a generic element of Ht,
which is the set of possible public histories in period t.
The sequence of reports by the players is part of the public
history and we assume that the past reports of each player
are observable to all the players. The private history hlt
of player l in period t consists of the sequence of private
observations and the public history until period t, that is,

hlt = (θl0,m
l
0, a

l
0, . . . θ

l
t−1,m

l
t−1, a

l
t−1, θ

l
t).

The set of possible private histories for each player l
in period t is denoted by Hl

t = Θl
t×H

l
t−1. A (behavioral)

strategy σl(ml
t|θlt) for player l is a mapping σl : Hl ×

Θl → Δ(M l). The set of all feasible policies is denoted
by Sl

adm. Therefore, we have

Sl
adm =

{
σl(ml

t|θlt) ≥ 0 |
∑

ml
t∈Θl

t

σl(ml
t|θlt) = 1, θlt ∈ Θl

t

}
. (3)

The valuation functions ul(alt, θ
l
t) and the transition

functions pl
(
θlt+1|θltalt

)
are all common knowledge at t.

The common prior initial distribution vector P l(Δ
(
Θl

0

)
)

and the transition function pl
(
θlt+1|θltalt

)
are assumed to

be independent across players. The interaction between
players induces a Markov game given by the quintuple
Γ = (N ,Θl, Al, P l, U l)l∈N , where the average payoff
of player l is the expected value of the summed payoff
obtained under the mechanism μ, the strategy σ, and is
defined as

U l
T (μ, σ)

=
∑

t∈T

∑

θl
t∈Θl

t

∑

ml
t∈Θl

t

∑

al
t∈Al

t

ul(alt(θt), θ
l
t)

× pl(θlt+1|θltalt)
∏

ι∈N
μ(at|mt)σ

ι(mι
t|θιt)P ι(θιt)

=
∑

t∈T

∑

θl
t∈Θl

t

∑

ml
t∈Θl

t

∑

al
t∈Al

t

W l(alt, θ
l
t)

×
∏

ι∈N
μ(at|mt)σ

ι(mι
t|θιt)P ι(θιt)

where

W l(alt, θ
l
t) = ul(alt(m

l
t), θ

l
t)p

l(θlt+1|θltalt).

3. Bayesian partially observable Markov
games

We consider the case where the process is not directly
observable. Let us associate with Θl

t the observation set
Ξl
t which takes values in a finite space. The stochastic
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processΞl
t is called the observation process. By observing

Ξt at time t information regarding the true value of Θt is
obtained.

A mechanism μ in the above environment assigns
a set of possible messages M l

t to the player l. At each
time t, the player l sends a message ml

t from this set and
the mechanism μ responds with a (possibly randomized)
decision that may depend on the entire history of messages
sent up to time t, and on past decisions. Hence, the
mechanism μ(at|mt) has inputs at that is the current
allocation for the players andmt = (m1

t , . . . ,m
n
t ), which

is the joint set of messages made by the player l.
Consider an allocation rule g, which represents the

probability measure associated with the occurrence of an
alternative at from the profile of messages mt at time t ∈
T . It is is a mapping from the messagemt to lotteries over
alternatives Δ(At), i.e., g : Mt → Δ(At).. Formally,
a mechanism μ is a pair (Mt, g), where Mt is the set
of messages for player l and g : Mt → Δ(At) is the
allocation rule. Let U be a set of available mechanisms.
We have that

Uadm=
{
μ(at|mt) ≥ 0 |

∑

at∈At

μ(at|mt)=1, mt ∈ Ξt

}
(4)

which differs from Eqn. (2).
A realization of the Bayesian partially observable

system at time t is given by the infinite sequence
(θl0, ϑ

l
0,m

l
0, a

l
0, θ

l
1, ϑ

l
1,m

l
1, a

l
1, . . . ) ∈ Ωl :=(

Θl,Θl,Ξl, Al
)∞, where θl0 has a given distribution

P l
(
θl0
) ∈ ΔΘl

0 and At is a control sequence in A
determined by a control policy. To define a (behavioral)
strategy, we cannot use the states θl0, θl1, . . . . Then, we
introduce the observable histories hl0 ∈ H

l
0 and ht :=

(θl0, ϑ
l
0,m

l
0, a

l
0, . . . , θ

l
t−1, ϑ

l
t−1,m

l
t−1, a

l
t−1,m

l
t) ∈

Ht for all t ≥ 1 and Hl
t = Ξt × Ht−1, if t ≥ 1. A

(behavioral) strategy σl(ϑlt|θlt) for player l is a mapping
σl : Θl → Δ(Θl). The set of all feasible policies is
denoted by Sl

adm. We have that

Sl
adm=

{
σl(ϑlt|θlt) ≥ 0 |

∑

ϑl
t∈Θl

t

σl(ϑlt|θlt) = 1, θlt ∈ Θl
t

}
, (5)

which differs from Eqn. (3).
Now, the probability pl(ml

t|ϑlt, alt) is called the ob-
servation kernel and denotes the relationship between the
type ϑlt ∈ Θl

t and the message ml
t ∈ M l

t when an action
alt ∈ Al

t is chosen at time t. The observation kernel is a
stochastic kernel on Ξl

t.
The dynamics of the game with a set N =

{1, . . . , n} of players (indexed by l = 1, n) is described
as follows. At time t = 0, the initial state θl0 has

a given a-priori distribution P l
(
θl0
) ∈ ΔΘl

0, and the
initial message ml

0 is generated according to the initial
observation kernel pl(ml

t|ϑltalt). If at time t the state of
the system is Θt and the action Al

t ∈ Al is applied, then
each strategy is allowed to randomize, with distribution
σl(ϑlt|θlt) considering the mechanism μ(at|mt) over the
action choices Al

t. These choices induce immediate
utilities U l

t (μ, σ) where the system tries to maximize the
corresponding one-step valuation functionsul(alt, θ

l
t,m

l
t).

Next, the system moves to a new state θlt+1 according
to the transition probabilities pl

(
θlt+1|θltalt

)
. Then,

the observation Ξt is generated by the observation
kernel pl(ml

t|ϑltalt). Based on the obtained utility, the
systems adapt its strategy computing σι(ϑιt|θιt) and the
mechanism μ(at|mt) for the next selection of the actions.
The valuation functions ul(alt, θ

l
t,m

l
t) and the transition

functions pl
(
θlt+1|θltalt

)
are all common knowledge at

t = 0. The common prior initial distribution vector
P l
(
θl0
) ∈ ΔΘl

0 and the transition function pl
(
θlt+1|θltalt

)

are assumed to be independent across players. The
interaction between players induces a Bayesian partially
observable Markov game where the average payoff of
player l is the expected value defined as

U l
T (μ, σ)

=
∑

t∈T

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

ul(alt(θt), θ
l
t)

× pl(θlt+1|θltalt)
∏

ι∈N
μ(at|mt)

× σι(ϑιt|θιt)pι(ml
t|ϑltalt)P ι(θιt)

=
∑

t∈T

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

W l(alt, θ
l
t,m

l
t)

×
∏

ι∈N
μ(at|mt)σ

ι(ϑιt|θιt)pι(mι
t|ϑιtaιt)P ι(θιt),

with

W l(alt, θ
l
t,m

l
t) = ul(alt(m

l
t), θ

l
t,m

l
t)p

l(θlt+1|θltalt).

