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Chimeric antigen receptor T (CAR-T) cell therapy has been proven to be successful against different leukaemias and lym-
phomas. Its success has led, in recent years, to its use being tested for different solid tumours, including glioblastoma,
a type of primary brain tumour, characterised by aggressiveness and recurrence. This paper presents an analytical study
of a mathematical model describing the competition of CAR-T and glioblastoma tumour cells, taking into account their
immunosuppressive capacity. The model is formulated in a general way, and its basic properties are investigated. However,
most of the analysis considers the model with exponential tumour growth, assuming this growth type for simplicity. The
existence and stability of steady states are studied, and the subsequent focus is on two different types of treatment: con-
stant and periodic. Finally, protocols for CAR-T cell therapy of glioblastoma are numerically derived; these are aimed at
preventing the tumour from reaching a critical size and at prolonging the patients’ survival time as much as possible. The
analytical and numerical results provide theoretical support for the treatment of glioblastoma using CAR-T cells.
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1. Introduction

Cancer immunotherapy uses components of the patient’s
immune system to attack cancer cells selectively, and
in recent years, it has come to play an important
role in treating some types of cancer (D’Errico et al.,
2017; Koury et al., 2018). One of the most promising
immunotherapeutic treatments is based on the use of
chimeric antigen receptor T cells, the so-called CAR-T
cells. This treatment consists in extracting T cells from
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the patient’s blood, adding an antigen receptor to them
in the laboratory, subsequently re-infusing them back into
the patient’s body, allowing them to recognise this antigen
in the tumour cells and to kill them. This type of treatment
has been proven to be successful against some cancers,
such as certain types of leukaemia and lymphoma (Maude
et al., 2018; Schuster et al., 2019).

CAR-T cells modified in the laboratory to recognise
CD19+ antigen have been used successfully to treat
B-cell malignancies such as B leukaemia, since this
antigen is expressed by B-cells and B-leukaemia cells
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only. This therapy has also been reported to be successful
in the treatment of acute lymphoblastic leukaemia
(Feins et al., 2019; Miliotou and Papadopoulou, 2018).
Moreover, good results have been reported for large B-cell
lymphomas (Locke et al., 2019) and multiple myeloma
(D’Agostino and Raje, 2020).

These successes have led to an expansion of
the treatment with CAR-T cells to other types of
tumours, specifically solid tumours. Thus, Brown et al.
(2016) reported regression of glioblastoma, an aggressive
primary brain tumour, under treatment with CAR-T
cells. One of the differences between the way in which
treatment is given in leukaemia and in glioblastoma is
that in the first case, the treatment corresponds to a single
initial dose, while in the second case, different cycles of
doses are applied.

However, although there has been great progress
in the treatment of some solid tumours with CAR-T
cells, these treatments face significant challenges, as their
implementation is more complicated than for non-solid
tumours. For example, it is necessary to identify the
corresponding tumour antigens expressed in cancerous
cells but not in healthy cells (Castellarin et al., 2018).
The selected antigens also have to be modified to prevent
the antibodies from destroying the CAR-T cells (Hege
et al., 2017). Finally, it should be kept in mind that
the regression reported due to these treatments is often
followed by relapse (Shah and Fry, 2019).

Thus, more studies are necessary in order to
carry out successful CAR-T treatment in solid tumours.
Here is where mathematical analysis comes into play.
Mathematical models have a successful history of
application in biology, medicine and oncology. In
this sense, mathematical models of tumour growth
provide an understanding of the tumour dynamics and
its behaviour, helping in the design of optimal treatment
protocols (Colli et al., 2021; Garcke et al., 2018; Bodnar
and Piotrowska, 2016; Foryś and Marciniak-Czochra,
2003; Świerniak et al., 2003; Bodzioch et al., 2021;
de Pillis et al., 2007; Stein et al., 2018; Lima et al.,
2022). In recent years, CAR-T cell therapies have
attracted the interest of mathematicians in the study
of B-cell malignancies (Mostolizadeh et al., 2018)
and gliomas (Sahoo et al., 2020; León-Triana et al.,
2021). Furthermore, the use of mathematical models
to understand the interaction of the immune system and
tumours and to improve the prospect of immunotherapies
has a long history, starting with predator-prey models
which have been subsequently refined (Sancho-Araiz
et al., 2021).

In this paper, the reference taken is the work
of León-Triana et al. (2021), where two mathematical
models (based on differential equations) describing the
treatment with CAR-T cells for glioblastoma were
proposed. There a number of simulations were performed

to study the interactions between tumour and CAR-T
cell populations. Although the authors reported several
significant results, little was said from an analytical point
of view. In addition, in that work, only an initial
dose of CAR-T cell treatment was considered, while this
article also considers two types of treatment: constant
and periodic treatment. Thus, we would like to fill
the mentioned gap by making an exhaustive analytical
study of the model in order to get deeper insights into
the problem. Here we study the model that consists
of two differential equations, while the corresponding
four-dimensional differential equation model, which
models dual target CAR-T cell treatment (León-Triana
et al., 2021), will be studied elsewhere.

The structure of the paper is as follows. Firstly,
Section 2 presents the mathematical model under
consideration. Next, Section 3 performs a mathematical
analysis of the model including the existence, uniqueness
and stability of steady states. Section 4 considers the
model under an assumption of constant treatment, and
Section 5 focuses on periodic treatment. Section 6
presents the parameters of the model, and Section 7 sets
out a numerical study of a control problem of the model
whose therapeutic goal is to maximise patient’s survival
time rather than to maximise the number of killed cells.
Finally, Section 8 discusses the findings and summarises
the conclusions.

2. Model presentation
Consider a generalised model of CAR-T cells (C̃)
interacting with glioblastoma cells (T̃ ) that reads

d

ds
T̃ =

(
ρTF (T̃ )− α̃T C̃

)
T̃ ,

d

ds
C̃ =ρ̃C

C̃T̃

gT + T̃
− α̃C

C̃T̃

gC + C̃
− 1

τC
C̃,

(1)

where s denotes the independent (time) variable and
all parameters are positive. The function F describes
the tumour growth in the absence of immune response
and it can have different properties. In this paper we
mainly follow (León-Triana et al., 2021) and assume
exponential glioblastoma growth, that is F (T̃ ) = const.
In general, the logistic type of the growth, with F
decreasing, can also be considered for brain tumours
(Pérez-García and Pérez-Romasanta, 2015; Bodnar et al.,
2019). Exponential growth can be valid for describing
this type of tumour growth kinetics (Stensjoen et al.,
2015) and has the advantage of having only one
adjustable parameter. More complex growth models
can also describe the limited experimental data available
(Stensjoen et al., 2015), like Gompertzian growth which
is similar to the logistic case studied here, and others have
recently been proposed to be in better agreement with
new metabolic and longitudinal growth data (Pérez-García
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et al., 2020). However, in this article we focus on
exponential and logistic growths.

