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An event-triggered adaptive control algorithm is proposed for cooperative tracking control of high-order nonlinear multi-
agent systems (MASs) with prescribed performance and full-state constraints. The algorithm combines dynamic surface
technology and the backstepping recursive design method, with radial basis function neural networks (RBFNNs) used
to approximate the unknown nonlinearity. The barrier Lyapunov function and finite-time stability theory are employed
to prove that all agent states are semi-globally uniform and ultimately bounded, with the tracking error converging to a
bounded neighborhood of zero in a finite time. Numerical simulations are provided to demonstrate the effectiveness of the
proposed control scheme.
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1. Introduction
In recent years, the cooperative control problem of
nonlinear leader-following multi-agent systems (MASs)
has received a great deal of attention and has been put
to use in a variety of applications, such as unmanned
aerial vehicles (Wu et al., 2020), formation control (Zhou
et al., 2013), smart grid, sensor networks, etc. In
the leader-following MAS scenario, all the followers
track the leader’s state trajectory through limited local
neighborhood information with a distributed control
protocol (Ni and Cheng, 2010; Chen et al., 2020; Zegers
et al., 2022; Farrera et al., 2020; Yang et al., 2021).
The design of co-operative controllers for nonlinear
systems, especially higher order nonlinear systems, is
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more difficult than for linear MASs in general (Zhang
et al., 2018; Liu et al., 2020; Yang and Li, 2020; Peng
et al., 2021; Li et al., 2023). Related research work is
also continuously attracting the attention of researchers
worldwide.

Finite-time consensus is a hot topic in the field of
MASs. El-Ferik et al. (2018) propose a neuro-adaptive
cooperative tracking control with a prescribed
performance function for highly nonlinear MASs.
Hui et al. (2008) combine the concepts of semi-stability
and finite-time performance to nonlinear MASs, giving
sufficient conditions for semi-stable finite-time consensus.
A distributed finite-time cooperative control protocol
based on continuous state feedback is proposed by
Wang and Feng (2010). For second-order MASs with
perturbations, two cases with and without leaders are
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discussed by Li et al. (2011), and two finite-time
cooperative protocols are given.

Several works have proposed neuro-adaptive
cooperative tracking control, a distributed finite-time
cooperative control protocol, and finite-time cooperative
protocols for nonlinear MASs with perturbations and
leaders. However, the finite-time convergence in these
works is related to the initial state of the agents. To solve
this problem, a fixed-time control method is proposed
by Polyakov (2012) to ensure that the prescribed
performance to reach a consensus is independent of the
initial state. Hong et al. (2017) propose a nonlinear
control protocol based on the undirected topology to
solve the fixed-time consensus problem for MASs
with nonlinear dynamics and uncertain perturbations.
In the work of Defoort et al. (2015), the finite-time
leader-following consensus problem is studied for
a system with unknown nonlinear dynamics in an
undirected topology. Moreover, a new finite-time control
strategy is proposed by Wang et al. (2016) to solve
the fixed-time intermittent communication problem in
the directed communication topology, which can save
communication resources.

Most of the controllers proposed in the above
literature require the continuous updating of control
inputs; it would be an unnecessary waste of resources
if the control tasks were still performed periodically
when the system is operating under ideal conditions.
To this end, event-triggered control strategies have
been developed. Huang et al. (2016) investigate the
problem of distributed cooperative tracking based on
event-triggered information interactions under a fixed
directed topology. In most of the research results, the
triggering of each agent event is not only related to its
own triggering time, but also to the triggering time of its
neighbours. Girard (2015) introduces internal dynamic
variables on the basis of static event triggering control
and proposes a dynamic event triggering mechanism that
can further reduce the triggering frequency. In order to
save system communication resources while improving
the convergence time of the system, event-triggered
finite-time consistency has been developed. In the work
of Zhu et al. (2015), two nonlinear event-triggered control
strategies are proposed to solve the finite-time consensus
problem in the undirected communication topology.
Zhang et al. (2016) investigate the event-triggered
finite-time consensus problem in fixed and switched
topologies, and the event-triggered finite-time consensus
problem in a directed communication topology.