Given a direct mechanism μ and a history Hi
t, the

following sequence of events takes place in period t and
for any i ∈ N :

1. Each player l privately observes her current type θlt
drawn from P l

(
θlt
)
.

2. Each player, considering pl(ml
t|ϑltalt), sends a

message ml
t ∈ M l

t using a mechanism μ(at|mt) ∈
Uadm with the strategy σl(ϑlt|θlt).

3. The mechanism selects an alternative at ∈ At

according to μ(at|mt) ∈ Uadm.

4. Then, the allocation is realized and they obtain a
reward.
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5. Finally, the state changes to θlt+1 by taking
pl(θlt+1|θltalt).

The realization of this goal implies the fulfillment of
the strong form of the strategy and mechanism such that
the limiting average payoff in the ergodic case is

U l(μ, σ) = lim
T→∞

T−1 U l
T (μ, σ).

4. Mechanism and the equilibrium
In this section, we provide an analytical method for
computing a mechanism. We restrict ourselves to the case
where pl(ml

t|ϑltalt) = pl(ml
t|ϑlt).

4.1. Problem formulation. We assume that players
know their payoffs. Each player maximizes the individual
payoff function U l(μ, σ) realizing the rule given by

(μ∗, σ∗
μ∗) ∈ Arg max

μ∈Uadm

∑

l∈N
U l(μ, σl∗

μ ) (6)

for a given mechanism μk|m and the strategies σ∗
μ satisfy

the Bayesian Nash equilibrium fulfilling for all admissible
σ the condition

U l(μ, σ∗
μ) ≥ U l(μ, σl, σ−l∗). (7)

Here

• the mechanism μ is unique for all the players,

• the strategy σ∗ =
(
σ1∗, . . . , σn∗) is referred to

as a Bayesian Nash equilibrium with σ−l∗ =(
σ1∗, . . . , σl−1∗, σl+1,∗, . . . , σn∗).

4.2. Auxiliary problem. Now, introduce the
z-variable:

zl(θltϑ
l
tm

l
ta

l
t) := μ(at|mt)σ

l(ϑlt|θlt)pl(ml
t|ϑlt)P l(θlt).

(8)
Let us define Ql =

[
pl(ml

t|ϑlt)
]−1 .

Problem 1. We will try to find a mechanism
μ(at|mt) and Bayesian strategies σ(ϑlt|θlt) which solve
the following individual nonlinear programming problem:

Ũ l(μ, σ) =
∑

l∈N
Ū l(z) → max

z∈Zadm
(9)

Ū l(z) =
∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

W l(alt, θ
l
t,m

l
t)

×
∏

ι∈N
zι(θιtϑ

ι
tm

ι
ta

ι
t),

(10)

where zι(θιtϑ
ι
tm

ι
ta

ι
t) is given by (8) and Zadm =

n
l=1Z

l
adm with

Z l
adm

:=
{
zl(θlt, ϑ

l
t,m

l
t, a

l
t) ≥ 0 |

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

zl(θltϑ
l
tm

l
ta

l
t) = 1,

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

zl(θltϑ
l
tm

l
ta

l
t) = P l(θlt) > 0,

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

[δθl
tθ

l
t+1

− pl(θlt+1|θltalt)]

× zl(θltϑ
l
tm

l
ta

l
t) = 0, θlt+1 ∈ Θl

t,
∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

�l
t∈Ξl

t

∑

al
t∈Al

t

[δ�l
tm

l
t
− pl(ml

t|ϑlt)]

× zl(θltϑ
l
t�

l
ta

l
t) = 0, ml

t ∈ Ξl
t

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

Ql(ρlt|ϑlt)zl(θltϑltml
ta

l
t) ≥ 0,

ρlt ∈ Ξl
t

}
.

(11)
Notice that the following relations hold:

∑

at∈At

μ(at|mt) = 1,
∑

ϑl
t∈Θl

t

σl(ϑlt|θlt) = 1,

∑

ml
t∈Θl

t

pl(ml
t|ϑlt) = 1,

∑

θl
t∈Θl

t

P l(θlt) = 1.

It is easy to check that Z l
adm includes the simplex Δl,

namely, zl ∈ Δl ⊂ Z l
adm:

Δl :=
{
zl(θltϑ

l
tm

l
ta

l
t) ≥ 0 |

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

zl(θltϑ
l
tm

l
ta

l
t) = 1,

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

zl(θltϑ
l
tm

l
ta

l
t) = P l(θlt) > 0

}
. (12)

Write the solution of the problem (9) as zl∗, l ∈ N .

4.3. Recovering of optimal mechanism and strategies
from the z∗ solution. The result below clarifies how we
may recover the mechanism μ∗(at|mt).

Lemma 1. Suppose that the problem (9) is solved.
Then the mechanism μ∗(at|mt) can be recovered from
zl∗(θlt, ϑlt,ml

t, a
l
t) as follows:

μ∗(at|mt) =

∑

l∈N

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

zl∗(θltϑ
l
tm

l
ta

l
t)

∑

l∈N

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

αl
t∈Al

t

zl∗(θltϑltml
tα

l
t)
.

(13)
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Proof. See Appendix, Section A1. �

Variables σl∗(ϑlt|θlt) and P̄ l∗(ml
t) can be recovered

as it is presented below.

Corollary 1. The equilibrium (behavior) strategies
σl∗(ϑlt|θlt) are given by

σl∗(ϑlt|θlt)=

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

zl∗(θltϑ
l
tm

l
ta

l
t)

∑

�l
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

zl∗(θlt�ltml
ta

l
t)
, (14)

l ∈ N and the corresponding distributions P̄ l∗(ml
t) are

as follows:

P̄ l∗(ml
t) =

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

al
t∈Al

t

zl(θltϑ
l
tm

l
ta

l
t),

l ∈ N . (15)

4.4. Necessary conditions for ergodicity. The next
theorem presents the necessary egodicity conditions that
the solutions of the problem (9) must satisfy.