Moreover, it is assumed that tumour cells are actively
eliminated, with efficiency α̃T , by the CAR-T cells, and
this interaction is modelled by the bi-linear term. In this
context, ρT corresponds to the net growth rate (difference
between proliferation and natural death rate).

On the other hand, CAR-T cell proliferation is
activated as a consequence of encounters with tumour
cells with a constant rate ρ̃C assuming the population
half-saturation level is equal to gT . This term is of
Michaelis-Menten form, to indicate the saturated effects
of the CAR-T cell response (León-Triana et al., 2021;
Mahlbacher et al., 2019).

Inactivation of CAR-T cells is maintained by tumour
cells, with a maximal inactivation rate α̃C with a typical
cellular half-saturation level given by gC . There are
many mechanisms leading to T-cell dysfunction in solid
tumours (Anderson et al., 2017). Altered signalling
pathways in tumour cells help produce a suppressive
tumour micro-environment enriched by inhibitory cells,
which is modelled by the term α̃C

C̃T̃
gC+C̃

.
The natural cell death/inactivation of activated

CAR-T cells with activated CAR-T cell lifetime is also
taken into account, and it is denoted by τC .

Finally, this model assumes that CAR-T cells would
be amplified only at the tumour site, provided the tumour
antigen is specific enough, and thus C̃ would describe the
CAR-T cell population in the tumour areas.

The change of variables

t = sρT , T (t) =
T̃ (s)

gT
, C(t) =

C̃(s)

gC
,

leads to the system

Ṫ =(f(T )− αTC)T,

Ċ =

(
ρCT

1 + T
− αCT

1 + C
− ηC

)
C,

(2)

where

αT =
α̃T gC
ρT

, ρC =
ρ̃C
ρT

, αC =
α̃CgT
ρT gC

,

ηC =
1

τCρT
, f(T ) = F (T̃ ).

In general, it is assumed that f is smooth (of class C1),
non-increasing, with f(0) = 1, and when considering
exponential glioblastoma growth, that

Assumption A1: f(T ) ≡ 1.

To close the system standard initial conditions are
defined as

T (0) = T0, C(0) = C0, (3)

where T0 and C0 are non-negative constants.

3. Model analysis
3.1. Basic properties. The local existence and
uniqueness of solutions of Eqns. (2) for any initial data (3)
is a consequence of the smoothness of the right-hand side
of this system. Similarly, the form of this right-hand side
ensures global existence and non-negativity of solutions.

3.2. Existence of steady states. To designate the
steady states of Eqns. (2), possible intersections of
T -null-cline, given by T = 0 or C = f(T )/αT , with
C-null-cline given by C = 0 or

ρCT

1 + T
− αCT

1 + C
− ηC = 0

were studied.
It is easy to see that Eqns. (2) always have one steady

state (0, 0), which is a saddle (with the T -axis being an
unstable manifold and the C-axis being a stable one).
Clearly, the number of non-negative steady states strongly
depends on the form of the function f and thus it is hard to
formulate conditions guaranteeing the existence of a given
number of them. Nevertheless, particular results can be
provided under Assumption A1.

We now focus on the non-trivial part of the
C-null-cline and treat it as a function of T , that is,

C = g(T ) =
αCT (1 + T )

(ρC − ηC)T − ηC
− 1,

and consider two mutually exclusive cases: ρC ≤ ηC and
ρC > ηC .

Lemma 1. Let Assumption A1 be satisfied. For ρC ≤ ηC ,
Eqns. (2) have exactly one non-negative steady state (0,0),
while for ρC > ηC , Eqns. (2) have additionally

• two positive steady states for

αC < αcrit
C :=

(
1

αT
+ 1

)
(
√
ρC −√ηC)2 ; (4)

• one positive steady state for αC = αcrit
C ;

• no positive steady state for αC > αcrit
C .

Proof. Assumption A1 indicates that the non-trivial part
of T -null-cline is given by αTC = 1. For ρC ≤ ηC
we have g(T ) < 0 for any T ≥ 0. Hence, there is no
positive steady state of Eqns. (2) and the system has only
one steady state (0, 0).

On the other hand, for ρC > ηC we have g(T ) < 0
for T < ηC

ρC−ηC
:= Tas. Calculating the derivative of g

gives

g′(T ) = αC
(ρC − ηC)T

2 − 2ηCT − ηC

((ρC − ηC)T − ηC)
2 .
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Note that g′ has one positive zero as the free term in the
numerator is negative. The discriminant of the numerator
is equal to 4η2C + 4ηC(ρC − ηC) = 4ηCρC and thus the
positive root of g′ is equal to

2ηC +
√
4ηCρC

2(ρC − ηC)
=

√
ηC√

ρC −√ηC := Tmin.

It is easy to see that Tmin > Tas and the function g has a
minimum at Tmin. Clearly, the limit of g as T → T+

as is
equal to +∞, g decreases on the interval (Tas, Tmin) and
increases to +∞ for T > Tmin. Moreover, we have

gmin := g(Tmin) =
αC(√

ρC −√ηC
)2 − 1.

Thus, two positive steady states exist if and only if gmin <
1/αT , which concludes the proof after some algebraic
manipulations. �

Note that for gmin ≤ 0, Eqns. (2) have two
positive steady states, while for gmin > 0, i.e., αC >(√

ρC −√ηC
)2, the existence of positive steady states

depends on the magnitude of αT .

3.3. Stability of the steady states. To study the local
the stability of the steady states, we calculate the Jacobian
matrix of Eqns. (2):

J(T,C) =

(
f(T )− αTC + Tf ′(T )(

ρC

(1+T )2 − αC

1+C

)
C

−αTT
ρCT
1+T − αCT

1+C − ηC + αCTC
(1+C)2

)
.

Clearly, the trivial steady state is a saddle with the
characteristic values λ1 = f(0) = 1, λ2 = −ηC .