This paper proposes a neuro-adaptive cooperative
control protocol based on an event-triggered mechanism
for nonlinear high-order MASs with a non-strict output
feedback and a prescribed finite-time performance.
Unlike traditional event-triggered mechanisms that
use time-varying trigger thresholds, the proposed

algorithm only uses fixed thresholds that do not need
to be repeatedly computed, significantly reducing
computational overhead. Additionally, the backstepping
method is used to design the corresponding controller for
each order of state in the higher order dynamics model
of the system. The main contributions of this paper
are the following: (i) considering full-state constrained
and prescribed performance conditions, making it
more realistic and able to converge to a given tracking
accuracy at the desired time performance; (ii) proposing a
controller with a fixed trigger threshold, which drastically
reduces the computational burden when controlling
input signal updates; (iii) applying dynamic surface
technology (Li et al., 2010) in the backstepping method
to significantly alleviate the problem of “calculation
explosion.”

The rest of this paper is organized as follows.
Section 2 introduces some basic preliminaries and the
problem formulation to be addressed. In Section 3,
the main results, including the proposed event-triggered
neuro-adaptive controller, the prescribed finite-time
performance function, and steady-state analysis, are
presented. Section 4 reports a numeric simulation to
verify the feasibility and effectiveness of the proposed
control method. Finally, conclusions are drawn in
Section 5.

2. Preliminaries and the problem statement

2.1. Graph theory. Define a directed graph as G =
(V , E ,A), where V = {v1, . . . , vN} is the set of N nodes,
E ∈ V × V is the edge set, and A = [aij ] ∈ R

N×N is the
adjacency matrix. Here aij = 1 if (vj , vi) ∈ E , otherwise,
aij = 0. The in-degree matrix is D = diag{a1, . . . , aN},
where ai =

∑N
j=1 aij . The Laplacian matrix is defined as

L = D −A.

Lemma 1. (Zhang et al., 2012) Let B =
diag{b1, . . . , bN}, where bi (i = 1, . . . , N) denotes the
edge between the leader and following agent i. If an infor-
mation connection is established from the leader to agent
i, bi = 1, otherwise, bi = 0. There exists a spanning tree
in graph G with the leader being the root of the spanning
tree; then the matrix L+ B is non-singular.

2.2. Radial basis function neural networks. Due to
the universal approximation theorem (Girosi and Poggio,
1990), radial basis function neural networks (RBFNNs)
have been widely used to approximate continuous
nonlinear functions. The output layer is

f(Z) = WTφ(Z), (1)
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where φ(Z) =
[
φ1(Z), φ2(Z), · · · , φH(Z)

]T is the
radial basis vector, H is the number of hidden neurons.

φi(Z) = exp

(

− (Z − ci)
T (Z − ci)

ω2
i

)

, (2)

where W ∈ R
H denotes the output weights, ci and ωi are

the center and width of a Gaussian function, respectively.
According to the universal approximation theorem,

there always exists an ideal weight vector W ∗ with
sufficiently large H , such that for arbitrary small constant
δ, we have

‖f(Z)−W ∗Tφ(Z)‖ ≤ δ(Z). (3)

An estimate of the ideally optimal weights W ∗ is

W̃ = arg min
W∈RH

[sup ‖WTφ− f(Z)‖]. (4)

To implement this approximation, an adaptive neural
network is designed in this paper, and the neural weights
will be updated through an adaptive law proposed later in
this paper.

