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A synthesis method for designing two-dimensional lossless finite impulse response (FIR) filters for various digital signal
processing tasks is proposed. The synthesis method is based on using a 2-D embedding approach to obtain the paraunitary
transfer function matrix of the lossless FIR filter. The elements of the paraunitary transfer function matrix are the transfer
function of a given lossy FIR structure and the transfer functions for its complementary structures. The embedding method
is used to design complementary FIR filter structures for several known lossy FIR filters. The lossless FIR filter matrix
obtained in this article has a size of 3× 1 and satisfies the paraunitary conditions. The conditions are described by a set of
nonlinear equations. A modified Newton method is used to solve this set of equations. The proposed design method is used
to determine the lossless structures of two-dimensional FIR filters for various digital processing tasks.
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1. Introduction
Lossless filters preserve energy and have good properties
such as stability, a low sensitivity to changes in their
parameters, and no parasitic oscillations (Belevitch, 1968;
Fettweis, 1971; Deprettere and Dewilde, 1980; Rao and
Dewilde, 1987; Fettweis, 1991). In recent years, lossless
FIR filters have become very attractive among scientists
and designers, because these filters have various research
and engineering applications (Vaidyanathan and Mitra,
2019; Wang et al., 2020; Valkova-Jarvis et al., 2019).
For example, the lossless structures of filter banks are
very popular in practical applications (Yang et al., 2017;
Stancic et al., 2018; Liu et al., 2017). FIR filters are
widely used in image processing, e.g., in edge detection
and the blurring or sharpening of an image. They are
usually lossy filters. The corresponding lossless FIR
filters can be obtained using orthogonal transformations
(Fettweis, 1982; Soman and Vaidyanathan, 1995; Wawryn
and Wirski, 2009; Dewilde, 2019).

Lossless filters are orthogonal filters and are usually
described by an orthogonal state space matrix or,
equivalently, by a paraunitary transfer function matrix.

*Corresponding author

The search for a one-dimensional (1-D) lossless 2-port
FIR filter is based on the synthesis of a transfer function
matrix that would have the required properties, such
as a given frequency response. This method is called
embedding, and it can be defined as follows: for a given
1-D scalar transfer function H(z), a paraunitary transfer
function matrix H(z), such that one of its elements is
equal to H(z), should be found, and

HT(z−1)H(z) = I. (1)

Synthesis methods for a paraunitary transfer function
matrix of higher-dimension filters were described by
Fettweis (1991), the properties of the 2 × 2 paraunitary
transfer function matrix were studied by Fettweis (1982),
and the method of factorization for such matrices was
presented by Basu and Fettweis (1985). The synthesis
of n-D systems is difficult because it requires a set of
n nonlinear equations to be solved in order to find an
embedding for a given n-D transfer function. Bose
and Strintzis (1973) presented a method based on the
factorisation of the n-D matrix, but it does not provide a
100% guarantee of finding a solution. It uses Hilbert’s
solution to the problem of whether a non-negative real
form of even degree m in n variables is always a sum

mailto:pawel.poczekajlo@tu.koszalin.pl


674 K. Wawryn and P. Poczekajło

of squares (SOS) of other real forms. A similar method
was used by Piekarski and Wirski (2005) to obtain a
two-dimensional (2-D) embedding. Lossless systems with
a paraunitary transfer function matrix can also be obtained
using the Roesser model (Roesser, 1975; Wirski and
Wawryn, 2008; Kaczorek, 2008; Kaczorek and Rogowski,
2010).

The typical size of the paraunitary transfer function
matrix is 2 × 2. A square matrix (n × n) is used
when the filter should possess equal numbers of inputs
and outputs. It is often implemented using state space
equations. However, the paraunitary transfer function
matrix need not always be square. An example of such
an approach is presented by Wirski (2008). A non-square
matrix is also applied in the method presented in this
article.

There are plenty of existing FIR filters. In the
vast majority of cases, they are lossy filters and suffer
from instability, a lack of robustness on rounding, a high
sensitivity to changes in the filter parameters, etc. To
overcome these obstacles, the main aim of this article
is to design a lossless system by combining a given
FIR filter structure and its complementary structures to
create a structure with the lossless property. In this
case, the given filter is able to use the advantages of
the whole system (lossless system). Such a lossless
system is described by the paraunitary transfer function
matrix. The elements of the paraunitary transfer function
matrix are the transfer functions of the given FIR filter
structure and its complementary structures. The transfer
function of the given filter structure is known, while the
transfer functions of the complementary structures have
to be found. The transfer functions of complementary
structures are found using embedding. The proposed
lossless FIR filter design method is based on the synthesis
of a paraunitary transfer function matrix that describes the
lossless filter together with its given and complementary
structures. This synthesis using embedding leads to a set
of nonlinear equations, which are solved using Newton’s
method.