Theorem 1. If the strategy σl∗(ϑlt|θlt) and the mech-
anism μ∗(at|mt) are solutions to the problem (9) and,
hence, correspond to a Nash equilibrium (7), then vari-
ables zl∗(θlt, ϑlt,ml

t, a
l
t) for all l ∈ N satisfy the following

ergodicity constraints:

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

βl
t∈Ξl

t

∑

γl
t∈Al

t

[δαl
tθ

l
t+1

− pl(θlt+1|αl
tγ

l
t)]

× zl∗(αl
tκ

l
tβ

l
tγ

l
t) = 0, θlt+1 ∈ Θl

t, (16)

∑

�l
t∈Ξl

t

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

γl
t∈Al

t

[δ�l
tβ

l
t
− pl(βl

t|κlt)]

× zl∗(αl
tκ

l
t�

l
tγ

l
t) = 0, βl

t ∈ Ξl
t, (17)

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

βl
t∈Ξl

t

∑

γl
t∈Al

t

Ql(βl
t|ρlt)zl∗(αl

tκ
l
tβ

l
tγ

l
t) ≥ 0,

ρlt ∈ Ξl
t. (18)

Proof. See Appendix, Section A2. �

4.5. Bayesian Nash equilibrium.

Lemma 2. The obtained mechanism μ∗(at|mt) and
the strategies σl∗(ϑlt|θlt) satisfy the Bayesian-Nash equi-
librium given in Eqn. (7).

Proof. We have

max
z∈Zadm

Ũ(z)

= Ũ(z∗) =
∑

l∈N
Ũ l(z∗) =

∑

l∈N
U l(μ∗, σ∗

μ∗)

=
∑

l∈N

∑

t∈T

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

W l(alt, θ
l
t,m

l
t)

× (μ∗(at|mt))
nσl∗(ϑlt|θlt)pl∗(ml

t|ϑltalt)P l∗(θlt)

×
∏

ι �=l∈N
σι∗(ϑιt|θιt)pι∗(mι

t|ϑιtaιt)P ι∗(θιt),

=
∑

l∈N

∑

t∈T

max
σl∈Sl

adm

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

(μ∗(at|mt))
n

×
∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

W l(alt, θ
l
t,m

l
t)

× σl(ϑlt|θlt)pl(ml
t|ϑltalt)P l(θlt)

×
∏

ι �=l∈N
σι∗(ϑιt|θιt)pι∗(mι

t|ϑιtaιt)P ι∗(θιt)

=
∑

l∈N

∑

t∈T

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

(μ∗(at|mt))
n

×
∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

(
W l(alt, θ

l
t,m

l
t)

× σl(ϑlt|θlt)pl(ml
t|ϑltalt)P l(θlt)

×
∏

ι �=l∈N
σι∗(ϑιt|θιt)pι∗(mι

t|ϑιtaιt)P ι∗(θιt)
)

=
∑

l∈N
U l(μ, σl, σ−l∗).

(19)

From this inequality it follows that
∑

l∈N

(
U l(μ∗, σ∗

μ∗)− U l(μ∗, σl, σ−l∗)
) ≥ 0. (20)

Since the above inequality is valid for all admissible
strategies σ, it is valid when σj = σj∗ for j �= l, implying

U l(μ∗, σ∗
μ∗)− U l(μ∗, σl, σ−l∗) ≥ 0, (21)

which coincides with Eqn. (7) when μ = μ∗. The lemma
is proven. �

5. Convergence analysis
5.1. Nash equilibrium problem. In this section,
we prove the convergence of the proposed method to
a mechanism and unique Bayesian Nash equilibrium
(Clempner and Poznyak, 2015; 2016). Each player selects
the best reply to the other players’ strategies to reach the
equilibrium. To this end, we first recall the definition of
the (standard) Nash equilibrium problem.
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We consider a game played by a set N = {1, . . . , n}
players indexed by l ∈ N . Each of player l ∈ N controls
the variable

zl(θltϑ
l
tm

l
ta

l
t) := μ(at|mt)σ

l(ϑlt|θlt)pl(ml
t|ϑlt)P l(θlt).

Consider a game whose strategies are denoted by xl ∈
X l where X l is a convex and compact set, and xl :=
col
(
zl(θltϑ

l
tm

l
ta

l
t)
)
, where col is the column operator. Let

x = (x1, . . . , xn)� ∈ X , the vector formed by all these
decision variables, be the joint strategy of the players
and x−l :=

(
x1, . . . , xl−1, xl+1, . . . , xn

)� ∈ X−l be a
strategy of the rest of the players adjoint to xl ∈ X l. To
emphasize the l-th player’s variables within the vector x,
we sometimes write x = (xl, x−l)� ∈ R

n where x−l

subsumes all the other players’ variables. We consider
a Nash equilibrium problem with n players and denote
by x = (xl, x−l) ∈ R

n the vector representing the l-th
player’s strategy where x ∈ Xadm and Xadm = X l

adm ×
X−l

adm, such that

Xadm := {x : x ≥ 0, Φ0x = b0, Φ1x ≤ b1} .

Let f l : R
n → R be the l-th player’s reward

function (cost function). We assume that these reward
functions are at least continuous, and we further assume
that the functions f l

(
xl, x−l

)
are concave in the variable

xl. The players try to reach one of the non-cooperative
equilibrium, that is, they try to find a strategy x∗ =(
x1∗, . . . , xn∗

)
satisfying for any xl and any l ∈ N that

F (x) :=
∑

l∈N

[(
max
xl∈Xl

f l
(
xl, x−l

)
)
− f l

(
xl, x−l

)
]
.

(22)
Note that

F (x) :=
∑

l∈N

[
f l
(
x̄l, x−l

)− f l
(
xl, x−l

)]
, (23)

where
x̄l ∈ Arg max

xl∈Xl
f l
(
xl, x−l

)
(24)

and the function f l satisfies

f l
(
x̄l, x−l

)− f l
(
xl, x−l

) ≥ 0 (25)

for any xl ∈ X l and l ∈ N . Then a vector x∗ ∈ X is
a non-cooperative equilibrium, or a solution of the Nash
equilibrium problem if

x∗∈Argmax
x∈X

{F (x)} . (26)

In the case whereF (x) is a strictly concave function,
we have that

x∗=argmax
x∈X

{F (x)} .

5.2. Penalty function approach. Considering the
“slack” vectors ζ ∈ Λ with nonnegative components, that
is, ζj ≥ 0, the original problem (26) can be rewritten as

F(x) → max
x∈Xadm, ζ≥0

Xadm := {x : x ≥ 0, Φ0x = b0, Φ1x− b1 + ζ = 0} .

}

(27)

Remark 1. Note that the problem (27) may have a
nonunique solution and det (V ᵀ

0 V0) = 0.

We are dealing with a penalty function solution
method which considers (Clempner and Poznyak, 2018a;
2018b)

ψζ,ρ (x, ζ) := −F(x) + ζ

[
1

2
‖Φ0x− b0‖2

+
1

2
‖Φ1x− b1 + ζ‖2

+
ρ

2

(
‖x‖2 + ‖ζ‖2

)]
(28)

with ζ, ρ > 0, such that the optimization problem

ψζ,ρ (x, ζ) → min
x∈Xadm, ζ≥0

(29)

has a unique equilibrium point. The following lemma
proves this statement.