2.3. Problem formulation. Consider a high-order
nonlinear MASs consisting of N homogeneous followers,
where the follower i ∈ V = 1, . . . , N can be described by
M -th order non-strict feedback dynamics,

ẋi,m = xi,m+1 + fi,m(xi),

m = 1, 2, . . . ,M − 1,

ẋi,M = ui + fi,M (xi),

yi = xi,1, (5)

where xi = [xi,1, xi,2, . . . , xi,M ]T ∈ R
M is the state

vector; ui ∈ R and yi ∈ R are the controller input
and agent output, respectively; fi,m(xi), i = 1, 2, . . . , N
and m = 1, 2, . . . ,M are unknown smooth nonlinear
functions with fi.m(0) = 0.

Denoting by y0 the desired state output of the leader
agent, it is directly known to some follower agents, and its
M -order derivatives are all continuous and bounded.

2.4. Prescribed performance. Define the system
tracking error as

ρi,1 =
∑

j∈Ni

ai,j(yi − yj) + ai,0(yi − y0). (6)

As in the work of Zhou et al. (2022), the prescribed
performance functions are defined by using the inequality

−δminμ(t) < ρi,1(t) < δmaxμ(t), ∀t ≥ 0, (7)

where δmin and δmax are adjustable parameters, μ(t) =
(μ0−μ∞) exp(−vt)+μ∞ with v, μ∞ being positive real

numbers, and μ0 = μ(0). By selecting the appropriate
value of μ0, we can proceed with μ0 > μ∞, and
−δminμ(0) < ρi,1(0) < δmaxμ(0). To achieve the
prescribed performance, define

ρi,1(t) = μ(t)Φi(ζi(t)), ∀t ≤ 0, (8)

where ζi(t) is the transformed error, and Φi(ζi(t)) =(
δmax exp(ζi(t)) − δmin exp(ζi(t))

)
/
(
exp(ζi(t)) +

exp(−ω̄i(t))
)
. Φi(ζi(t)) is a strictly monotonically

increasing function, and further,

∂Φi

∂ζi
=

2(δmax + δmin)
(
exp(ζi(t)) + exp(−ω̄i(t))

)2 > 0 (9)

Thus, by Eqn. (7), we have

ζi(t) = Φ−1
i

(
ρi,1(t)

μi(t)

)

=
1

2
ln

φi + δmin

δmax − Φi
(10)

and

ζ̇i(t) = ri

(

ρ̇i,1 − μ̇ρi,1
μ

)

, (11)

where

ri =
1

2μ

(
1

Φi + δmin − 1
Φi−δmax

)

.

Define the state transformation as

ξi,1(t) = ζi(t)− 1

2
ln

δmin

δmax
. (12)

Then, we obtain its derivative

ξ̇i,1(t) = ri

(

ρ̇i,1 − μ̇ρi,1
μ

)

. (13)

If ξi,1(t) is bounded, ρi,1(t) is said to satisfy the
prescribed performance in Eqn. (7).

Definition 1. (Yang et al., 2008) If for any prior compact
set Ω ∈ R

M , x(0) ∈ Ω, there is a bounded ε > 0 and a
constant C(ε, x(0)) such that

‖x(t)‖ < ε, ∀t ≥ t0 + C,

then the solution of the system (5) is semi-globally
uniform and ultimately bounded.

3. Cooperative controller design
In this section, we propose an event-triggered
neuro-adaptive control algorithm using the backstepping
design method and dynamic surface technology. The
event-triggered mechanism employs fixed thresholds to
trigger the computation of control signals, resulting in a
significant reduction in the computational burden.



442 S. Gong et al.

Define

ϑi,m = xi,m − zi,m,

λi,m = zi,m − αi,m−1, m = 2, . . . ,M. (14)

where ϑi,m represents the virtual error surface, zi,m
denotes the output signal of the first-order filter, and λi,m

and αi,m−1 are the filter error and virtual control signal,
respectively.

