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1. Introduction

In the work of Haplea et al. (2021) we have introduced
a controllability principle for a general control problem
related to operator equations. It consists in finding (w, λ) ,
a solution to the system

{
w = N (w, λ) ,

w ∈ W, λ ∈ Λ, (w, λ) ∈ D
(1)

*Corresponding author

involving the fixed point equation w = N (w, λ) . Here
w is the state variable, λ is the control variable, W is
the domain of the states, Λ is the domain of controls and
D ⊂ W×Λ is the controllability domain given expression
to a certain condition/property imposed on w, or on both
w and λ. There are no structures imposed on the sets W, Λ
and D and no enforced properties for the mappingN from
W × Λ to W.

We say that the equation w = N (w, λ) is control-
lable in W × Λ with respect to D, if problem (1) has a
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solution (w, λ). In case the solution is unique, we say that
the equation is uniquely controllable.

In order to describe the idea of solving the general
control problem, define the sets

Σ := {(w, λ) ∈ W × Λ : w = N (w, λ)} ,
Σ1 := {w ∈ W : there is a λ ∈ Λ with (w, λ) ∈ Σ} .

Obviously, the solutions of to the control problem (1) are
the elements of Σ ∩D.

Consider now the set-valued map F : Σ1 → Λ
given by

F (w) := {λ ∈ Λ : (w, λ) ∈ Σ ∩D} .

Thus, F yields the expression for the control variable
corresponding to the state variable.

The next result is a general principle for solving the
control problem (1).

Proposition 1. If for some extension F̃ : W → Λ of
F from Σ1 to W, there exists a fixed point w ∈ W of the
set-valued map

Ñ (w) := N
(
w, F̃ (w)

)
,

i.e.,

w = N (w, λ) , (2)

for some λ ∈ F̃ (w) , then the couple (w, λ) is a solution
to the control problem (1).

Proof. From (2), one has (w, λ) ∈ Σ. Hence w ∈ Σ1 and
hence F̃ (w) = F (w) . Then λ ∈ F (w) and, from the
definition of F, it follows that (w, λ) ∈ D. Thus (w, λ) is
a solution to (1). �

In many applications, F and F̃ are single-valued
maps and F can be extended to W by the simple use of its
expression on Σ1.

Two applications for a system modeling cell
dynamics related to leukemia have been included the work
of Haplea et al. (2021) (see also Parajdi et al., 2023)
and three others in that of Precup (2022), of which two
are self-control problems. Many other illustrations of the
above principle can be derived from the rich literature in
control theory (see, e.g., Coron, 2007).

The aim of this paper is to give an algorithm for
the approximation of the solutions of general control
problems. It basically consists of a bisection method for
the control variable inside an interval associated to a pair
of lower and upper solutions. The notions of lower and
upper solutions for a general control problem are defined
accordingly.

2. Lower and upper method for control
problems

First, in the present set-framework we introduce the
notions of lower and upper solutions to a control problem.
To this aim, we assume a certain partition of the solution
domain,

W × Λ = D ∪D, D ∩D = D

which allows us to say that the condition of controllability
is targeted from the left or from the right. Thus, we can
give the following definition.

Definition 1. By a lower (resp. upper) solution to
problem (1) we mean a pair (w, λ) ∈ Σ ∩ D (Σ ∩D).

In contrast to the statement of the controllability
principle presented above, given in unstructured sets, from
now on we shall assume a certain topological structure of
the sets and accordingly the continuity of the map N. The
topological framework is a natural one for approximation
methods, when a certain meaning is required for the terms
of the approximant and for the method convergence.

Assume that W is a metric space, Λ =
conv

{
λ0, λ0

}
is a segment of a normed space with norm

‖·‖ , i.e., conv
{
λ0, λ0

}
= {(1−σ)λ0+σλ0 : σ ∈ [0, 1]},

and that the sets D and D are closed.
In addition, assume that the following conditions are

satisfied:

(H1) The problem admits a lower solution of the form
(w0, λ0) and an upper solution

(
w0, λ0

)
.

(H2) For each σ ∈ [0, 1] , there exists a unique w =:
S (σ) ∈ W with (w, λ) ∈ Σ for λ = λ (σ) :=
(1− σ)λ0 + σλ0.