The paraunitary transfer function matrix condition
(1) and the conditions for the 2-D and higher-order cases
are expressed as a set of very-high-order polynomials.
Therefore, as for most non-linear sets of equations, it is
very difficult to guarantee the convergence of the method
used to find the local solution and nearly impossible to
find a global solution. In this article, the size of the
paraunitary 2-D transfer function matrix is 3 × 1 and a
modified Newton’s method (Golub and Loan, 1996) is
used to find the solution of the paraunitary condition.

The article is organized as follows. In Section 2,
the paraunitary transfer function matrix condition of the
2-D lossless FIR filters and the impulse responses of
linear FIR filters with quadrantal and octagonal symmetry
are formulated. The synthesis of the 2-D paraunitary

transfer function matrix, which leads to a set of non-linear
equations, is presented in Section 3. Solving a system of
nonlinear equations using the modified Newton’s method
is described in Section 4. Several different practical
examples of using 2-D FIR filters to search for their
lossless counterparts are presented in Section 5. Finally,
conclusions are drawn in Section 6.

2. 2-D lossless FIR filters: Problem
formulation

In this paper, an original embedding method to search for
2-D lossless FIR filters is presented. The method makes
it possible to determine paraunitary transfer function
matrices, enabling the implementation of many lossy
transfer functions that are used in practice.

The FIR transfer function H(z1, z2) for which the
embedding procedure is carried out must be a stable
rational (Fettweis, 1991), which means that the following
conditions are satisfied:

all poles are in (|z1| < 1 and |z2| < 1) and
∀w1,w2(|H(ejw1 , ejw2 |2) ≤ 1. (2)

To satisfy the conditions (2), for the primary ̂H(z1, z2),
the scaling factor HMAX must be applied:

H(z1, z2) =
̂H(z1, z2)

HMAX
, (3)

where HMAX is the maximum value of an amplitude
characteristic of ̂H(z1, z2).

The embedding resulting in the paraunitary matrix
is defined as follows. For a given 2-D transfer
function H(z1, z2), a paraunitary transfer function matrix
H(z1, z2) has to satisfy the following requirements: one
of its elements equals H(z1, z2) and

HT(z−1
1 , z−1

2 )H(z1, z2) = I. (4)

The transfer function of the 2-D FIR filter can be
expressed as follows:

H(z1, z2) =

N1−1
∑

i=0

N2−1
∑

j=0

hijz
−i
1 z−j

2 = zT1 Hz2, (5)

where N1 and N2 are positive integers, H ∈ R
N1×N2 ,

z1 =
[

1 z−1
1 . . . z

−(N1−1)
1

]T

,

z2 =
[

1 z−1
2 . . . z

−(N2−1)
2

]T

.

In practical applications, non-linear or linear 2-D FIR
filters are characterized by an impulse response, and those
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with a linear phase response and odd values ofN1 andN2

are mainly used.
For odd values of N1 and N2, a 2-D FIR filter

response with a linear phase and constant group delay can
be obtained throughout the entire baseband. The impulse
response of the filter is symmetrical around the shifted
origin O’(n1, n2) (Lu and Antoniou, 1992; Charalambous,
1985), where

ni =
Ni − 1

2
, (6)

for i = 1, 2, and the following conditions must hold:

hij = hN1−1−i N2−1−j , (7)

for 0 ≤ i ≤ N1 − 1, 0 ≤ j ≤ N2 − 1.
If quadrantal symmetry in the 2-D linear phase is

desired and a constant-group-delay FIR filter is also
required, then the following conditions (Charalambous,
1985) must hold:

hij = hi N2−1−j = hN1−1−i j , (8)

for 0 ≤ i ≤ N1−1
2 , 0 ≤ j ≤ N2−1

2 .
If octagonal symmetry in the 2-D linear phase

is desired and a constant-group-delay FIR filter is
also required, then additional conditions (Charalambous,
1985) must hold:

N1 = N2 = N, (9)

hij = hji, (10)

for 0 ≤ i ≤ N−1
2 , 0 ≤ j ≤ N−1

2 .
In some applications, only a group delay is required.