On the other hand, for any positive steady state
(T̄ , C̄) we have

f(T̄ )− αT C̄ = 0,
ρC T̄

1 + T̄
− αC T̄

1 + C̄
− ηC = 0.

Hence

J(T̄ , C̄) =

(
T̄ f ′(T̄ ) −αT T̄(

ρC

(1+T̄ )2
− αC

1+C̄

)
C̄ αC T̄ C̄

(1+C̄)2

)
,

with

trJ(T̄ , C̄) =
αC T̄ C̄

(1 + C̄)2
+ T̄ f ′(T̄ ).

Clearly, if Assumption A1 is met, then f ′(T ) ≡ 0; thus
tr J(T̄ , C̄) > 0, and therefore all the existing positive
steady state(s) must be unstable.

Assume now that, under Assumption A1, Eqns. (2)
have two positive steady states, (T̄1, C̄), (T̄2, C̄), with

T1 < T2, i.e., (4) holds. Then T1 < Tmin < T2, and
thus

detJ(T̄1, C̄) > αT T̄1C̄

(
ρC

(1 + T̄min)2
− αC

1 + C̄

)

= αT T̄1C̄

(
(
√
ρC −√ηC)2 − αC

1 + C̄

)

> 0,

due to (4) bearing in mind that αT C̄ = 1.
Now, it will be proven that the steady state (T̄2, C̄) is

a saddle point if it exists. It is shown that det J(T̄2, C̄) <
0. To this end, it is necessary to calculate T̄2. Rearranging
g(T̄2) = 1/αT gives

αC T̄
2+
(
αC − (1 + C̄)(ρC − ηC)

)
T̄ + ηC(1+ C̄) = 0,

for which the discriminant is

Δ =
(
αC − (1 + C̄)(ρC − ηC)

)2 − 4αCηC(1 + C̄)

= α2
C − 2αC(1 + C̄)(ρC + ηC)

+ (1 + C̄)2(ρC − ηC)
2,

and the greater root has the following form:

T̄2 =
−αC + (1 + C̄)(ρC − ηC) +

√
Δ

2αC
.

Clearly, detJ(T̄2, C̄) < 0 iff

ρC

(1 + T̄2)2
<

αC

1 + C̄
⇔ (1 + T̄2)

2 >
ρC(1 + C̄)

αC
,

which is equivalent to

(
αC + (1 + C̄)(ρC − ηC) +

√
Δ
)2

> 4αCρC(1 + C̄).

Expanding the first bracket, using the definition of Δ and
doing some algebraic manipulation, gives

Δ > −
(
αC + (1 + C̄)(ρC − ηC)

)√
Δ,

which holds whenever ρC − ηC > 0, and there are two
positive steady states, as then Δ > 0.

Corollary 1. On Assumption A1, if ρC > ηC and Eqn. (4)
is satisfied, then the trivial steady state of Eqns. (2) is
a saddle. Moreover, Eqns. (2) have two positive steady
states S1 = (T̄1, C̄), S2 = (T̄2, C̄), with T̄1 < T̄2, S2 be-
ing a saddle point, while S1 is an unstable node or focus.

Remark 1. If Assumption A1 is met, then Eqns. (2) have
no periodic orbit in the phase space R2

+.
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Proof. Using the Dulac–Bendixson criterion

∂

∂T

(
1

TC
(1− αTC)T

)

+
∂

∂C

(
1

TC

(
ρCT

1 + T
− αCT

1 + C
− ηC

)
C

)

=
αC

(1 + C)2
> 0.

Hence, there is no periodic orbit for T , C > 0. As a
consequence, the Dulac–Bendixson criterion guarantees
the absence of closed invariant orbits. �

The instability of all steady states, together with the
lack of periodic solutions, implies that the solutions, to
Eqn. (2) are unbounded. Phase portrait analysis indicates
that, with increasing time, T tends to infinity while C
goes to 0. This means that in the case of a single dose
administration the tumour eventually will regrow and later
on increase in size exponentially, while CAR-T cells
will be eliminated. Although it happens independently
of the parameters, depending on the value of αC , the
inactivation parameter of CAR-T cells by tumour cells,
such regrowth could be faster or slower, as long as it
is not zero. This term prevents the system from ever
reaching a periodic solution, which could be expected
in a more standard predator-prey model. Furthermore,
this parameter indicates whether, for a given number of
T cells, they will tend to zero independently of the tumour
size.

For the generalised logistic tumour growth the
situation is more complex. Equations (2) may have up to
four non-negative steady states: (0, 0), (K, 0) (where K
is a carrying capacity for tumour), and up to two positive
steady states (the null-cline of C is a convex function of T ,
while the null-cline for T is a line so they have at most two
intersections). Among them, (0, 0) is a saddle point while
stability conditions of the other steady states are complex.

4. Model with constant treatment
The analysis presented in Section 3 indicates that there is
no possibility of curing a patient using a single boost of
CAR-T cells. Thus, consider the model with a constant
influx A > 0 of these cells, namely

Ṫ =(f(T )− αTC)T,

Ċ =

(
ρCT

1 + T
− αCT

1 + C
− ηC

)
C +A.

(5)

The null-cline for T does not change compared with
the case A = 0, while calculating the C-null-cline gives

(
ρCT

1 + T
− αCT

1 + C
− ηC

)
C = −A (6)

which in R
2
+ is equivalent to the quadratic equation

h(T )C2 − b(T )C +A = 0, (7)

where

b(T ) = αCT −A− h(T ), h(T ) =
ρCT

1 + T
− ηC ,

h is continuous and increasing from −ηC for T = 0 to
ρC − ηC for T → +∞. Because Eqn. (7) is quadratic
in C, for each T ≥ 0, there exist at most two solutions
C(T ). The shape of the C-null-cline strongly depends on
the model parameters, as discussed below.

Proposition 1. If Assumption A1 is met and ρC ≤ ηC ,
then for every T ≥ 0, Eqn. (7) defines a unique curve
Ĉ(T ) in R

2
+ and Ĉ → 0 as T → ∞. Moreover, if A ≤

Ath := ηC

(
αC

ρC
− 1
)

, then the function Ĉ is decreasing

for all T > 0, while for A > Ath there exists T̂1 > 0
such that the function Ĉ increases for T ∈ [0, T̂1) and
decreases for T > T̂1.