(H3) The map S : [0, 1] → W is continuous.

We use now the bisection method represented as
Algorithm 1. The algorithm leads either to a solution
when it stops, or to two sequences (σk) and (σk) such
that

(i) 0 ≤ σ1 ≤ · · · ≤ σk ≤ σk+1 ≤
· · · ≤ 1 and (S (σk) , λ (σk)) ∈ D,

(ii) 0 ≤ · · · ≤ σk+1 ≤ σk ≤ · · · ≤
σ1 ≤ 1 and (S (σk) , λ (σk)) ∈ D,

(iii) 0 ≤ σk − σk = 1/2k.

Then the sequences (σk) and (σk) are convergent
and by virtue of (iii) their limits are equal, say σ∗. Clearly,
σ∗ ∈ [0, 1] . Furthermore, using the continuity of S and
the fact that D, D are closed, from (S (σk) , λ (σk)) ∈
D we obtain (S (σ∗) , λ (σ∗)) ∈ D. Similarly
(S (σ∗) , λ (σ∗)) ∈ D. Hence (S (σ∗) , λ (σ∗)) ∈ D,
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Algorithm 1. Bisection method.
Let σ0 = 0 and σ0 = 1. For k ≥ 1 execute
Step 1. Calculate

σ :=
σk−1 + σk−1

2

and find S (σ) .
Step 2. If (S (σ) , λ (σ)) ∈ D, then (S (σ) , λ (σ)) is a
solution of the control problem; otherwise, update

(a) σk := σ, σk := σk−1if (S (σ) , λ (σ)) ∈ D \D,

(b) σk := σk−1, σk := σ if (S (σ) , λ (σ)) ∈ D \D,

then set k := k + 1 and go to Step 1.

that is, (S (σ∗) , λ (σ∗)) solves the control problem, which
proves the algorithm convergence. Thus, we have proved
the following result.

Theorem 1. Under the assumptions (H1)–(H3), Algo-
rithm 1 is convergent to a solution (w∗, λ∗) to the control
problem (1).

Remark 1. Theorem 1 guarantees that the algorithm
finishes after a finite number of iterations under the
stopping criterion of the form

‖σk − σk‖ ≤ ε,

for any given ε with 0 < ε < 1. Then any of the
pairs (S (σk) , λ (σk)) and (S (σk) , λ (σk)) , where k
corresponds to the last iteration, can be considered an
approximation of a solution to the control problem. The
error for the control parameter λ is less than or equal to(‖λ0‖+

∥∥λ0

∥∥) ε.
Remark 2. The above result does not require any
ordering between λ0 and λ0.

Remark 3. For specific applications, the computer
implementation of the above algorithm needs additionally
an approximation procedure for the solution operator S.
Then the algorithm is in fact applied to an approximation
Sapprox of S. Such approximations can be done using
the method of successive approximations (guaranteed by
the Banach and Perov fixed point theorems) (Precup,
2002), Newton’s method, techniques of upper and lower
solutions, continuation and discretization methods, etc.
(Kelley, 1995; Langtangen and Mardal, 2019).

2.1. Example. Consider the Lotka–Volterra model
with seasonal harvesting (Rahmani Doust, 2015),

{
x′ = ax (1− by)− g (t) ,
y′ = −cy (1− dx) − h (t) ,

(3)

where g, h ∈ L1 (0, T ) .
Assume that for two routine harvesting policies

(g1, h1) and (g2, h2) , the ratio between the two species
x (T ) /y (T ) at the end T of a season is respectively below
and above a desired level r. The control problem is to
find the appropriate harvesting policy (g, h) to achieve the
ratio r considered optimal. Clearly, under some given
initial values x0 and y0, the system (3) is equivalently
expressed as a fixed point equation
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x (t) = x0 +

∫ t

0

(ax (s) (1− by (s))− g (s)) ds,

y (t) = y0 +

∫ t

0

(−cy (s) (1− dx (s))− h (s)) ds.