Lemma 3. The optimization function given in Eqn. (28)
is strongly convex if the Hessian matrix H associated with
the penalty function given in Eqn. (28) is strictly positive.

Proof. See Appendix, Section A3. �
It is important to note that

arg min
x∈Xadm, ζ≥0

ψζ,ρ (x, ζ)

= arg min
x∈Xadm, ζ≥0

Ψω,ρ (x, ζ)

such that ω := ζ−1 > 0 and

Ψω,ρ (x, ζ) := −ωF(x) +
1

2
‖Φ0x− b0‖2

+
1

2
‖Φ1x− b1 + ζ‖2

+
ρ

2

(
‖x‖2 + ‖ζ‖2

)
(30)

Let X ∗ ⊆ Xadm be the set of all solutions to the
problem (27). The following proposition holds for the
penalty function method.

Proposition 1. The parameters x∗ (ω, ρ) and ζ∗ (ω, ρ),
which are the solutions of the optimization problem

Ψω,ρ (x, ζ) → min
x∈Xadm, ζ≥0

,

tend to the set X ∗ of all solutions of the original optimiza-
tion problem (27), when the penalty parameter ω tends to
zero.
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Remark 2. We have that Proposition 1 holds if

d {x∗ (ω, ρ) , ζ∗ (ω, ρ) ;X∗} −→
ζ,ρ↓0

0, (31)

where d {a;X∗} is the Hausdorff distance defined as

d {y;X∗} = min
x∗∈X∗

‖y − x∗‖2
The following theorem determines how the

parameters ω and ρ tend to zero. We provide the
convergence analysis of the sequences {xn}n∈N

and
{ζn}n∈N

in the following theorem. Define y = (x, ζ)ᵀ

such that Yadm = Xadm × Λadm.

Theorem 2. Let the Markov game be Lipschitz continu-
ous; in particular, for any y := (x, ζ)

ᵀ, let Ψω,ρ (x, ζ) =
Ψω,ρ (y) be convex and differentiable with the gradient
satisfying the Lipschitz condition given by

‖∇Ψω,ρ (y)−∇Ψω,ρ (k)‖ ≤ c ‖y − k‖
for c > 0 and all y, k ∈ Yadm, where Yadm a is convex
and compact set. In addition, assume that ω and ρ are
time-varying, i.e.,

ω = ωn, ρ = ρn (n = 0, 1, 2, . . . ) ,

where the parameters satisfy

0 < ωn ↓ 0,
ωn

ρn
↓ 0 as n→ ∞. (32)

Then, for any ρ ∈ (0, 1) and any vector y∗n :=
(x∗n = x∗ (ωn, ρn) , ζ

∗
n = ζ∗ (ωn, ρn))

ᵀ ∈ Yadm the se-
quences

x∗n := x∗ (ωn, ρn) −→
n→∞ x∗∗,

ζ∗n := ζ∗ (ωn, ρn) −→
n→∞ ζ∗∗ (33)

converge to a Bayesian Nash equilibrium point and a
incentive-compatible mechanism such that x∗∗ ∈ X ∗ is
the solution of the original problem (27).

Proof. See Appendix, Section A4. �

The following theorem determines how the
parameters ω and ρ tend to zero employing the Hausdorff
distance defined in Eqn. (31).

Theorem 3. Assume that the bounded set X ∗ of all so-
lutions of the original optimization problem (27) is not
empty and Slater’s condition holds, that is, there exists
a point x̊ ∈ Xadm such that

Φ1x̊ < b1. (34)

Then, by Theorem 2, for any ρ ∈ (0, 1) the sequences

x∗n := x∗ (ωn, ρn) −→
n−→∞ x∗∗,

ζ∗n := ζ∗ (ωn, ρn) −→
n→∞ ζ∗∗

converge to a unique Bayesian Nash equilibrium point
and a unique incentive-compatible mechanism, such that
x∗∗ ∈ X ∗ is the solution of the original problem (27) with
the minimal weighted norm given by

‖x∗∗‖ ≤ ‖x∗‖ for all x∗ ∈ X ∗ (35)

and
ζ∗∗ = b1 − Φ1x

∗∗. (36)

Proof. See Clempner and Poznyak (2018a; 2018b). �

Corollary 2. The resulting mechanism is unique, and it
is incentive compatible, i.e., it satisfies Eqn. (6).

6. Numerical example: A supply chain
network

6.1. Description of the supply chain problem.
Consider a multinational firm with several subsidiaries
(Maskin and Riley, 1984; Asian and Nie, 2014). We
develop a supply chain network model where subsidiaries,
denoted by l ∈ N , are involved in the competitive
production of a homogeneous product for multiple
demand markets and compete in a noncooperative manner
(Zeifman et al., 2020; Khoury et al., 2022). We consider
the problem of selling prices and optimal production
levels for a supply chain in the presence of asymmetric
information related to local ownership requirements. The
profit-maximizing divisions select independently both
the capacities associated with producing as well as the
product quantities.

The market requests a new product and the firm
decided to invest in this new product. This new product
involves several parts that can be produced by different
subsidiaries, which have different capacities. In the supply
chain, each subsidiary can take the actions a of either
accept or reject to produce and deliver the intermediate
product. In addition, the subsidiary decides about the
produced and delivered quantity q.

The new product “coordinates” the independent
divisions. Therefore, a price system combined with
rules of the intra-firm information flow must be defined.
The subsidiary l produces an intermediate product which
is employed by the parent (l+1) to produce a finished
product along a vertically integrated supply chain. The
last division in the supply chain sells the final product.
Let θ denote the subsidiaries’ willingness to pay for an
intermediate product.

A key feature of the supply chain subsidiaries model
is that there is both asymmetric information and no
intention to reveal the willingness to pay. In order to
promote the persuasion process, we consider that the
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intermediate product is available on any outside market
and can be sold there.

We define the cost function of the subsidiary as a
combination of cl(altθ

l
tm

l
t) and υl(ml

t|alt)) that represents
the quantity produced of the intermediate good.