Proof. Note that, if ρC ≤ ηC , then h(T ) < 0 for all
T ≥ 0. As the free term of Eqn. (7) is positive, there exists
a unique positive solution Ĉ(T ) defined for all T ≥ 0,
namely

Ĉ(T ) =
b(T )−√b2(T )− 4Ah(T )

2h(T )
for T > 0.

(8)
For T = 0 Eqn. (6), as well as Eqn. (7), is equivalent
to ηCC = A, that is Ĉ(0) = A/ηC . Using the Implicit
Function Theorem and calculating the derivative Ĉ′(T ) =
dĈ/dT gives

Ĉ′(T ) =
Ĉ(T )

(
αC − h′(T )

(
1 + Ĉ(T )

))
(
2Ĉ(T ) + 1

)
h(T )− αCT +A

,

h′(T ) =
ρC

(1 + T )2
.

Using the identity Ĉ(0) = A/ηC gives

Ĉ′(0) =
A

ηC

ρC

(
1 + A

ηC

)
− αC

ηC +A
.

Thus, Ĉ′(0) < 0 for A < Ath and Ĉ′(0) > 0 for A >
Ath.

Note that Eqn. (6) can be alternatively expressed as a
quadratic equation in T , that is,

αCC

1 + C
T 2 +

(
αCC

1 + C
− ρCC + ηCC −A

)
T

+ηCC −A = 0,

(9)
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meaning that for each C̄ > 0 there exist at most two
positive solutions (T1 and T2) of Eqn. (9), such that C̄ =
Ĉ(T1) = Ĉ(T2). Moreover,

lim
T→+∞

Ĉ(T ) = lim
T→+∞

2A

b(T ) +
√
b2(T )− 4Ah(T )

= 0.

Assume A < Ath. Then Ĉ′(0) < 0. If Ĉ is
non-decreasing, it must have at least one minimum and
one maximum, as it goes to 0 at T →∞. However, in this
case, for each C̄ ∈ (Cmin, Cmax), where Cmin is a first
local minimum andCmax is another local maximum, there
exist three points Ti, i = 1, 2, 3, such that C̄ = Ĉ(Ti)
which contradicts the fact that there could be only two
such points. If A = Ath then Ĉ′(0) = 0, Ĉ′(T ) < 0 for
T close to 0 and the above arguments hold.

An analogous argument proves that, if A > Ath, then
there exist T̂1 > 0 such that the function Ĉ increases for
T ∈ [0, T̂1) and decreases for T > T̂1. �

Proposition 2. If Assumption A1 is met and ρC > ηC ,
then there is a threshold value

Tas =
ηC

ρC − ηC

such that for T < Tas Eqn. (7) defines a unique curve
Ĉ(T ), while for T > Tas, if the C-null-cline is defined,
then there are two solutions, Ĉ(T ) (defined by (8)) and

C̃(T ) =
b(T ) +

√
b2(T )− 4Ah(T )

2h(T )
, (10)

which form two branches of this null-cline located in R
2
+

as shown in Fig. 1. The monotonicity of each branch can
change at most once. Moreover, Ĉ → 0, while C̃ → ∞
linearly with T , as T →∞.

Proof. First note that for T < Tas, h(T ) < 0 and the free
term of Eqn. (7) is positive meaning that there is a unique
positive solution defined by (8). Moreover,

1. Case 1: if A ≥ αCTas, then lim
T→T−

as

Ĉ(T ) =∞;

2. Case 2: if A < αCTas, then lim
T→T−

as

Ĉ(T ) =

A
αCTas−A .

Two positive solutions of Eqn. (7) (given by (8) and (10))
exist for T > Tas iff b(T ) > 0 and 4Ah(T ) < b2(T ).

In Case 1 there is no solution of Eqn. (7) for T > Tas

near Tas; cf. Fig. 1(a). In Case 2 we have b(Tas) > 0 and
limT→T+

as
C̃(T ) = ∞. Because b and h are continuous,

there are two solutions of Eqn. (7) for T > Tas near Tas;
cf. Fig. 1(b) and (c). In both cases for sufficiently large T
we have b(T ) > 0 and b2(T ) > 4Ah(T ). Hence, there
are two solutions, Ĉ and C̃, and Ĉ tends to 0, while

lim
T→∞

C̃

T
=

αC

ρC − ηC
,

that is, C̃ tends to +∞ linearly. Figure 1 shows three
possible graphs of both branches of the C-null-cline.

Due to Eqn. (9), the same argument as in the proof
of Proposition 1 shows that the situation with two positive
solutions of Eqn. (7) existing for some interval (T1, T2)
and disappearing at T1 and T2 is not possible. Moreover,
the part of the C-null-cline that satisfies C < A/ηC
is decreasing, and each branch of the C-null-cline can
change its monotonicity at most once. �

4.1. Steady states for A > 0. In the case of constant
treatment there is always a semi-trivial steady state (0, Č)
with Č = A/ηC . Moreover, if Assumption A1 is met,
then any positive steady state (T̄ , 1/αT ) satisfies

γT 2+
(
γ−ρC + ηC −αTA

)
T + ηC −AαT = 0, (11)

with
γ =

αCαT

1 + αT

and thus there are at most two positive steady states.

Theorem 1. If Assumption A1 is met and A > Acrit =
ηC/αT , then there is exactly one positive steady state of
Eqns. (5) which is a saddle, while the semi-trivial steady
state is a stable node.

Proof. Under the assumptions of this theorem the free
term in (11) is negative. Hence (11) has only one positive
solution.

The Jacobian matrix of Eqns. (5) is the same as for
A = 0:

J(0, Č) =

⎛
⎝

1− αTA
ηC

0(
ρC − αC

1+ A
ηC

)
A
ηC

−ηC

⎞
⎠ ,

implying that for A > Acrit the semi-trivial steady state is
a stable node.

For the positive steady state (T̄ , C̄), where C̄ =
1/αT , we have

ρC T̄

1 + T̄
− αC T̄

1 + C̄
− ηC = −AαT .

Hence

J(T̄ , C̄) =

(
0 −αT T̄(

ρC

(1+T̄ )2
− αC

1+C̄

)
C̄ αC T̄ C̄

(1+C̄)2
−AαT

)
.