(4)
Compared with the abstract control problem stated

in Section 1, here w = (x, y) , λ = (g, h) , W =

C
([
0, T
]
;
(
0,+∞)2), λ0 = (g1, h1) , λ0 = (g2, h2) ,

Λ = {(gσ, hσ) : σ ∈ [0, 1]} , where gσ = (1− σ) g1 +
σg2, hσ = (1− σ) h1 + σh2,

D = {(x, y, g, h) : x (T ) /y (T ) = r} ,
D = {(x, y, g, h) : x (T ) /y (T ) ≤ r} ,
D = {(x, y, g, h) : x (T ) /y (T ) ≥ r} .

Also, according to Definition 1, (x1, y1, g1, h1) and
(x2, y2, g2, h2) (where (xi, yi) is the solution of system
(4) for g = gi and h = hi, i = 1, 2) are lower and upper
solutions to the control problem, respectively.

Notice that it seems natural that the appropriate
policy should be an intermediary between the two routine
policies. Our algorithm looks for it as a convex
combination of the two routine strategies and thus the
control problem reduces to finding σ ∈ [0, 1] for which
the solution (x, y) of the system

{
x′ = ax (1− by)− gσ (t) ,
y′ = −cy (1− dx) − hσ (t) ,

with gσ = (1− σ) g1 + σg2, hσ = (1− σ) h1 + σh2 and
some given initial values x0, y0, satisfies

x (T )

y (T )
= r.

3. Control of cell evolution after bone
marrow transplantation

There is quite a rich literature in the field of mathematical
modeling of hematological processes (for a survey, see
the work of Foley and Mackey (2009)). Regarding bone
marrow transplantation, few mathematical contributions
have been made despite the rich medical and clinical
literature (see, e.g., DeConde et al., 2005; Kim et al.,
2007).
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In the paper by Precup et al. (2010) (see also Precup
et al., 2018) the following system has been introduced as a
model of cell dynamics after bone marrow transplantation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′ =
a

1 + b(x+ y + z)

x+ y

x+ y + gz
x− cx,

y′ =
A

1 +B(x+ y + z)

x+ y

x+ y +Gz
y − Cy,

z′ =
a

1 + b(x+ y + z)

z

z + h (x+ y)
z − cz.

(5)

Here x (t) , y (t) , z (t) stand respectively for the normal,
leukemic and donor cell populations at time t, after
transplant time t = 0 when their concentrations are
supposed to have been x0, y0, z0 (> 0) . Parameters
a,A stand for the growth rates of normal and leukemic
cells; c, C are their cell death rates; and b, B are their
microenvironment sensitivity rates. Also, the parameters
h, g,G stand for the intensity of anti-graft, anti-host and
anti-leukemia effects, respectively. They totalize a large
number of cell biophysical properties, as well as exterior
stimulants and inhibition during the immunotherapy.
Values of the parameters h, g,G close to zero correspond
to weak interactions; larger values quantify strong effects
and their pre-transplant estimate would be crucial for
the transplant strategy (conditioning treatment, dose
of infused cells and post-transplant immunosuppressive
therapy). We note that the model was improved by Parajdi
(2020) by considering, instead of the same sensitivity rate
b for normal and leukemic cells, different sensitivity rates
b1 and b2, respectively.

In the paper by Precup et al. (2013), the equilibria
of system (5) are found and their stability is established
in terms of the system parameters. According to the
main result of Precup et al. (2013) the system has,
as the numerical simulations by Precup et al. (2012)
suggested, only two asymptotically stable equilibria,
namely the ‘bad’ equilibrium P2 (0, D, 0) and the ‘good’
one P3 (0, 0, d) . The ‘good’ equilibrium is reached when
the transplant succeeds. Here, the malignant clone
is completely eradicated (together with the patient’s
own normal bone marrow cells) and the engraftment is
successful. All the bone marrow cells originate in the
graft, and thus the corresponding equilibrium point is
P3(0, 0, d). The ‘bad’ equilibrium point is reached when
the transplant fails in competition with the recipient’s
leukemic cells.