The problem is presented in terms of the direct
revelation mechanism (Myerson, 1983; Jackson, 2003),
where the revelation game is played after a mechanism
is defined by the mean of the combination of the
functions U l(μ(at|mt), σ

l(ϑlt|θlt), pl(ml
t|ϑlt), P l(θlt))

and υl(ml
t|alt). Bear in mind that the former function,

U l(μ(at|mt), σ
l(ϑlt|θlt), pl(ml

t|ϑlt), P l(θlt)) represents a
monetary transfer from the parent to the subsidiary. The
latter function represents the quantity level, υl(ml

t|alt),
depending on the reported type ml

t and the action at. The
profit function of the subsidiary, denoted by πl, is defined
as

πl(μ(at|mt)σ
l
(ϑ

l
t|θlt)pl(ml

t|ϑlt)P l
(θ

l
t)υ

l
(m

l
t|alt))

=

⎧
⎨

⎩

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

W l(a
l
t, θ

l
t,m

l
t)

×
∏

ι∈N
μ(at|mt)σ

ι
(ϑ

ι
t|θιt)pι(mι

t|ϑιt)P ι
(θ

ι
t)

}

υl(m
l
t|alt)

−
⎧
⎨

⎩

∑

θl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

cl(altθ
l
tm

l
t)

⎫
⎬

⎭
υl(ml

t|alt),

where

Υadm:=

⎧
⎨

⎩
υl(ml

t|alt)
∣
∣
∣
∣
∣
∣

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

υl(ml
t|alt) ≤ υ+

⎫
⎬

⎭

such that 0 < υ+ is the maximum quantity able to
be produced. This represents the gross profit of the
subsidiary who reports ml

t for the observed type ϑlt when
its true type is θlt.

Simplifying, we have

πl(z
l
(θltϑ

l
tm

l
ta

l
t)q

l(ml
t|alt))

=

⎧
⎨

⎩

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

W l(a
l
t, θ

l
t,m

l
t)

×
∏

ι∈N
zι(θ

ι
tϑ

ι
tm

ι
ta

ι
t)

}

υl(m
l
t|alt)

−
⎧
⎨

⎩

∑

θl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

cl(altθ
l
tm

l
t)

⎫
⎬

⎭
υl(ml

t|alt).

We will also define the profit function

π̃l(zl(θlta
l
t)q

l(θlt|alt))

=

⎧
⎨

⎩

∑

θl
t∈Θl

t

∑

al
t∈Al

t

W l(alt, θ
l
t)
∏

ι∈N
zι(θιta

ι
t)

⎫
⎬

⎭
υl(θlt|alt)

−
⎧
⎨

⎩

∑

θl
t∈Θl

t

∑

al
t∈Al

t

cl(altθ
l
t)

⎫
⎬

⎭
υl(θlt|alt).

The dynamics of the game is as follows. As soon as
the mechanism is suggested, the subsidiary makes a report
of its type ml

t for the observed type ϑlt when its true type
is θlt; then the parent determines the quantity υl(ml

t|alt) to
be produced. Next, production takes place and revenues
and the intermediate products are transferred. The parent
pay-off represents the reward obtained from the sale of
υl(ml

t|alt) units of the intermediate product minus the
costs (of the parent). The finished product is sold in a
monopolistic manner by the final subsidiary in the supply
chain on the open market, i.e., taking into account its
effect on price. Without loss of generality, it can be
supposed, that the quantity of the finished product equals
the quantity of the intermediate good.

We will now develop the profit function of the parent
shareholders. We suppose that they own a fraction a of the
subsidiary. This means that they share, on a pro-rata basis,
the revenues and bear the same share of costs. The profit
of the parent is as follows

πl(zl(θltϑ
l
tm

l
ta

l
t)υ

l(ml
t|alt))

=
{ ∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

W l(alt, θ
l
t,m

l
t)

×
∏

ι∈N
zι(θιtϑ

ι
tm

ι
ta

ι
t)

×W l−1(al−1
t , θl−1

t ,ml−1
t )

×
∏

ι∈N
zι(θιtϑ

ι
tm

ι
ta

ι
t)
}
υl(ml

t|alt)

−
{ ∑

θl
t∈Θl

t

∑

ml
t∈Ξl

t

∑

al
t∈Al

t

cl(alt, θ
l
t,m

l
t)
}
υl(ml

t|alt),

l = 2, . . . , n,

where l = 1 represents the first division and l = 2, . . . , n
the rest of the divisions on the vertically integrated supply
chain such that

π1(z
1
(θ

1
tϑ

1
tm

1
ta

1
t )υ

1(m1
t |a1t ))

=
{ ∑

θ1
t∈Θ1

t

∑

ϑ1
t∈Θ1

t

∑

m1
t∈Ξ1

t

∑

a1
t∈A1

t

W 1(a1t , θ
l
t,m

1
t )
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× z1(θ1t ϑ
1
tm

1
ta

1
t )− C1

}
υ1(m1

t |a1t )

−
{ ∑

θ1
t∈Θ1

t

∑

m1
t∈Ξ1

t

∑

a1
t∈A1

t

c1(a
1
t , θ

1
t ,m

1
t )
}
υ1(m1

t |a1t ),

l = 1

given C1 denotes acquisition and production costs (per
unit/marginal costs).

6.2. Problem formulation. We now formulate the
problem of designing a mechanism. We suppose that
the players have all of the bargaining ability and can
enforce the best ex-post outcome while respecting the
players’ opportunity of cost and private information. The
mathematical statement of the problem is as follows:

π(μ(at|mt)σ(ϑt|θt)p(mt|ϑt)P (θt)υ(mt|at))
−→ max

μ∈Uadm,σ∈Sadm,υ∈Υadm
(37)

subject to

π̃l(zl(θlta
l
t)υ

l(θlt|alt))
≥ πl(zl(θltϑ

l
tm

l
ta

l
t)υ

l(ml
t|alt)), (38)

πl(zl(θltϑ
l
tm

l
ta

l
t)υ

l(ml
t|alt)) ≥ 0, (39)

where

π(μ(at|mt)σ(ϑt|θt)p(mt|ϑt)P (θt)υ(mt|at))
=
∑

l∈N
πl(μ(at|mt)σ

l(ϑlt|θlt)

× pl(ml
t|ϑlt)P l(θlt)υ

l(ml
t|alt)).

The revelation principle states that the equilibrium of
any Bayesian game of incomplete information can be
implemented as an equilibrium of the direct revelation
game in which players report the truth using an
incentive-compatible mechanism (Myerson, 1981). The
constraint of Eqn. (39) is the individual rationality or
participation constraint, which determines that the parent
should not lose from the arrangement. Here, the constraint
on the problem reflects the fact the parent must prefer
to buy the product with the subsidiary over an outside
option. Notice that there is a point for an equal surplus
for the subsidiary and the parent, where the constraint of
individual rationality holds with equality,

πl(zl(θltϑ
l
tm

l
ta

l
t)υ

l(ml
t|alt)) = 0. (40)

The economic interpretation of Eqn. (40) is that the
subsidiary chooses a quantity where the marginal benefit
to the parent equals the subsidiary’s marginal cost of
production. That is, the socially efficient quantity of the
good is offered. This maximizes the size of the economic

pie to be split between the parties. Having done this,
the subsidiary then uses the transfer to capture all of this
surplus.

In order to solve the problem given in Eqn. (37),
we employ the proposed method for determining the
incentive compatibility constraint. The following result of
the mechanism design literature is given in the following
lemma.

Lemma 4. The mechanism μ(at|mt) is incentive com-
patible, i.e., it satisfies Eqn. (37).