Define

θ∗i,m = ‖W ∗
i,m‖2, m = 1, . . . ,M, (15)

where W ∗
i,m is the ideal setting of weights of the RBFNNs

which approximates the m-th order nonlinear function of
agent i. Denote by θ̂i,m the estimate of θ∗i,m, and set the
residual error as θ̃i,m = θ∗i,m − θ̂i,m.

Lemma 2. (Ren et al., 2010) For any positive constant
kbl, if it satisfies |ϑi,l| < kbl, ϑi,l ∈ R, then

log
k2bl

k2bl − ϑ2
i,l

<
ϑ2
i,l

k2bl − ϑ2
i,l

. (16)

Lemma 3. (Zhang and Lewis, 2012) Let ϑ1 =
[ϑ1,1, ϑ2,1, . . . , ϑN,1]

T , y = [y1, y2, . . . , yN ]T , ȳ0 =
[y0, y0, . . . , y0]

T ∈ R
N . Then

‖y − ȳ0‖ ≤ ‖ϑ1‖
σ(L+ B) , (17)

where σ(L+ B) is the minimal singular value of matrix
L+ B.

Lemma 4. (Young’s inequality (Henry, 1912)) For any
∀(x, y) ∈ R

n, we have

xy ≤ pa

a
|x|a +

1

bpb
|y|b, (18)

where p > 0, a > 1, b > 1, (a− 1)(b− 1) = 1.

We design the distributed cooperative control
protocol based on the backstepping method, which
proceeds as follows.

Step 1. The barrier Lyapunov candidate function is chosen
as

Vi,1 =
1

2
log

k2bl
k2bl − ϑ2

i,1

+
1

2
θ̃2i,1. (19)

Therefore, its derivative is

V̇i,1 =
ϑi,1ri

k2bl − ϑ2
i,1

[

(di + ai,0)(ϑi,2 + λi,2 + αi,1)

+ f̄i,1 −
∑

j∈Ni

ai,jxj,2 − ai,0ẏ0 − μ̇ei,1
μ

]

− θ̃i,1
˙̂
θi,1, (20)

where f̄i,1 = (di + ai,0)fi,1(xi)−
∑

j∈N〉 ai,jfj,1(xj).
For the nonlinear term f̄i,1, we approximate it by

using the RBFNN,

f̄i,1 = W̃
T
i,1φi,1(Zi,1) + δ(Zi,1). (21)

Subsequently, according to Lemmas 2 and 4, we get

f̄i,1
ϑi,1ri

k2bl − ϑ2
i,1

≤ r2i s
2
i,1 ‖ W̃i,1 ‖2 φT

i,1(Z〉,∞)φi,1(Zi,1)

2p2i,1(k
2
bl − ϑ2

i,1)
2

+
1

2
p2i,1 +

r2i s
2
i,1

2(k2bl − ϑ2
i,1)

2
+

1

2
ε̄2i,1

≤ r2i s
2
i,1θ

∗
i,1φ

T
i,1(Xi,1)φi,1(Xi,1)

2p2i,1(k
2
bl − ϑ2

i,1)
2

+
r2i s

2
i,1

2(k2bl − ϑ2
i,1)

2
+

p2i,1 + ε̄2i,1
2

, (22)

where Xi,1 = [xi,1, xj,1]
T . Moreover,

(di + ai,0)risi,1
k2bl − ϑ2

i,1

(
ϑi,2 + λi,2

)

≤ (di + ai,0)
2r2i s

2
i,1

2(k2bl − ϑ2
i,1)

2
+

ϑ2
i,2 + λ2

i,2

2
. (23)

Let the virtual control signal αi,1 be

αi,1 =
1

di + ai,0

[

− ci,1ϑi,1

ri
− risi,1

2(k2bl − ϑ2
i,1)

− risi,1
2p2i,1(k

2
bl − ϑ2

i,1)
θ̂i,1φ

T
i,1(Xi,1)φi,1(Xi,1)

− (di + ai,0)
2risi,1

k2bl − ϑ2
i,1

+ ai,0ẏ0

+
∑

j∈Ni

ai,jxj,2 +
μ̇ei,1
μ

]

. (24)

In addition, design the distributed adaptive control

procotol ˙̂
θi,1 for Step 1 as

˙̂
θi,1 =

r2i s
2
i,1

2p2i,1(k
2
bl − ϑ2

i,1)
2
φT
i,1(Xi,1)φi,1(Xi,1)

− σi,1θ̂i,1, (25)

where pi,1, ci,1 and σi,1 are positive parameters to be
designed.