At an equilibrium, all bone marrow cells are
malignant in nature, and thus the equilibrium point is
P2(0, D, 0). Here the values

d =
1
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Fig. 1. Separation surface S of the ‘bad’ and ‘good’ basins of
attraction when no treatment is given, λ = 1. Initial con-
ditions in the ‘good’ basin: x(0) = 1.2 × 108, y(0) =
0.968 × 107, z(0) = 3 × 108; x(0) = 0.905 ×
108, y(0) = 1.649×107, z(0) = 3.876×108; x(0) =
2.605×108 , y(0) = 1.649×107 , z(0) = 4.076×108 ;
and in the ‘bad’ basin: x(0) = 2.032 × 108, y(0) =
0.056 × 109, z(0) = 2.438 × 108; x(0) = 2.032 ×
108, y(0) = 0.456×109, z(0) = 2.838×108; x(0) =
2.032×108, y(0) = 0.256×109 , z(0) = 3.038×108.

and

D =
1

B

(
A

C
− 1

)

can be seen as homeostatic normal and cancer levels.
Also, the octant of the positive states (x, y, z) splits
into two basins of attraction of the two equilibria, the
‘bad’ basin corresponding to (0, D, 0) , and the ‘good’
one for (0, 0, d) (see Fig. 1 and Appendix for its
construction). This means that if at a given time t0
the state (x (t0) , y (t0) , z (t0)) belongs to the basin of
attraction of any of the two equilibria, then the entire
trajectory (x (t) , y (t) , z (t)) for t ≥ t0 remains in the
same basin and, as a result, in time, approaches the
corresponding equilibrium. Thus, a transplant appears
as successful if the initial state (x0, y0, z0) is located
in the good basin, which happens if z0 is sufficiently
large compared with x0 and y0. Also, an unsuccessful
transplant could be turned into a successful one if by any
methods/therapies one can move the state (x, y, z) from
the bad basin into the good one, or if we can enlarge
the good basin to catch the state inside. In fact, for any
transplant, one could preventively apply the same strategy
in order to move the state (x, y, z) (even if located in the
good basin) away from the separating surface between the
two basins, to be sure that further perturbations cannot
change the good evolution towards equilibrium (0, 0, d) .

The source of parameters is the paper by Precup
et al. (2012). The values are reasonable estimates, as the
actual cell kinetics within the stem cell niche are largely
inaccessible. We restrict our numerical simulations to the
following parameter values: a = 0.23, b = 2.2 × 10−8,
c = 0.01, A = 0.43, B = 5.5× 10−9, C = 0.03, g = 25,
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G = 4 and h = 20, where d = 9.999999999× 108 <
2.424242423× 109 = D.

From the main result of Precup et al. (2013) we have
that the separation surface S of the two basins of attraction
intersects the plane y = 0 after the line

z =

√
h

g
x,

and the plane x = 0 after a curve close to the line

z =
A
C − 1

G
y.

Thus, the good basin of attraction increases if at least one
of the two lines goes down, which happens if one can
make h/g or/and A/C decrease, or/and G increase.

Therefore, the basin of attraction of the good
equilibriumP3 is enlarged if the separation surface S goes
down (see Figs. 2 and 3) and this can be achieved by

(i) increasing anti-host parameter g,

(ii) increasing anti-cancer parameter G,

(iii) decreasing anti-graft parameter h,

(iv) decreasing the growth rate of cancer cells A,

(v) increasing the death rate of cancer cells C.

Such changes in these parameters find their
counterpart in post-transplant medical practice, namely
the following therapies: donor T-lymphocyte infusion
(related to g and G), immunosuppressive therapy (related
to h) and post-transplant consolidation chemotherapy
(related to A and C). In the work of Precup et al. (2012)
a series of imaginary scenarios combining these therapies
have been designed and it has been shown that the success
depends on their intensity, the time interval in which they
are applied and the time after transplantation at which they
are initiated.