Proof. It follows immediately from Theorem 3 that

E

{
πl∗(μ∗(at|mt)σ

l∗(ϑlt|θlt)

× pl(ml
t|ϑlt)P l∗(θlt)q

l∗(ml
t|alt))

}

≥ E

{
πl(μ(at|mt)σ

l(ϑlt|θlt)

× pl(ml
t|ϑlt)P l(θlt)υ

l(ml
t|alt))

}
. (41)

�

6.3. Numerical results. We consider a “downstream”
production, so that intrafirm trade flows from the
subsidiary to the parent. The constraint given in Eqn. (38)
is the incentive compatibility or truth-telling constraint
imposed on the mechanism designer (parent); in other
words, Eqn. (38) says that a player must prefer to report
her type truthfully than to reject the contract entirely.
We suppose that the parent can enforce the best ex-ante
outcome while respecting the subsidiary’s opportunity
cost and private information.

The convergence of the strategies zl(θltϑltml
ta

l
t) are

given in Figs. 1, 2 and 3. Applying Eqns. (13), (14)
and (15), we have that the resulting Bayesian strategies
σl(ϑlt|θlt) are the following:

σ(1)∗ =

⎡

⎢
⎢
⎣

0.5542 0.1537 0.2455 0.1631
0.1486 0.1537 0.2648 0.1631
0.1486 0.1537 0.2447 0.1631
0.1486 0.5388 0.2450 0.5108

⎤

⎥
⎥
⎦ ,

σ(2)∗ =

⎡

⎢
⎢
⎣

0.5295 0.1530 0.1914 0.1561
0.1568 0.1530 0.4299 0.1561
0.1568 0.1530 0.1894 0.1561
0.1568 0.5409 0.1894 0.5318

⎤

⎥
⎥
⎦ ,

σ(3)∗ =

⎡

⎢
⎢
⎣

0.2363 0.2531 0.2419 0.1591
0.2575 0.2532 0.2510 0.1561
0.2576 0.2533 0.2536 0.1599
0.2486 0.2405 0.2534 0.5249

⎤

⎥
⎥
⎦ ,

and the distribution vectors P l∗(ml
t) for each player l are



Computing a mechanism for a Bayesian and partially observable Markov approach 473

0 2 4 6 8 10 12 14 16 18 20

Iterations

0

0.02

0.04

0.06

0.08

0.1

0.12

P
ro

ba
bi

lit
y

Dynamic of the strategies z for the Player 1

Fig. 1. Convergence of strategies σ(1)∗(ϑ|ϑ) of Player 1.
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Fig. 2. Convergence of strategies σ(2)∗(ϑ|ϑ) of Player 2.
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Fig. 3. Convergence of strategies σ(3)∗(ϑ|ϑ) of Player 3.

given by

P (1)∗=

⎡

⎢⎢
⎣

0.2126
0.2645
0.2537
0.2692

⎤

⎥⎥
⎦ ,

P (2)∗=

⎡

⎢
⎢
⎣

0.1600
0.3160
0.2563
0.2676

⎤

⎥
⎥
⎦ ,

P (3)∗=

⎡

⎢
⎢
⎣

0.1816
0.2158
0.3005
0.3020

⎤

⎥
⎥
⎦ .

The resulting mechanism is

μ∗(a|m) =

⎡

⎢⎢
⎣

0.4576 0.5424
0.3417 0.6583
0.6818 0.3182
0.6174 0.3826

⎤

⎥⎥
⎦ .

The convergence of the resulting quantities
υl(ml

t|alt) is illustrated in Figs. 4, 5 and 6. The
values of υl(ml

t|alt) are as follows:

υ1∗ =

⎡

⎢
⎢
⎣

10.9140 6.9828
8.2940 6.9235
5.3148 6.1103
6.5392 6.1096

⎤

⎥
⎥
⎦ ,

υ2∗ =

⎡

⎢
⎢
⎣

6.1343 9.5842
6.1343 8.0331
7.1797 4.9834
6.8988 4.9828

⎤

⎥
⎥
⎦ ,

υ3∗ =

⎡

⎢
⎢
⎣

6.1343 9.5842
6.1343 8.0331
7.1797 4.9834
6.8988 4.9828

⎤

⎥
⎥
⎦ .

7. Conclusion
This paper presented an analytical method for computing
incentive-compatible mechanisms for a class of
controllable Markov games. For solving the problem, a
new variable is considered that represents the product of
the mechanism design, the strategy and the distribution
vector. This variable makes the problem computationally
tractable. We derive relations to analytically compute the
variables of interest: the mechanism, the strategies and the
distribution vector. We employed the notion of Bayesian
Nash equilibrium as the equilibrium concept for our
game. We also introduce a regularization parameter based
on Tikhonov’s approach for ensuring the convergence to a
unique equilibrium point. We also show the convergence
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Fig. 4. Convergence of quantities υ1∗(m|a) of Player 1.

0 2 4 6 8 10 12 14 16 18 20

Iterations

0

5

10

15

20

25

30

35

40

45

50

V
al

ue

Quantity  for Player 2

Fig. 5. Convergence of quantities υ2∗(m|a) of Player 2.
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Fig. 6. Convergence of quantities υ3∗(m|a) of Player 3.

to a unique incentive-compatible mechanism and to a
unique Bayesian Nash equilibrium of the game. The
proposed approach is validated by a numerical example.
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Appendix

A1. Proof of Lemma 1
Observe that μ∗(at|mt) can be obtained from Eqns. (11)
and (12) as follows:

∑

l∈N

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

zl∗(θlt, ϑ
l
t,m

l
t, a

l
t)

:= μ∗(at|mt)
∑

l∈N

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

σl∗(ϑlt|θlt)

× pl∗(ml
t|ϑlt)P l∗(θlt).

Hence

μ∗(at|mt)

=

∑

l∈N

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

zl∗(θlt, ϑ
l
t,m

l
t, a

l
t)

∑

l∈N

∑

θl
t∈Θl

t

∑

ϑl
t∈Θl

t

∑

al
t∈Al

t

zl∗(θlt, ϑlt,ml
t, a

l
t)
.

(A1)

A2. Proof of Theorem 1
This means that the new variables zl∗(αl

tκ
l
tβ

l
tγ

l
t) should

satisfy the following linear ergodicity constraints.
We prove the relation given in Eqn. (16) as follows:

P l∗(θlt+1)

=
∑

αl
t∈Θl

t

{
∑

κl
t∈Θl

t

∑

βl
t∈Ξl

t

∑

γl
t∈Al

t

pl(θlt+1|αl
tγ

l
t)

× zl∗(αl
tκ

l
tβ

l
tγ

l
t)

}

.