Using identity αT C̄ = 1 and the definition of γ gives

detJ(T̄ , C̄) = T̄

(
ρC

(1 + T̄ )2
− γ

)
< 0

whenever
ρC < γ(1 + T̄ )2. (12)
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Fig. 1. Phase portrait sketches with all possible graphs of the C-null-cline (solid line) and the T -null-cline for an arbitrarily chosen
αT (dash-dotted line) of Eqns. (5) for ηC < ρC . The T -null-cline will move up and down with a decrease and increase in
αT , respectively. Panel (a) illustrates Case 1 from the proof of Proposition 2 (A ≥ αCTas). Panels (b) and (c) reflect the
possible situations for Case 2 from the proof of Proposition 2 (A < αCTas). The C-null-cline looks as in the panel (b) if
4Ah(T ) > b2(T ) for some T > Tas, while if 4Ah(T ) < b2(T ) for all T > Tas, the C-null-cline looks as on the panel (c).

From (11), under the assumptions of this theorem,

1 + T̄ =
γ + ρC − ηC + αTA+

√
Δ

2γ
,

where

Δ =
(
γ − ρC + ηC − αTA

)2
+ 4γ

(
AαT − ηC

)
> 0.

Rewriting (12) as

4γρC <
(
γ + ρC − ηC + αTA+

√
Δ
)2

,

we obtain

0 < (γ − ρC)
2
+
(
αTA− ηC +

√
Δ
)2

+ 2 (γ + ρC)
(
αTA− ηC +

√
Δ
)
,

which always holds under the assumptions of this
theorem. �

Theorem 2. If Assumption A1 is met and A < Acrit, then
for

A > Ā

= Acrit −
ρC − γ

(
1 + 2max

{
0,
√

ρC

γ − 1
})

αT

there are two positive steady states of Eqns. (5), while for
A < Ā there is no positive steady state.

Proof. If A < Acrit, then the free term of Eqn. (11)
is positive. Thus, to have two positive steady states, it is
necessary that the coefficient of the linear term is negative,
that is,

x := ηC − αTA < ρC − γ. (13)

The discriminant of Eqn. (11) is positive if

P (x) := (γ − ρC + x)2 − 4γx > 0,

while the discriminant of the polynomial P is

ΔP = 4(γ + ρC)
2 − 4(γ − ρC)

2 = 16ρCγ > 0,

implying that there are two positive zeros of P , namely

x1,2 = γ + ρC ∓ 2
√
γρC =

(√
γ ∓√ρC

)2
.

Thus, the condition guaranteeing the existence of two
positive steady states of Eqns. (5) becomes ηC − AαT <
x1 or ηC −AαT > x2. Combining this with (13), we get

ηC −AαT < ρC +min {−γ, γ − 2
√
γρC}

or

γ + ρC + 2
√
γρC < ηC −AαT < ρC − γ.

Note that the second condition is contradictory, while the
first is equivalent to

AαT > ηC − ρC + γ + 2γmax

{
0,−1 +

√
ρC
γ

}
,

which completes the proof. �

Theorem 3. Let Assumption A1 be met. If ηC ≤ ρC −√
γρC and A < Acrit, then the positive steady state

(T̄ , C̄) of Eqns. (5) with T̄ < Tas is locally asymptotically
stable.

Proof. To prove the theorem means to prove that
tr J(T̄ , C̄) < 0 and detJ(T̄ , C̄) > 0. But

T̄ <
ηC

ρC − ηC
= Tas <

A

αC
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gives

tr J(T̄ , C̄) =
αT

(1 + αT )2

(
αC T̄ −A(1 + αT )

2
)

<
αT

(1 + αT )2

(
αCTas −A(1 + αT )

2
)

<
αT

(1 + αT )2

(
A−A(1 + αT )

2
)
< 0,

detJ(T̄ , C̄) = αT T̄ C̄

(
ρC

(1 + T̄ )2
− γ

)

> αT T̄ C̄

(
(ρC − ηC)

2

ρC
− γ

)

= αT T̄ C̄

(
(ρC − ηC)

2 − γρC
ρC

)
≥ 0

as, due to the assumption, ρC − ηC −√γρC ≥ 0. �

Proposition 3. Let Assumption A1 be met and (T̄ , C̄) be
a positive steady state of Eqns. (5). Set

Tcrit = min

{
A(1 + αT )

2

αC
,

√
ρC
γ
− 1

}
.

Then

1. for T̄ < Tcrit the steady state (T̄ , C̄) is locally
asymptotically stable;

2. for T̄ > Tcrit the steady state (T̄ , C̄) is unstable.

Proof. Inequality trJ(T̄ , C̄) < 0 is equivalent to αC T̄ <
A(1 + αT )

2. Similarly, inequality detJ(T̄ , C̄) > 0 is
equivalent to ρC > γ(1 + T̄ )2, and thus, the assertion of
the theorem follows. �

The value of Tcrit gives a condition to keep the
tumour under control. It also provides a threshold
for which the tumour will be controlled, since for
a sufficiently large A the value of the tumour steady
state will be low and Tcrit will become independent
of A. Figure 2 shows the tumour size T at a steady
state and summarises the analytical results obtained in
Theorems 1–3 and Proposition 3. For small values of A,
both the steady states are unstable or do not exist.

Finally, we would like to emphasize that constant
treatment is a first approximation to a more realistic
periodic treatment, which will be studied in the following
section.

5. Periodic treatment
This section considers Eqns. (2) with a general tumour
growth, assuming that a portion m of CAR-T cells is
injected each time tn = nP , where P is a given positive
constant. Specifically, T and C satisfy Eqns. (2) for
t ∈ [tn, tn+1) and

T (tn) = lim
t→t−n

T (t), C(tn) = lim
t→t−n

C(t) +m. (14)

�

�

�

������ �����

����� ������

��	
��	

(a) (b)

Fig. 2. Tumour size at a steady state. The solid lines depict sta-
ble steady states, while the dotted lines indicate unsta-
ble steady states. Panel (a) illustrates the situation when
Ā < 0, while (b) reflects Ā > 0.

In this case, Eqns. (2) together with (14) will be referred
to as impulsive Eqns. (2).

From a medical point of view, it is interesting to note
that Brown et al. (2016) reported glioblastoma regression
using CAR-T cells with (almost) periodic treatment,
meaning the following: CAR-T cells were delivered every
7 days, with 1 week of rest after cycles 3 and 6 for
evaluation of safety and disease. Thus, this treatment
will be modelled in what follows (without taking of the
account rest).