Denote by λi (t) , i = 1, . . . , 5 the factors with
which the parameters g,G, h,A and C are modified
on a time interval [0, T ] . In medical practice, these
factors should be related to the treatment doses necessary
to correct the patient’s post-transplantation condition.
Assume that as functions they belong to L∞ (0, T ) .
For example, we can consider these functions piecewise
constant, when the value one on a certain subinterval
would correspond to an interruption of the therapy. Also,
denote by λ (t) the vector in R

5 having these components.
Assuming that after transplant one has y � 0 on the

time interval [0, T ] and that the patient’s condition w0 =
(x0, y0, z0) is in the bad basin, that is,

z0
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Fig. 2. Separation surface (S1 goes down) when we consider
the treatment, the surface S1 (no treatment, λ = 1)
and the surface S2 (with treatment, λ = 0.04). Ini-
tial conditions in the ‘good’ basin with reference to S1:
x(0) = 2.605 × 108, y(0) = 1.649 × 107, z(0) =
4.076 × 108 and in the ‘bad’ basin of S1: x(0) =
2.632×108 , y(0) = 0.256×109 , z(0) = 3.038×108 ;
in the ‘good’ basin with reference toS2: x(0) = 2.632×
108, y(0) = 0.256 × 109, z(0) = 3.038 × 108 and in
the ‘bad’ basin of S2: x(0) = 2.632 × 108, y(0) =
0.656× 109, z(0) = 1.738 × 108.
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Fig. 3. Separation surfaces (S1 and S2 go down) when we con-
sider two distinct values of the treatment, the surface S1

(no treatment, λ = 1), the surface S2 (with treatment,
λ = 0.2) and the surface S3 (with treatment, λ = 0.08).

we want to decrease the h/g ratio to reach the goal

z (T )

x (T )
>

√
h

g

meaning that the patient’s condition is brought to time T
in the good basin, evolving after that to the good attractor
P3. Obviously, the patient’s exposure to corrective
therapies should be reduced as much as possible. In order
to find such a minimal therapy according to λ (t), we can
apply our lower and upper solution method.

Clearly, for a lower solution
(
x0, y0, z0, λ0

)
we can

take the vector λ0 = (1, 1, 1, 1, 1) which corresponds to
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the absence of any post-transplant therapy. Then

z0 (T )

x0 (T )
<

√
h

g
.

An upper solution
(
x0, y0, z0, λ0

)
can be chosen by

checking several vector functions λ (t) with step function
components satisfying 0 ≤ λi (t) ≤ 1 for i = 3, 4 and
λi (t) ≥ 1 for i = 1, 2, 5. For it one has

z0 (T )

x0 (T )
>

√
h

g
.

Once this upper solution is found, the algorithm starts and
continues until the first step k at which, for λ = λ (σk) ,
one has

z (T )

x (T )
≤
√

h

g
+ δ

for an acceptable margin 0 < δ < z0 (T ) /x0 (T ) −√
h/g. Then the vector λ (σk) = (1− σk)λ0 + σkλ0

can be a good approximation to the control λ.
In this case, referring to the general framework, we

have W = C
(
[0, T ] ; (0,+∞)

3 )
, w = (x, y, z) , Λ =

{λ (σ) : σ ∈ [0, 1]} , where λ (σ) = (1− σ) λ0 + σλ0,

D =

{
(w, λ) :

z (T )

x (T )
=

√
h

g

}
,

D =

{
(w, λ) :

z (T )

x (T )
≤
√

h

g

}
,

D =

{
(w, λ) :

z (T )

x (T )
≥
√

h

g

}
.

Also N = (N1, N2, N3) is the integral operator
associated with the equivalent integral system.

First, we prove that the solution operator S is
well-defined, that is, the condition (H2) holds.

Lemma 1. For each λ = λ (σ) ∈ Λ, the initial value
problem w = N (w, λ) , w (0) = w0 has a unique solu-
tion w = S (σ) ∈ W.

Proof. First, note the Lipschitz continuity of the system
nonlinearities with respect to the variables x, y and z.
Thus the qualitative theory on the Cauchy problem applies
to our situation including the result about the behavior of
the saturated solutions in a neighborhood of the boundary
of the domain where the system is defined, here [0, T ] ×
(0,+∞)

3 (see Barbu, 2016, Theorem 2.10). Thus, it
remains to prove that the saturated solution to the initial
value problem does not fail at the boundary.