Now,

∑

θl
t+1∈Θl

t

{ ∑

κl
t∈Θl

t

∑

βl
t∈Ξl

t

∑

γl
t∈Al

t

pl(θlt+1|αl
tγ

l
t)

× zl∗(θt+1κ
l
tβ

l
tγ

l
t)
}

=
∑

αl
t∈Θl

t

{ ∑

κl
t∈Θl

t

∑

βl
t∈Ξl

t

∑

γl
t∈Al

t

pl(θlt+1|αl
tγ

l
t)

× zl∗(αl
tκ

l
tβ

l
tγ

l
t)
}
,
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which implies
∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

βl
t∈Ξl

t

∑

γl
t∈Al

t

[δαl
tθ

l
t+1

− pl(θlt+1|αl
tγ

l
t)]

×zl∗(αl
tκ

l
tβ

l
tγ

l
t) = 0, θlt+1 ∈ Θl

t.

zl∗ ∈ Δl

:=
{
zl∗(αl

tκ
l
tβ

l
tγ

l
t)

∣
∣
∣
∣∣
∣

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

βl
t∈Ξl

t

∑

γl
t∈Al

t

[δαl
tθ

l
t+1

− pl(θlt+1|αl
tγ

l
t)]

× zl∗(αl
tκ

l
tβ

l
tγ

l
t), θ

l
t+1 ∈ Θl

t

}
. (A2)

Equation (17) is fulfilled automatically since
∑

�l
t∈Ξl

t

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

γl
t∈Al

t

[δ�l
tβ

l
t
− pl(βl

t|κlt)]

× zl∗(αl
tκ

l
t�

l
tγ

l
t)

=
∑

�l
t∈Ξl

t

∑

κl
t∈Θl

t

[δ�l
tβ

l
t
− pl(βl

t|κlt)]

×
∑

αl
t∈Θl

t

∑

γl
t∈Al

t

zl∗(αl
tκ

l
t�

l
tγ

l
t).

We have that
∑

αl
t∈Θl

t

∑

γl
t∈Al

t

zl∗(αl
tκ

l
t�

l
tγ

l
t)

=
∑

αl
t∈Θl

t

∑

γl
t∈Al

t

μ(γlt|�lt)σl(κlt|αl
t)p

l(�lt|κlt)P l(αl
t)

= pl(�lt|κlt)
∑

αl
t∈Θl

t

∑

γl
t∈Al

t

μ(γlt|�lt)σl(κlt|αl
t)P

l(αl
t)

and
∑

l∈N

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

γl
t∈Al

t

zl∗(αl
tκ

l
t�

l
tγ

l
t)

=
∑

l∈N

∑

αl
t∈Θl

t

∑

γl
t∈Al

t

μ(γlt|�lt)

×
⎛

⎝
∑

κl
t∈Θl

t

σl(κlt|αl
t)

⎞

⎠ pl(βl
t|κlt)P l(αl

t)

= pl(�lt|κlt)
∑

l∈N

∑

αl
t∈Θl

t

∑

γl
t∈Al

t

μ(γlt|�lt)P l(αl
t)

Then
∑

l∈N

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

γl
t∈Al

t

zl∗(αl
tκ

l
t�

l
tγ

l
t)

×

∑

αl
t∈Θl

t

∑

γl
t∈Al

t

zl∗(αl
tκ

l
t�

l
tγ

l
t)

∑

l∈N

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

γl
t∈Al

t

zl∗(αl
tκ

l
t�

l
tγ

l
t)

=
∑

l∈N

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

γl
t∈Al

t

zl∗(αl
tκ

l
t�

l
tγ

l
t)

×
∑

αl
t∈Θl

t

∑

γl
t∈Al

t

μ(γlt|�lt)σl(κlt|αl
t)p

l(�lt|κlt)P l(αl
t)

×
{∑

l∈N

∑

αl
t∈Θl

t

∑

γl
t∈Al

t

μ(γlt|�lt)

×
( ∑

κl
t∈Θl

t

σl(κlt|αl
t)
)
pl(�lt|κlt)P l(αl

t)
}−1

=
∑

l∈N

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

γl
t∈Al

t

zl∗(αl
tκ

l
t�

l
tγ

l
t)

×
pl(�lt|κlt)

∑

αl
t∈Θl

t

∑

γl
t∈Al

t

μ(γlt|�lt)σl(κlt|αl
t)P

l(αl
t)

pl(�lt|κlt)
∑

l∈N

∑

αl
t∈Θl

t

∑

γl
t∈Al

t

μ(γlt|�lt)P l(αl
t)

=
∑

l∈N

∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

∑

γl
t∈Al

t

zl∗(αl
tκ

l
t�

l
tγ

l
t)

×

∑

αl
t∈Θl

t

∑

γl
t∈Al

t

μ(γlt|�lt)σl(κlt|αl
t)P

l(αl
t)

∑

l∈N

∑

αl
t∈Θl

t

∑

γl
t∈Al

t

μ(γlt|�lt)P l(αl
t)

=
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∑

αl
t∈Θl
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∑
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μ(γlt|�lt)
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t

σl(κlt|αl
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μ(γlt|�lt)σl(κlt|αl
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t)

∑

l∈N

∑
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∑
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∑
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μ(γlt|�lt)σl(κlt|αl
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As a result,

∑

�l
t∈Ξl

t

∑

κl
t∈Θl

t

[δ�l
tβ

l
t
− pl(βl

t|κlt)]pl(�lt|κlt)σl(κlt|αl
t)
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t

δ�l
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pl(�lt|κlt)σl(κlt|αl
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t

∑

κl
t∈Θl

t
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=
∑

κl
t∈Θl

t

pl(βl
t|κlt)σl(κlt|αl

t)

−
∑

κl
t∈Θl

t

pl(βl
t|κlt)σl(κlt|αl

t) = 0.

Now, we prove the relation given in Eqn. (18). We
have that Ql =

[
pl(ml

t|ϑlt)
]−1. Then, we get that for any

ρlt ∈ Θ we have

∑

αl
t∈Θl

t

∑
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l
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× P l∗(αl
t)
∑

γl
t∈Al

t

μ∗(γt|βt)

=
∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

σl∗(κlt|αl
t)P

l∗(αl
t)

×
∑

βl
t∈Ξl

t

Ql(βl
t|ρlt)pl(βl

t|κlt)

=
∑

αl
t∈Θl

t

∑

κl
t∈Θl

t

σl∗(κlt|αl
t)P

l∗(αl
t)δρl

tκ
l
t

=
∑

αl
t∈Θl

t

σl∗(ρlt|αl
t)P

l∗(αl
t) ≥ 0.lt.

The theorem is proved.

A3. Proof of Lemma 3
Let us show that the Hessian matrix H associated with
the penalty function given in Eqn. (28) is strictly positive
definite for any positive ω and ρ. We have to prove that
for any x ∈ Xadm and ζ ≥ 0

H =

[
∂2

∂x2Ψω,ρ (x, ζ)
∂2

∂ζ∂xΨω,ρ (x, ζ)
∂2

∂x∂ζΨω,ρ (x, ζ)
∂2

∂ζ2Ψω,ρ (x, ζ)

]

> 0.