Then, for odd values of N1 and N2, the impulse response
is antisymmetric around the shifted origin O’(n1, n2) (6),
and the following conditions (Lu and Antoniou, 1992)
must hold:

hij = −hN1−1−i N2−1−j , (11)

for 0 ≤ i ≤ N1−1
2 , 0 ≤ j ≤ N2−1

2 .

3. Synthesis of the 2-D paraunitary transfer
function matrix

In order to obtain an embedding for the lossy H(z1, z2)
resulting in the paraunitary H(z1, z2), it is necessary to
introduceNp additional transfer functions of the form

Gp(z1, z2) =

N1−1
∑

i=0

N2−1
∑

j=0

gpijz
−i
1 z−j

2 = zT1 Gpz2, (12)

for p = 1, 2, . . . , Np, where N1 and N2 are odd integers,

z1 =
[

1 z−1
1 . . . z

−(N1−1)
1

]T

,

z2 =
[

1 z−1
2 . . . z

−(N2−1)
2

]T

,

Gp ∈ R
N1×N2 , and the proposed embedding is expressed

as follows:

H(z1, z2) =

⎡

⎢

⎢

⎢

⎣

H(z1, z2)
G1(z1, z2)

...
GNp(z1, z2)

⎤

⎥

⎥

⎥

⎦

. (13)

Np should be a minimal number for which the
paraunitary condition (4) is satisfied. Taking into account
(13), the paraunitary condition (4) is expressed as follows:

HT
(

z−1
1 , z−1

2

)

H (z1, z2) = 1. (14)

The FIR filter described by the paraunitary condition
(14) is a stable all-pass filter and the following
power complementary property holds (Fettweis, 1991;
Vaidyanathan and Mitra, 2019; Smith III, 2007):

∣

∣H
(

ejω1 , ejω2
)∣

∣

2
+

Np
∑

p=1

∣

∣Gp

(

ejω1 , ejω2
)∣

∣

2
= 1. (15)

Equation (14) can be expressed as follows:

HT
(

z−1
1 , z−1

2

)

H (z1, z2)

= H
(

z−1
1 , z−1

2

)

H (z1, z2)

+

Np
∑

p=1

Gp

(

z−1
1 , z−1

2

)

Gp (z1, z2) = 1.

(16)

Equation (14) can be also rearranged into the form of

HT
(

z−1
1 , z−1

2

)

H (z1, z2)

=

N1−1
∑

k=−N1+1

N2−1
∑

l=−N2+1

Cklz
k
1z

l
2 = 1.

(17)

Equation (17) is satisfied whenC00 = 1 andCkl = 0
for all k = −N1+1, . . . , N1−1, l = −N2+1, . . . , N2−1,
k = l �= 0, and the total number of coefficients equals
(2N1 − 1)(2N2 − 1).

Due to the symmetry of the coefficients in (17)
around the origin O’(0, 0), the following relations hold:

Ckl = C−k −l, (18)

for all k = −N1+1, . . . , N1−1, l = −N2+1, . . . , N2−
1, and k = l �= 0.

Due to the same coefficients hij being in the transfer
functions H(z−1

1 , z−1
2 ) and H(z1, z2), and due to the

same relations of the coefficients being in the transfer
functions G1, G2, . . . , GNp , the coefficients Ckl and
C−k,−l in the productsCklz

k
1z

l
2 andC−k−lz

−k
1 z−l

2 in (17)
are the same. Then, according to this symmetry, half of
the coefficients of (2N1 − 1)(2N2 − 1)− 1 have identical
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counterparts. Only the coefficient C00 has no equivalent.
This means that the number of determined coefficients is

m =
(2N1 − 1)(2N2 − 1)− 1

2
+ 1. (19)

After some algebra, (19) can be expressed as

m = N1N2 + (N1 − 1)(N2 − 1). (20)

By substituting (5) and (12) into (16), substituting (18)
into (17), and comparing the coefficients in (16) and (17),
the m calculated coefficients (20) can be expressed as
follows:

Ckl =

N2−1
∑

j=l

N1−1
∑

i=k

(hij hi−k j−l

+

Np
∑

p=1

gpij gp i−k j−l) = 1

for k = l = 0,

Ckl =

N2−1
∑

j=l

N1−1
∑

i=k

(hij hi−k j−l

+

Np
∑

p=1

gpij gp i−k j−l) = 0

for k = 0, 1, . . . , N1 − 1,

l = 0, 1, . . . , N2 − 1,

and k = l �= 0,

Ckl =

N2−1
∑

j=l

N1−1+k
∑

i=0

(hij hi−k j−l

+

Np
∑

p=1

gpij gp i−k j−l) = 0

for k = −N1 + 1, . . . ,−2,−1

and l = 1, 2, . . . , N2 − 1.