Assume the contrary. Then there is a t0 ∈ (0, T ] such
that x (t) , y (t) , z (t) > 0 in [0, t0) and the limit at t0 of at

least one of the three functions equals zero. Let x (t) → 0
as t → t0. From the first equation of the system, we have

x′ (t) ≥ −cx (t) , t ∈ [0, t0),

whence x (t) ≥ x0e
−ct, which leads to a contradiction

with our assumption. We get a similar conclusion if
z (t) → 0 as t → t0. The same is obtained if y (t) → 0 as
t → t0, when the contradiction comes from the estimate
y (t) ≥ y0e

−C
∫ t
0
λ5(σ)(s)ds. �

Finally, we prove the continuous dependence on σ of
the solution S (σ) = (x, y, z) , that is, condition (H3). To
this end, we use the technique of equivalent norms, more
exactly, the Bielecki norm on C[0, T ] that we present now
for the reader’s convenience.

For any number θ > 0, the Bielecki norm || · ||θ on
the space C[0, T ] is given by

||f ||θ = max
t∈[0,T ]

(|f(t)|e−θt
)
.

Lemma 2. The solution operator is continuous from [0, 1]
to C
(
[0, T ] ;R3

)
.

Proof. From the integral system, using the Lipschitz
continuity of the nonlinearities and the Volterra property
of the equations, we deduce (see the details below) for
i = 1, 2, 3, the estimates of the form

‖Si(σ)− Si(σ)‖θ (6)
≤ αi1‖S1(σ)− S1(σ)‖θ
+ αi2‖S2(σ) − S2(σ)‖θ
+ αi3‖S3(σ) − S3(σ)‖θ + βi |σ − σ| ,

with respect to a Bielecki norm ‖ · ‖θ on C[0, T ] and any
number θ > 0. They can be expressed in the vector form

(I −M)

⎡
⎢⎣
‖S1(σ) − S1(σ)‖θ
‖S2(σ) − S2(σ)‖θ
‖S3(σ) − S3(σ)‖θ

⎤
⎥⎦ ≤ |σ − σ|

⎡
⎢⎣
β1

β2

β3

⎤
⎥⎦ ,

where M is the matrix [αij ]1≤i,j≤3 and I is the identity
matrix. Choosing θ sufficiently large, we can make the
coefficients αij small enough so that the spectral radius
of the matrix M is subunitary. Then the matrix I −M is
invertible and its inverse has nonnegative entries. Thus we
can multiply by (I −M)

−1 keeping the inequality sign
the same, and obtain

⎡
⎣‖S1(σ) − S1(σ)‖θ
‖S2(σ) − S2(σ)‖θ
‖S3(σ) − S3(σ)‖θ

⎤
⎦ ≤ |σ − σ| (I −M)−1

⎡
⎢⎣
β1

β2

β3

⎤
⎥⎦ .

This clearly shows the continuity of S1, S2 and S3 with
respect to σ.
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Finally we will give details regarding the deduction
of estimates (6). We will derive the estimate for i = 1, the
cases where i = 2 and i = 3 being similar. For notational
simplicity, write w = (x, y, z) , and w = (x, y, z) , the
solutions corresponding to λ := (λ1 (σ) , . . . , λ5 (σ)) and
λ := (λ1 (σ) , . . . , λ5 (σ)) , respectively. Then, clearly,
x = S1 (σ) and x = S1 (σ) . The first equation of the
integral system is

x (t) = x0 +

∫ t

0

f (w (s) , λ1 (σ)) ds,

where

f (w, λ1 (σ))

=
a

1 + b(x+ y + z)

x+ y

x+ y + λ1 (σ) gz
x− cx.

A similar expression holds for x. The simple
calculation of the partial derivatives of f shows that these
are bounded and, therefore, f is Lipschitz continuous
in all variables. Thus, there are nonnegative constants
a1, . . . , a4 such that

|f (w, λ1 (σ))− f (w, λ1 (σ))|
≤ a1 |x− x|+ a2 |y − y|
+ a3 |z − z|+ a4 |λ1 (σ)− λ1 (σ)| .