Substituting (22)–(25) into (20), we have

V̇i,1 ≤ ci,1ϑ
2
i,1

k2bl − ϑ2
i,1

+
1

2
ϑ2
i,2 +

1

2
λ2
i,2

+
1

2
p2i,1

1

2
ε̄2i,1 + σi,1θ̃i,1θ̂i,1. (26)
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Step 2. In this paper, we utilize a first-order filter design
based on the dynamic surface technique to address the
“computational explosion” problem often encountered in
traditional backstepping design methods. We have

τi,2żi,2 + zi,2 = αi,1,

zi,2(0) = αi,1(0), (27)

where τi,2 is a positive designed parameter. Since λi,2 =
zi,2 − αi,1, we have ż + i, 2 = λi,2/τi,2, and

ε̇i,2 = −λi,2

τi,2
+ γi,2(·), (28)

where γi,2(·) = −ṡi,1 is a continuous function.

Remark 1. In the traditional backstepping design
method, after deriving αi,1 from Step 1, the derivative
must be calculated in the next virtual control signal design
process, and the virtual control signal must be repeatedly
derived in each subsequent step, leading to a “calculation
explosion” problem. To address this issue, we introduce
dynamic surface technology, which passes the virtual
control signal through a first-order low-pass filter to obtain
its estimated value zi,2. In the subsequent design process,
the estimated value can replace the virtual control signal,
avoiding the need for derivation and simplifying the
controller structure.

Choose the Lyapunov candidate function for Step m
(m = 2, . . . ,M − 1),

Vi,m = Vi,m−1 +
1

2
log

k2bm
k2bm − ϑ2

i,m

+
1

2
θ̃2i,m +

1

2
λ2
i,m. (29)

By (5), (14) and (29), we obtain

V̇i,m =V̇i,m−1 +
ϑi,m

k2bm − ϑ2
i,m

[
ϑi,m+1 + λi,m+1

+ αi,mfi,m(xi)− żi,m
]− θ̃i,m

˙̂
θi,m

+ λi,m

[

− λi,m

τi,m
+ γi,m(·)

]

. (30)

According to Lemmas 2 and 4, we have

ϑi,mfi,m(xi)

k2bm − ϑ2
i,m

≤ϑ2
i,mθ∗i,mφT

i,m(x̄i,m)φi,m(x̄i,m)

2p2i,m(k2bm − ϑ2
i,m)2

+
ϑ2
i,m

2(k2bm − ϑ2
i,m)2

+
1

2
p2i,m +

1

2
ε̄2i,m,

(31)

ϑi,m(ϑi,m+1 + λi,m+1)

k2bm − ϑ2
i,m

≤1

2
ϑ2
i,m+1 +

1

2
λ2
i,m+1

+
ϑ2
i,m

(k2bm − ϑ2
i,m)2

. (32)

Therefore, we design the virtual control signal αi,m

as

αi,m =− ci,mϑi,m − 3si,m
2(k2bm − ϑ2

i,m)

− ϑi,mθ̂i,mφT
i,m(x̄i,m)φi,m(x̄i,m)

2p2i,m(k2bm − ϑ2
i,m)

− k2bm − ϑ2
i,m

2
ϑi,m + żi,m (33)

and also design the adaptive control protocol ˙̂θi,m as

˙̂
θi,m =

ϑ2
i,m

2p2i,m(k2bm − ϑ2
i,m)2

φT
i,m(x̄i,m)φi,m(x̄i,m)