Theorem 4. There exists a periodic solution of impulsive
Eqns. (2) that has the form

(
0, C∗(t)

)
, C∗(t) =

m

1− e−ηCP
e−ηC(t−nP ), n ∈ N,

which is locally stable for

Acrit <
m

P
. (15)

Proof. If T0 = 0, then T (t) ≡ 0 and for C we have an
impulsive equation of the following form:

Ċ = −ηCC for nP ≤ t < (n+ 1)P,

C(nP ) = lim
t→nP−

C(t) +m, n ∈ N.
(16)

Clearly, C∗(t) satisfies Ċ∗(t) = −ηCC∗(t). Moreover

lim
t→nP−

C∗(t) +m =
m e−ηCP

1− e−ηCP
+m

=
m

1− e−ηCP
= C∗(nP ).

Thus,
(
0, C∗(t)

)
fulfils (16).

To find conditions for the local stability of this
periodic solution, we expand the coordinates of the
solution around the periodic solution; that is, rewrite these
coordinates as

T = εT1 +O(ε2), C = C∗ + εC1 +O(ε2), ε� 1,
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Table 1. Parameters for the model described by Eqns. (1). For detailed description and estimation, see the work of León-Triana et al.
(2021). In the fifth column the values of parameters used in the simulations are given. The last three columns show the values
of Pearson’s correlation coefficients, which describe the dependence of the changes in a given parameter on the time in which
the tumour reaches a critical size, when all other parameters are on the left, middle and right ends of the ranges. The symbol
‘∗’ indicates the correlation coefficient for which the corresponding p-value is less than 0.05.

Param. Ranges Units Refs. Value min mid max
ρ̃C 0.2− 0.9 day−1 Stein et al., 2019 0.9 0.71∗ 1.00∗ 1.00∗

gT 107 − 1010 cell Stein et al., 2019 1010 −1.00∗ −1.00∗ −1.00∗
α̃C 0.01− 0.99 day−1 Radunskaya et al., 2018 0.035 −0.59 −0.99∗ −1.00∗
gC 5× 108 − 5× 109 cell Radunskaya et al., 2018 2× 109 0.99∗ 0.94∗ 0.94∗

τC 7− 30 day Ghorashian et al., 2019 7 0.94∗ 0.92∗ 0.92∗

ρT 0.001− 0.2 day−1 Stein et al., 2019 0.01 −0.57 −0.57 −0.57
α̃T 10−12 − 5× 10−10 day−1cell−1 León-Triana et al., 2021 5× 10−10 1.00∗ 1.00∗ 1.00∗

and consider the (T1, C1)-system of the first-order
approximation

Ṫ1 =(1− αTC
∗)T1,

Ċ1 =− ηCC1 + ρCC
∗T1 − αCC

∗

1 + C∗T1.
(17)

Let Φ(t) denote the fundamental matrix of
Eqns. (17). To find this matrix, it is necessary to
calculate the solutions of Eqns. (17) for initial datum
(1, 0) and (0, 1). It is easy to see that for the second initial
data (0, 1)

T1 ≡ 0 =⇒ Ċ1 = −ηCC1 =⇒ C1(t) = e−ηCt .

This means that the fundamental matrix is upper triangular
and therefore, to find Floquet multipliers it is enough to
find T1 for the first initial datum (1, 0).

Let t ∈ [nP, (n+ 1)P ). Calculate

T1(t)∫

T1(nP )

dT1

T1
=

t∫

nP

(1− αTC
∗(s)) ds.

Thus,

ln
T1(t)

T1(nP )
= t− nP − m

Acrit
· 1− e−ηC(t−nP )

1− e−ηCP
,

and eventually

T1(t) = T1(nP ) · exp
(
t− nP − m

Acrit

·1− e−ηC(t−nP )

1− e−ηCP

)
,

(18)

for t ∈ [nP, (n+ 1)P ). Hence,

Φ(t)

=

(
T1(nP ) · exp

(
t− nP − m

Acrit
· 1−e−ηC(t−nP )

1−e−ηCP

)

0



e−ηCt

)
,

where 
 means a term that is not relevant and thus the
monodromy matrix is

Φ(P ) =

(
e
P− m

Acrit 

0 e−ηCP

)

and the Floquet multipliers are given by

λ1 = e
P− m

Acrit , λ2 = e−ηCP ,

For both of these to be less than 1, it is necessary to
assume P < m/Acrit. �

Note that when considering exponential tumour
growth the condition for the stability of the periodic orbit
for the impulsive system is the same as the condition of
stability of the semi-trivial steady state for the system with
constant treatment under the assumption

A =
m

P
,

which means that constant treatment A is just a mean
value of periodic treatment.

Returning to Eqn. (18),

T ((n+ 1)P ) = T (nP ) · exp
(
P − m

Acrit

)
,

which corresponds to the Poincaré map

T ((n+ 1)P ) = F (T (nP )),
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where
F (x) = x e

P− m
Acrit

and this map has a fixed point x = 0 which is stable
under the condition (15). Using the same condition, it
is possible to estimate the number of doses necessary to
eradicate a tumour assuming its initial size T1(0) and
arbitrary eradication size Ter. We need to find n such that

T1(nP ) = Ter,

T1(nP ) = T1(0) · exp
(
n

(
P − m

Acrit

))
,

yielding

n =
ln Ter

T1(0)

P − m
Acrit

.

Note, however, that this is the estimation for an
approximation of Eqns. (2), while assuming constant
treatment with specific parameter values it is possible
to estimate numerically a basin of attraction for the
semi-trivial steady state of Eqns. (2).

6. Parameters and numerical methods
To perform numerical simulations and optimise
therapeutic schemes for the non-scaled model described
by Eqns. (1), parameter values, estimated in several
studies and summarised in Table 1 are used. These values
imply that ρ̃CτC > 1, thus ρC > ηC , which ensures the
existence of at least one non-negative steady state.

To study how the model parameters affect the model
dynamics, a sensitivity analysis is performed. The
dependence of the time taken for a tumour to reach
a critical size on changes in a given parameter is studied.
All other parameters are fixed and are taken at the left,
middle and right ends of the ranges, see Table 1. The
symbol ‘∗’ indicates the statistically significant correlation
coefficients (p-value < 0.05). It needs to be highlighted
that the correlation between the critical tumour size and
the time it takes for the tumour to reach this value is
almost linear. Thus, manipulating all but one parameter
does not qualitatively change the result. Only a change in
the parameter corresponding to the net growth rate of the
tumour affects the result non-linearly.