Here we note that |λ1 (σ) − λ1 (σ)| = c |σ − σ| ,
where c is the absolute value of the difference between the
first components of the vectors λ0 and λ0. Let β1 = ca4T.
Now, starting to evaluate x− x, we have

|x (t)− x (t)|

≤
∫ t

0

|f (w (s) , λ1 (σ))− f (w (s) , λ1 (σ))| ds

≤
∫ t

0

a1 |x (s)− x (s)| ds+
∫ t

0

a2 |y (s)− y (s)| ds

+

∫ t

0

a3 |z (s)− z (s)| ds+ β1 |σ − σ| .

Here we make use of the Bielecki norm. Thus, for a
positive number θ, we can estimate

∫ t

0

a1 |x (s)− x (s)| ds

= a1

∫ t

0

|x (s)− x (s)| e−θseθs ds

≤ a1 ‖x− x‖θ
∫ t

0

eθs ds

≤ a1
θ

‖x− x‖θ eθt.

Making similar estimates for y and z and setting α1j =
aj/θ (j = 1, 2, 3) , we obtain

|x (t)− x (t)|
≤ (α11 ‖x− x‖θ + α12 ‖y − y‖θ + α13 ‖z − z‖θ) eθt
+ β1 |σ − σ| .

Dividing by eθt and taking the maximum for t ∈ [0, T ]
leads to

‖x− x‖θ ≤ α11 ‖x− x‖θ + α12 ‖y − y‖θ
+ α13 ‖z − z‖θ + β1 |σ − σ| ,

which is our estimate (6) for i = 1. It should be noted that
the coefficients αij obtained in this way can be made as
small as desired by choosing θ sufficiently large. �

Remark 4. Assuming that after transplantation one has
x � 0 on the time interval [0, T ] , we may apply similarly
the algorithm in order to reach alternatively the goal

z (T )

y (T )
>

A
C − 1

G
.

4. Conclusions
The first main objective of this work was to formulate a
method of lower and upper solutions for solving control
problems and an algorithm of numerical implementation.
The convergence of the algorithm was proved and
for its good understanding, a simple example of a
control problem related to the Lotka–Volterra model was
presented.

The second main objective was the control of
cell evolution after bone marrow transplantation. The
discussion took place around a previously introduced
transplant model. The model has two attractors. The
‘good’ one corresponds to the successful transplant
and the ‘bad’ one corresponds to the failed transplant.
The patient’s state after transplantation is described by
the (x, y, z)-coordinates representing the healthy and
malignant cell populations of the patient and, respectively,
of the cell population from the donor. The result of the
transplant depends on the location of the point (x, y, z)
in one or the other of the basins of attraction of the two
attractors. The goal is that by enlarging the basin of the
‘good’ attractor, the patient’s condition immediately after
the transplant, which is in the ‘bad’ basin, will be caught
in the widened ‘good’ basin. This widening of the ‘good’
basin can be obtained by changing five parameters of the
model that can be put in correspondence with a series
of specific consolidation therapies. It is described how
the method of lower and upper solutions can be used to
control the transplant model.

An auxiliary objective, but extremely important
for the implementation of the method, is achieved in
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Appendix, through a numerical method for constructing
the separation surface between the two basins of
attraction.

We believe that these mathematical results together
with clinical, pharmaceutical, and laboratory studies,
could be of real interest in order to optimize therapeutic
consolidation scenarios after transplantation, aimed at
contributing to the eradication of leukemia.
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Appendix

Numerical method for constructing
a separation surface between two

basins of attraction
We aim to build numerically a surface S that separates the
basin of attraction of the ‘good’ attractor (when the bone
marrow transplant succeeds) from the basin of the ‘bad’
attractor (when the transplant fails). Let C be the curve at
the intersection between the surface S and the horizontal
plane at z = z̃. For numerical tractability, we approximate
the surface S by a ruled surface which connects the origin
of the axes with the curve C.

The surface S intersects the plane x = 0 approxi-
mately along the line

z =
A
C − 1

G
y,

and the plane y = 0 along the line

z =

√
h

g
x.

The above two lines intersect the plane z = z̃ at the points

M0 =

(
0,

G
A
C − 1

z̃, z̃

)
, M1 =

(√
g

h
z̃, 0, z̃

)
,

respectively. We wish to compute the coordinates of N−1
points on the curve C. To this end, we perform two steps.