− σi,mθ̂i,m, (34)

where pi,m, ci,m and σi,m are positive parameters.
Recursively substituting (26), (31)–(34) into (30), we get

V̇i,m ≤−
m∑

l=1

ci,lϑ
2
i,l

k2bl − ϑ2
i,l

+
m∑

l=1

σi,lθ̃i,lθ̂i,l

+
m∑

l=2

[

− λ2
i,l

τi,l
+ λi,lγi,l(·)

]

+
1

2

m+1∑

l=2

λ2
i,l

+
1

2

m∑

l=1

(p2i,l + ε̄2i,l) +
1

2
ϑ2
i,m+1. (35)

Step 3. In much the same way as in Step 2, we first define
the filter as

τi,m+1żi,m+1 + zi,m+1 = αi,m, (36)
zi,m+1(0) = αi,m(0), (37)

where τi,m+1 is a positive parameter. Due to λi,m+1 =

zi,m+1 − αi,m, we have żi,m+1 =
λi,m+1

τi,m+1
; therefore,

λ̇i,m+1 = −λi,m+1

τi,m+1
+ γi,m+1(·), (38)

where γi,m+1(·) = −ṡi,m is a continuous function.
Choose the Lyapunov candidate function for step M

as

Vi,M = Vi,M−1 +
1

2
log

k2bM
k2bM − ϑ2

i,M

+
1

2
θ̃2i,M +

1

2
λ2
i,M (39)

Thus we have the derivative of Vi,M ,

V̇i,M =V̇i,M−1 +
ϑi,M

k2bM − ϑ2
i,M

(
ui + fi,M (xi)− żi,M

)

+

[

− λ2
i,M

τi,M
+ λi,Mγi,M (·)

]

− θ̃i,M
˙̂
θi,M . (40)
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Referring to Lemma 4, we get

ϑi,Mfi,M (xi)

k2bM − ϑ2
i,M

≤ ϑ2
i,Mθ∗i,MφT

i,M (xi)φi,M (xi)

2pi,M (k2bM − ϑ2
i,M )2

+
ϑ2
i,M

2(k2bM − ϑ2
i,M )2

+
1

2
p2i,M +

1

2
ε̄2i,M . (41)

We design the adaptive control protocol as

ωi(t) =αi,M − m̄i tanh

[
ϑi,Mm̄i

εi(k2bM − ϑ2
i,M )

]

, (42)

αi,M =− ci,Mϑi,M − ϑi,M

2(k2bM − ϑ2
i,M )

− ϑi,M θ̂i,MφT
i,M (xi)φi,M (xi)

2p2i,M (k2bM − ϑ2
i,M )

− k2bM − ϑ2
i,M

2
ϑi,M + żi,M , (43)

˙̂
θi,M =

ϑ2
i,M

2p2i,M (k2bM − ϑ2
i,M )

φT
i,M (xi)φi,M (xi)

− σi,M θ̂i,M , (44)

where the formulation for the event triggering mechanism
is

ui(t) = ωi(tk), ∀t ∈ [tk, tk+1), (45)
tk+1 = inf{t ∈ R, ‖�(t)‖ ≥ mi}, t1 = 0. (46)

Here, ei(t) = ωi(t) − ui(t) represents the
measurement error, and pi,M , ci,M , σi,M , εi, and m̄i are
positive parameters such that mi < m̄i. The time of the
occurrence of the event trigger is denoted as tk, where
k ∈ Z

+. In other words, when the condition of (46)
is satisfied, the control signal is triggered to update to
ui(tk+1). Within the time interval t ∈ [tk, tk+1), the
control signal remains constant at ωi(tk). Therefore, there
exists a continuous time-varying function τ(tk) such that
τ(tk) = 0, τ(tk+1) = ±, |τ(t)| ≤ 1, and ωi(t) =
ui(t) + τ(t)mi holds.