The simulations performed assume that the initial
tumour consists of 3.35 × 1010 cells while 2 × 107

CAR-T cells are assumed to be present in the tumour
surroundings, representing the delivery of an initial dose
and mimic the situation when the CAR-T treatment is
started at time zero.

To solve the equations numerically, the standard
MATLAB solver ode45 was used, with error tolerance
equal to 10−9. Finding the time when the solution reaches
an assumed critical level was achieved by triggering the
MATLAB event model with tolerance equal to 10−6,

while the time at which the control switch is to take
place was obtained by solving the system with different
switching times, increasing them until the predefined
event occurs with prescribed tolerance and then by finding
the appropriate switching time back. Statistical analysis
was performed using R software based on the MATLAB
numerical results.

7. Therapy controlling tumour size
This section illustrates the theoretical results using
numerical simulations of the two treatments considered
in this article, i.e., periodic (impulsive) and continuous.
Moreover, therapy protocols are derived that keep tumours
under control (below the assumed critical size), which is
of paramount interest.

Theorems proved in the previous sections give
conditions that guarantee the local stability of the
tumour-free steady state. For the parameters presented
in Table 1 the critical value is 1.14 × 107 CAR-T cells
per day. However, in such a case, the tumour-free
steady state is not globally stable and therapy may not be
successful for tumours that are too large. Assuming the
administration of an average dose of 2× 107 CAR-T cells
per day, the critical initial size of the tumour for which
therapy is successful has been numerically calculated. It
was assumed here that at the start of therapy no CAR-T
cells were present in the patient organism. The results
are presented in Fig. 3. In this case, periodic treatment is
beneficial.

However, doses used in clinical practice are smaller,
and the total number of CAR-T cells administered over
the course of the therapy is limited. Thus, when dealing
with an incurable tumour, it is reasonable to change the
therapeutic goal from maximising the number of cells
killed to maximising the patient survival time, defined as
a maximal time when the tumour growth is controlled,
meaning it remains below the assumed critical size.
Therefore, the aim of the therapy would be to keep
the tumour below a critical (or fatal) size and look for
a dose administration scheme that achieves this goal.
As mentioned earlier, the continuation of the previously
initiated therapy is studied at the stage when the tumour
size reaches the level of 3.35 × 1010 cells. At that point,
the CAR-T population is assumed to have 2 × 107 cells.
The critical size of the tumour was chosen arbitrarily to
be 3.4 × 1010 cells. The total number of CAR-T cells
to be administered during the entire treatment protocol
is assumed to be limited to 3 × 108 cells. Nevertheless,
manipulating these parameters does not affect the results
qualitatively. For the particular values of the rest of the
parameters, their ranges and the references, see Tab. 1.

Figure 4 shows the survival time and the cycle length
plotted for periodic (impulsive) treatment for a fixed total
number of administrated CAR-T cells, indicating that the
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Fig. 3. Critical initial tumour size (T0) that allows successful
CAR-T cell therapy without restriction on therapy du-
ration. The dashed line indicates continuous treatment,
while the solid one shows the results for an impulsive
(periodic) treatment. The average dose is the same in
both the cases.
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Fig. 4. Survival time and cycle length plotted against the initial
dose size (which is equal to the periodic dose size) for a
fixed total number of administrated CAR-T cells; here it
is fixed as 3×108 cells. The point indicates the maximal
survival time for a constant continuous treatment; here
473 days for 6.0405 × 105 cells.

longest survival time is achieved with the smallest number
of CAR-T cells administered and the shortest cycle length.
As the cycle length decreases, the average number of
CAR-T cells per unit time tends to the number of cells
corresponding to a constant continuous treatment that
results in the longest survival time.

A numerical study on optimising CAR-T cell
administration to find a protocol that may prolong the
maximal survival time more than periodic (impulsive)
or constant continuous protocols is now presented.
Bang-bang type protocols are considered, which is when
the intervals of the maximal influx of CAR-T cells
administration (with solutions’ dynamics governed by (5))
are separated by time intervals when no treatment is given
(the solution dynamics is governed by (2)). The total
amount of cells administrated in one cycle (later called a
periodic dose; see Fig. 5(d)) is defined as the maximum
cell influx multiplied by the dosing time. Here, the
maximum CAR-T cell influx is assumed to be equal to
2.8571 × 106 CAR-T cells per day or 2 × 107 CAR-T
cells per 7 days. The time of the first dose administration

Algorithm 1. Finding switching times.
Require: sizecrit {critical size of tumour}
Require: initcond {initial condition}
Require: dosemax {maximum single dose size

administered continuously}
Require: initdose, initduration {initial number of CAR-T

cells to be administered and corresponding duration}
Require: timeterminal {fixed terminal time for treatment}

Step 1. Find switch-on time
1: timestart ← 0 {dose administration start time}
2: while max(T ) < sizecrit do
3: increase timestart

4: T ← solve model with initcond, set dosemax for
timestart ≤ time ≤ timeterminal

5: end while
6: return timestart {switch-on time}

Step 2. Find switch-off time
7: timestop ← timestart + initduration {switch-off time}

Step 3. Find switch-on and switch-off times
8: [T,C] ← solve model with initcond, set dosemax for

timestart ≤ time ≤ timestop

9: initcond ← [T,C] for timestop
10: repeat Step 1
11: timestop ← timestart

12: while sizecrit ≤ max(T ) do
13: increase timestop

14: T ← solve model with initcond, set dosemax for
timestart ≤ time ≤ timestop

15: end while
16: return timestop

Step 4.
17: repeat Step 3 until timestop ≤ timeterminal

(called later on initial injection time) is determined by
a numerical optimisation algorithm in such a way as
to prevent the tumour from reaching the critical value.
The algorithm (see Algorithm 1) works as follows. For
a specified fixed maximum single injection of cells, an
initial time of treatment (first switching time) is found that
will prevent the tumour from reaching the assumed critical
size. Next, the initial injection (maximum single injection
for a specific time) is administered. Then the next point
in time to start continuous cell administration and the
minimum CAR-T cells injection that will prevent the
tumour from reaching the critical size is found. Finally,
the last step is repeated.