(A3)
For showing that Eqn. (A3) is true, in accordance with
Schur’s lemma, it is necessary and sufficient to prove only
that

∂2

∂x2
Ψω,ρ (x, ζ) > 0,

∂2

∂ζ2
Ψω,ρ (x, ζ) > 0,

∂2

∂x2
Ψω,ρ (x, ζ) >

∂2

∂ζ∂x
Ψω,ρ (x, ζ)

×
[ ∂2

∂ζ2
Ψω,ρ (x, ζ)

]−1

× ∂2

∂x∂ζ
Ψω,ρ (x, ζ) .

(A4)

Hence, we have

∂2

∂x2
Ψω,ρ (x, ζ)

= ω
∂2

∂x2
F(x) + Φᵀ

0Φ0 +Φᵀ
1Φ1 + ρIN×N

≥ ω
∂2

∂x2
F(x) + ρIN×N

≥ ρ

(
1 +

ω

ρ
λ−
)
IN×N > 0, ∀ ρn > 0,

λ− := min
x∈Xadm

λmin

(
∂2

∂x2
F(x)

)
,

∂2

∂ζ2
Ψω,ρ (x, ζ) = (1 + ρ) IM1×M1 > 0.

Then, we need to satisfy

∂2

∂x2
Ψω,ρ (x, ζ)

= ω
∂2

∂x2
F(x) + Φᵀ

0Φ0 +Φᵀ
1Φ1 + ρIN×N

>
∂2

∂ζ∂x
Ψω,ρ (x, ζ)

[
∂2

∂ζ2
Ψω,ρ (x, ζ)

]−1

× ∂2

∂x∂ζ
Ψω,ρ (x, ζ)

= (1 + ρ)
−1

Φᵀ
1Φ1,

or in an equivalent manner,

ω
∂2

∂x2
F(x) + Φᵀ

0Φ0 +
ρ

1 + ρ
Φᵀ

1Φ1 + ρIN×N > 0,

which is fulfilled for any ρ > 0; then
(
ωλ− + ρ

)
IN×N +Φᵀ

0Φ0 +
ρ

1+ρΦ
ᵀ
1Φ1

≥ ρ

(
1 +

ω

ρ
λ−
)
IN×N

= ρ (1 + o(1)) IN×N > 0

As a result, we have that H > 0, which means that
the penalty function in Eqn. (28) is strongly concave and
it has a unique maximal point.

A4. Proof of Theorem 2
By the strictly convexity property showed in Lemma 3
for any y := (x, ζ)

ᵀ and for any vector such that y∗n :=
(x∗n = x∗ (ωn, ρn) , ζ

∗
n = ζ∗ (ωn, ρn))

ᵀ for the function
Ψω,ρ (x, ζ) = Ψω,ρ (y) we have

(y∗n − y)
ᵀ ∂

∂y
Ψωn,ρn (y∗n)

= (x∗n − x)
ᵀ ∂

∂x
Ψωn,ρn (x∗n, ζ

∗
n)

+ (ζ∗n − ζ)
ᵀ ∂

∂ζ
Ψωn,ρn (x∗n, ζ

∗
n) .

(A5)
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Selecting in (A5) x := x∗ ∈ X ∗ (x∗ is one of
admissible solutions such that Φ0x

∗ = b0) and ζ :=
(1 + ρ)−1 (b1 − Φ1x

∗
n), we obtain

0 ≥ ωn (x
∗
n − x∗)ᵀ

∂

∂x
F (x∗n) + ‖Φ0 (x

∗
n − x∗)‖2

+ ‖Φ1 (x
∗
n − x∗)‖2 + ρn (x

∗
n − x∗)ᵀ x∗n

+ (1 + ρ)
−1 ‖Φ1x

∗
n − b1 + (1 + ρ) ζ∗n‖2

+ ρn (ζ
∗
n − b1 − Φ1x

∗
n)

ᵀ ζ∗n.

Dividing both the sides of this inequality by ρn, we get

0 ≥ ωn

ρn
(x∗n − x∗)ᵀ

∂

∂x
F (x∗n)

+
1

ρn

(
‖Φ0x

∗
n − b0‖2 + ‖Φ1 (x

∗
n − x∗)‖2

+ ‖Φ1x
∗
n − b1 + (1 + ρ) ζ∗n‖2

)

+ (x∗n − x∗)ᵀ x∗n + (ζ∗n − b1 − Φ1x
∗
n)

ᵀ
ζ∗n.

(A6)

Notice also that from (A5), taking x = x∗n and ζ = 0, it
follows that

0 ≥ (ζ∗n)
ᵀ
(Φ1x

∗
n − b1 + (1 + ρ) ζ∗n)

= (ζ∗n)
ᵀ
(Φ1x

∗
n − b1) + (1 + ρ) ‖ζ∗n‖2

=

[∥
∥
∥∥
√
1 + ρζ∗n +

(Φ1x
∗
n − b1)

2
√
1 + ρ

∥
∥
∥∥

2

−
∥
∥
∥
∥
(Φ1x

∗
n − b1)

2
√
1 + ρ

∥
∥
∥
∥

2
]

,

implying

1 ≥
∥∥
∥e+ 2 (1 + ρ) ζ∗n ‖(Φ1x

∗
n − b1)‖−1

∥∥
∥
2

,

‖e‖ = 1,

which means that the sequence {ζ∗n} is bounded. In view
of this and taking into account that by (32)

ωn

ρn
−→
n→∞ 0,

from (A6) it follows that

Const = lim sup
n→∞

(|(x∗n − x∗)ᵀ x∗n|
+ |(ζ∗n − b1 − Φ1x

∗
n)

ᵀ
ζ∗n|)

≥ lim sup
n→∞

1

ρn

(
‖Φ0x

∗
n − b0‖2 + ‖Φ1 (x

∗
n − x∗)‖2

+ (1 + ρn)
−1 ‖Φ1x

∗
n − b1 + (1 + ρn) ζ

∗
n‖2
)
.

(A7)

From (A7) we can conclude that

‖Φ0x
∗
n − b0‖2 + ‖Φ1 (x

∗
n − x∗)‖2

+ (1 + ρn)
−1 ‖Φ1x

∗
n − b1 + (1 + ρn) ζ

∗
n‖2

= O (ρn) (A8)

and

Φ0x
∗
∞ − b0 = 0,

Φ1x
∗
∞ − Φ1x

∗ = Φ1x
∗
∞ − b1 + ζ∗∞ = 0

where x∗∞ ∈ X ∗ is a partial limit of the sequence {x∗n},
which may be not unique. The vector ζ∗∞ is also a partial
limit of the sequence {ζ∗n}.
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