According to Huang and Wang (2019), we obtain

V̇i,M =V̇i,M − ci,Mϑ2
i,M

k2bM − ϑ2
i,M

− ϑ2
i,M

2
+ σi,M θ̃i,M θ̂i,M

+ 0.2785εi +

[

− λ2
i,M

τi,M
+ λi,Mγi,M (·)

]

+
1

2
p2i,M +

1

2
ε̄2i,M

≤
M∑

l=1

−ci,lϑ
2
i,l

k2bM − ϑ2
i,M

+

M∑

l=2

[

− λ2
i,l

τi,l
+ λi,lγi,l(·)

]

+

M∑

l=1

σM
i,lσi,lθ̃i,lθ̂i,l +

1

2

2∑

l=2

λ2
i,l

+
1

2

M∑

l=1

(
p2i,l + ε̄2i,l

)
+ 0.2785εi. (47)

The following inequalities are obtained from
Lemma 4:

σi,lθ̃i,lθ̂i,l ≤ −σi,lθ̃
2
i,l

2
+

σi,lθ
∗2
i,l

2
, (48)

λi,lγi,l(·) ≤
λ2
i,lγ

2
i,l(·)
2

+
1

2
. (49)

By Lemma 2, we get

− ci,lϑ
2
i,l

k2bM − ϑ2
i,M

≤ −ci,l log
k2bl

k2bM − ϑ2
i,M

. (50)

There exists a scalar γ̄i,l > 0 that satisfies |γi,l(·)| <
γ̄i,l. Substituting (48)–(50) into (47), we have

V̇i,M ≤−
M∑

l=1

ci,l log
k2bl

k2bM − ϑ2
i,M

−
M∑

l=1

σi,l θ̃
2
i,l

2

−
M∑

l=2

(
1

τi,l
− γ̄2

i,l

2
− 1

2

)

λ2
i,l + Λi, (51)

where

Λi =
1

2

M∑

l=1

(
p2i,l + ε̄2i,l

)
+

M∑

l=1

σi,lθ
∗2
i,l

2

+
M − 1

2
+ 0.2785εi. (52)

Theorem 1. Under Assumption 1 we consider the virtual
control signals (24), (33) and (43), the adaptive protocols
(25), (34) and (44), and the event-triggered adaptive con-
trollers (42), (45), and (46). By utilizing these controllers,
we can ensure that the MAS described by (5) satisfies the
following conditions:

(i) all signals in the system are semi-globally homoge-
neous and ultimately bounded;

(ii) the tracking error converges to a bounded neighbor-
hood of the origin and satisfies the specified perfor-
mance.

Moreover, for the time interval [tk, tk+1), there exists a
lower bound of t∗, where t∗ > 0, for triggered events.
This ensures that when the adaptive controller is triggered
by an event, the Zeno phenomenon does not occur.
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Proof. Choose the Lyapunov function as

V =

N∑

i=1

Vi,M . (53)

According to (51), we have

V̇ ≤
N∑

i=1

[

−
M∑

l=1

ci,l log
k2bl

k2bl − ϑ2
i,l

−
M∑

l=1

σi,lθ̃
2
i,l

2

−
M∑

l=2

(
1

τi,l
− γ̄2

i,l

2
− 1

2

)

λ2
i,l + Λi

]

. (54)

Choose design parameters such that

1

τi,1
− γ̄i,l

2
− 1

2
> 0.