The size of the initial CAR-T cell injection varies
between simulations since it is also the subject of the
optimisation. Figures 5(a) and (b) show the tumour
(black solid line) and CAR-T (grey solid line) population
dynamics for two different values of the initial CAR-T
injection sizes, which are 7.2027× 106 and 1× 107 cells,
respectively. The corresponding controls are depicted by
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Fig. 5. Tumour and CAR-T size dynamics for initial dosing of 7.2027 × 106 cells injected over 2.5210 days (a) and of 1× 107 cells
injected over 3.5 days (b). The solid lines in panels (a) and (b) depict solutions for periodic treatments while in panels (c) and
(d) they stand for the corresponding controls. The dashed lines in panels (a) and (b) indicate the solutions for treatment scheme
with constant mean-value dose while in panels (c) and (d) they stand for the corresponding control. The mean doses are equal
to (c) 7.6054 × 105 and (d) 7.2126 × 105 CAR-T cells per day.

black solid lines in Figures 5(c) and (d). One can see that
after the initial dose administration, the treatment scheme
preventing the tumour from reaching the critical value is
periodic of the bang-bang type. Moreover, the size of
the periodic dose and the length of the cycle are strongly
dependent on the initial dose. Figures 5(a) and (b)
compare the treatment outcome, for constant continuous
treatment (dashed lines) and periodic (solid lines). The
size of the constant dose is equal to the mean value of
the periodic therapy dose (a ratio of the periodic dose to
the length of the cycle). Figure 5(a) shows that with a
relatively small initial dose, a constant treatment is able to
control the size of the tumour (see dashed lines). However,
the maximal allowable tumour size slightly crosses the
assumed critical level. The amount of initially injected
cells presented in Fig. 5(c) is the threshold value, as for
smaller mean-value doses of the periodic therapy, tumour
growth is out of control and grows exponentially (see
dashed lines in Fig. 5(b)), while for larger mean-value
of the periodic therapy doses, the solution goes to the
semi-trivial steady state.

Figure 6 shows patient survival time plotted against
the total amount of CAR-T cells administered and the
size of the initial injection for numerically derived
optimal bang-bang type treatment protocols. A number
of simulations with different values of the initial dose
and total amounts of CAR-T cells administrated were
performed. For each of them, the corresponding lengths
of the cycles (see the solid black curve in Fig. 7) and the
size of the periodic dose were calculated and recorded.

Then, the average number of injected cells per unit time
was evaluated (the grey solid line in Fig. 7).

8. Conclusions and discussions
This article has described a mathematical model of the
response of glioblastoma to CAR-T cell treatment, which
takes into account the basic principles of interaction
between these two kinds of cells. CAR-T cell-based
immunotherapeutic treatments have been successfully
used against certain types of leukaemias and lymphomas.

Starting from a general model, the focus was on
exponential growth for the glioblastoma cells, and under
that assumption, the mathematical properties of the
considered model were studied analytically, including the
existence and the stability of the steady states, as well as
the absence of periodic solutions for the case where the
therapy is represented as a single dose at the beginning of
the treatment.

Next, focusing on a constant and periodic treatment
for the system of differential equations, conditions were
obtained that guaranteed control of the tumour, unlike the
single dose case considered numerically by León-Triana
et al. (2021) where the tumour finally regrew. Thus,
the results indicate that the treatment for glioblastoma
should not be a single dose of CAR-T cells, but constant
or periodic doses over time, to keep the tumour under
control.

Subsequently, a numerical approach was used to
find other protocols to extend and improve the previous
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Fig. 6. Survival time plotted against the total amount of
CAR-T cells administered and the size of the initial in-
jection. Shading represents a maximal survival time, i.e.,
a maximal time when the tumour growth is controlled
and remains below the critical size.
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Fig. 7. Dependence of the cycle length and the average dose per
unit time on the initial injection size for numerically es-
timated optimal bang-bang type treatment protocols.
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Fig. 8. Comparison of periodic and bang-bang type periodic ad-
ministrations. The solid lines depict the survival time
and the average amount of injected cells per unit time
plotted against the number of initially injected cells,
while dashed lines depict the survival time and the aver-
age number of injected cells per unit time plotted against
the initially injected cells for bang-bang type periodic
treatment. The dotted lines intersect at a point where
both the types of treatment provide the same maximal
survival time.

theoretical results. For this case, it was found that
preventing the tumour from reaching a critical size leads
to an eventually periodic dose administration scheme.
The larger the first injection is, the larger the size of
the periodic dose (i.e., the size of dose multiplied by
the administration time) becomes with a lower average
dose per unit time. When the initial injection is low,

the average cost of periodic treatment, meaning it is the
amount of CAR-T cells administered per injection in the
periodic treatment scheme, is so high that the constant
dosage is also able to control the tumour growth. This
means that for small initial doses the periodic and constant
schedules give similar results. As is shown in Fig. 7,
for small initial injections, the average dose per unit time
decreases in a concave manner. Thus, a slightly larger
initial injection makes the average periodic dose too low
to keep the tumour under control when administrated as a
constant treatment. For larger initial doses, their changes
affect the results much less significantly. Nevertheless,
when the total number of administrated CAR-T cells
(corresponding to the total cost of the treatment) is fixed,
the longest survival time is achieved for the therapy
scheme with the largest possible initial injection followed
by a periodic scheme with the longest period between
doses. Finally, it should be pointed out that the periodicity
of the treatment is not assumed, but is a result of achieving
the therapeutic goal.

Figure 8 presents a comparison of periodic and
bang-bang type periodic administration protocols. There
is a threshold for initially injected cells (i.e., single
admission of periodically injected cells in the case of
periodic treatment and in the case of bang-bang treatment
the initial (first) dose that determines further part of the
protocol) below which periodic dosing leads to longer
survival times. However, for doses above the threshold,
the bang-bang type periodic scheme gives better results
than constant continuous and periodic treatments; here,
the threshold initial dose was set to 1.2721× 107 cells.

Since the study is limited to a minimalist model,
several limitations are present within it. Spatial aspects
are ignored which are necessary to explain the interaction
between both types of cells (Pozzi et al., 2022). Neither
is cellular plasticity included, which is one of the main
drivers of resistance to treatment (Yabo et al., 2021).
Other aspects, such as mutation of the tumour cells are
assumed negligible and more complex treatment options
such as combined therapies are not included in this
study (Wang et al., 2023). Furthermore, enriching the
model with clinical data would give insights from a
medical point of view.

Finally, future directions for this work can address
the limitations previously mentioned. On the other hand,
more complex models including dual target CAR-T cell
therapy (León-Triana et al., 2021) will also be studied
subsequently.
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