Step 1. Consider an even partition of the segment M0M1,
i.e., a series of points

Mk/N = (xk, yk, z̃) , k = 1, . . . , N − 1,

where

yk =

G
A
C −1√

g
h

(√
g

h
z̃ − xk

)

such that Mk/N ∈ M0M1 and

∣∣M0Mk/N

∣∣ = k

N
|M0M1| ,

so that the points Mk/N divide the segment M0M1 into
N equal parts. Equivalently, in vector notation

−−→
OMk/N =

−−→
OM 0 +

k

N

−−−−→
M1M0.

Componentwise, we have

xk = xM0 +
k

N
(xM1 − xM0 ) =

k

N

√
g

h
z̃ ,

yk = yM0 +
k

N
(yM1 − yM0) =

(
1− k

N

)
G

A
C − 1

z̃.

Step 2. For each k = 1, 2, . . . , N − 1 we compute the
following: in the plane z = z̃ the normal to M0M1 at
Mk/N and, on this normal, two series of equidistant points
Si, Si, spaced at ε from each other

xSi
< xMk/N

, xSi
> xMk/N

,∣∣Si Mk/N

∣∣ = iε,
∣∣SiMk/N

∣∣ = iε, i = 1, 2, . . . ;

in other words, the points are situated on the normal to
M0M1, on opposite sides of Mk/N . Vectorially

−−→
OSi =

−−→
OMk/N − iε−→v ,

−−→
OSi =

−−→
OMk/N + iε−→v ,

where −→v is the unit vector orthogonal to
−−−−→
M1M0, that is,

−→v =
1√(

G
A
C −1

z̃
)2

+
(√ g

h z̃
)2
(

G
A
C − 1

z̃,

√
g

h
z̃

)
.

Componentwise, for all points Si, Si we have

xSi
= xk − iεx−→v

=
k

N

√
g

h
z̃ − iε

G
A
C −1

z̃√(
G

A
C −1

z̃
)2

+
(√

g
h z̃
)2 ,

ySi
= yk − iεy−→v

=

(
1− k

N

)
G

A
C − 1

z̃

− iε

√
g
h z̃√(

G
A
C −1

z̃
)2

+
(√

g
h z̃
)2

and, respectively,

xSi
= xk + iεx−→v

=
k

N

√
g

h
z̃ + iε

G
A
C −1

z̃√(
G

A
C −1

z̃
)2

+
(√

g
h z̃
)2 ,

ySi
= yk + iεy−→v

=

(
1− k

N

)
G

A
C − 1

z̃

+ iε

√
g
h z̃√(

G
A
C −1

z̃
)2

+
(√

g
h z̃
)2 .

To find an approximation to the surface S we
have employed the following pseudocode algorithm
(implemented in Matlab R2021a):
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FOR each k = 1, 2, . . . , N − 1 we test whether the point
Mk/N lies inside the good or the bad basin of attraction,
by following the trajectory of the solution that starts from
that point (integrating using the coordinates of the point
Mk/N as initial conditions).

IF the trajectory leads to the bad attractor, we test
in sequence the orbits of the points Si, i = 1, 2, . . . ,
until we reach the first point whose orbit lands on the
good attractor. The midpoint of the segment determined
by the last two tested points will belong, within an ε/2
approximation, to the curve C / surface S.

IF the trajectory leads to the good attractor, we test in
sequence the orbits of the points Si, i = 1, 2, . . . , until we
reach the first point whose orbit lands on the bad attractor.
The midpoint of the segment determined by the last two
tested points will belong, within an ε/2 approximation, to
the curve C / surface S.

END_FOR

Every point on the curve C, as found above, is then
connected with the origin. The resulting ruled surface
is a rough but useful approximation of the surface S,
computable in linear time with respect to N and 1/ε.

Concerning the parameters for these simulations (see
Figs. 1–3), the following values are taken: a = 0.23, b =
2.2 × 10−8, c = 0.01, A = 0.43, B = 5.5 ×
10−9, C = 0.03, g = 25, G = 4, h = 20, where
d = 9.999999999× 108 < 2.424242423× 109 = D. In
all the simulations we used N = 10, ε = 108, z̃ = 109.
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