Let

Γ = min

{

2ci,l, 2

[
1

τi,l
− γ̄i,l

2
− 1

2

]

, σi,l

}

,

Λ =

N∑

i=1

Λi. (55)

Thus (54) can be rewritten as

V̇ (t) ≤ −ΓV (t) + Λ (56)

such that all the signals are semi-globally uniform and
ultimately bounded. According to (56), we have

1

2
ϑ2
i,l ≤ V (t)

≤ exp(−Γt)V (0) +
Λ

Γ
(1 + exp(−Γt)). (57)

From Lemma 4 it follows that

lim
t→∞ ‖y − ȳ0‖ ≤

√
2Λ
Γ

σ(L+ B) . (58)

By selecting appropriate design parameters, the
tracking error can converge in a bounded neighborhood
centered at the origin. Further, since ei(t) = ωi(t) −
ui(t), ∀t ∈ [tk, tk+1), we have

d|�(t)|
dt

=
d
dt
(�× �)

1
2 = sign(�)ėi ≤ |ω̇i|. (59)

All signals in the system are bounded, implying
|ω̇i| ≤ κ for a constant κ. Given ei(tk) = 0
and limt→tk+1

�(t) = mi, the lower bound t∗ of the
event-triggered time interval satisfies t∗ ≥ mi/κ. The
event trigger mechanism proposed in this paper is shown
to be immune to the Zeno phenomenon. �

4. Numerical simulations
This section presents the leader-following simulation
experiment, as shown in Fig. 1. The network
communication topology of the system includes one
leader and five following agents, where the direction of
the arrows represents the transmission direction of agent
state information. We assume that the connection weight
between each pair of two agents is 1.

Let the desired state output of leader be

y0 = sin(t) + 1.5 sin(2t+ 1)

and the system dynamics of the followers be

ẋi,1(t) = xi,2(t),

ẋi,2(t) = xi,3(t)− cosxi,1(t)− 0.5 sinxi,2(t),

ẋi,3(t) = 0.2xi,2(t)− 0.1xi,3(t) + ui(t),

yi(t) = xi,1(t).

Set the initial states of the leader x0 and following
agents (x1,x2,x3,x4,x5) as

x0 = [xd,1, xd,2, xd,3]
T = [−6, 0, 0]T,

x1 = [x1,1, x1,2, x1,3]
T = [−1.8, 0, 84]T,

x2 = [x2,1, x2,2, x2,3]
T = [−0.3, 0, 3]T,

x3 = [x3,1, x3,2, x3,3]
T = [−11.6, 0, 60]T,

x4 = [x4,1, x4,2, x4,3]
T = [−3.8, 0,−48]T,

x5 = [x5,1, x5,2, x5,3]
T = [−4, 0, 76]T.

As can be seen in Fig. 2, the system output states
of all followers can track the leader and eventually form
a consensus. The second and third order states of the
following agents in Figs. 3 and 4 gradually converge
over time, and the simulation results comprehensively
demonstrate the effectiveness of our designed control
protocol.

In Fig. 5, we show the variation in the consensus
error over time, and we can see that the error decreases
rapidly in the initial phase and subsequently approaches
zero, implying that the states of the following agents reach
a consensus. The event triggering of the five followers is
shown in Fig. 6, where the update of the control protocol
of the different agents is triggered asynchronously, with
its own trigger condition that relies on its own fixed
threshold, which is seen to effectively implement the
sparse computation.

5. Conclusion
This paper investigates the leader–follower tracking
problem for a class of high-order nonlinear MAS with full
state constraints under prescribed performance condition.
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Fig. 1. Directed communication topology with five followers
and a leader.
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Fig. 2. Tracking trajectory x1 of system output of the leader and
followers.
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Fig. 3. Consensus of the second order state x2 of the five fol-
lowers.

In this context, the prescribed performance is introduced
to enable the system to achieve the desired steady-state
error convergence within a given time constraint. In
the design of the controller we also introduce an event
triggering mechanism with a fixed threshold. Event
triggering allows the agent to significantly reduce the
computational and communication load overhead during
control, which is further enhanced by the fixed threshold
feature. In the derivation and stability analysis of
the control algorithm based on the backstepping design
method, we demonstrate the effectiveness of the proposed
cooperative control rate using the Lyapunov method and
subsequently validate it through numerical simulations.
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