(21)

The set of equations (21) describes a system
composed of m = N1N2 + (N1 − 1)(N2 − 1) non-linear
equations with n = NpN1N2 independent variables gpij .
The locations of m coefficients calculated using (21) are
depicted in Fig. 1.

The equations for CN1−1 N2−1 and C−N1+1 N2−1 in
(21) are expressed as follows:

CN1−1 N2−1 = hN1−1 N2−1 h00

+

Np
∑

p=1

gp N1−1 N2−1 gp00 = 0,

C−N1+1 N2−1 = h0 N2−1 hN1−1 0

+

Np
∑

p=1

gp 0 N2−1 gp N1−1 0 = 0.

(22)

 

   � 

 –N2+1 –N2+2    …       –1        0          1        …     N2–2    N2–1 
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… 
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… 
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N1–1 

 

   �� 
   � 

   � 

� 

Fig. 1. Locations of m coefficients calculated using (21) are de-
picted in bright grey and medium grey (coefficient C00).
Due to the symmetry in (18), the coefficients depicted in
dark grey are not calculated.

If the matrix H describes a system with a linear
phase, then according to the symmetry described by (8),
h00 equals hN1−1 N2−1 and h0 N2−1 equals hN1−1 0.
Consequently, the equations (22) can be rearranged into
the following form:

CN1−1 N2−1

= h200 +

Np
∑

p=1

gp N1−1 N2−1 gp00 = 0,

C−N1+1,N2−1

= h20 N2−1 +

Np
∑

p=1

gp 0 N2−1 gp N1−1 0 = 0.

(23)

For non-zero h00 and h0 N1−1, at least one of the transfer
functions Gp(z1, z2) for p = 1, 2, . . . , Np must describe
a system with a non-linear phase, where gp N1−1 N2−1 �=
gp00 and gp 0 N2−1 �= gp N1−1 0, to satisfy the equations
(23).

The mathematics used in this article is developed
from the paraunitary transfer function condition (14),
which is rearranged to obtain (17). Because the
sum-of-products expression (17) is equal to 1, and only
the product C00z

0
1z

0
2 is not a complex number, C00 has

to be equal to 1. All of the remaining Cklz
k
1z

l
2 products

are complex numbers, and therefore all Ckl have to be
equal to 0. This results in one expression that equates the
left-hand side to 1, and the rest of the equations are equal
to 0, respectively.

One additional transfer function G1 described by
(12) gives m = N1N2 + (N1 − 1)(N2 − 1) equations
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in the set of equations (21) with N1N2 variables. Another
additional transfer functionG2 described by (12) gives the
same number of equations in the set of equations (21)
but doubles the number of variables to n = 2N1N2.
Now, the number of variables is greater than the number
of equations. This means that two transfer functions
G1(z1, z2) and G2(z1, z2) are sufficient to solve the set
of equations (21) and hence

Np = 2. (24)

Now, (14) can be expressed as follows:

HT
(

z−1
1 , z−1

2

)

H (z1, z2)

=

⎡

⎣

H(z−1
1 , z−1

2 )
G1(z

−1
1 , z−1

2 )
G2(z

−1
1 , z−1

2 )

⎤

⎦

T ⎡

⎣

H(z1, z2)
G1(z1, z2)
G2(z1, z2)

⎤

⎦ = 1,
(25)

and due to the power complementary property of the
paraunitary all-pass FIR filter, (15) can be rearranged into
the following expression:

|H(ejω1 , ejω2)|2 + |G1(e
jω1 , ejω2)|2

+ |G2(e
jω1 , ejω2)|2 = 1. (26)

4. Solution of the set of non-linear
equations

A modified Newton’s method was used to solve the
system of non-linear equations (21). The equations in the
system (21) are ordered as follows: for each l = N2 − 1
to 1, k changes fromN1 − 1 to −N1 +1, and for l = 0, k
changes fromN1−1 to 0. The equations can be described
in the vector form

C = Y, (27)

where the vectors

C = [CN1−1 N2−1 . . . C−N1+1 N2−1 . . .

CN1−1 1 . . . C−N1+1 1 . . . CN1−1 0 . . . C0 0]
T,

Y = [0 0 . . . 1]T

describe the left and right-hand sides of (21), respectively.
The vectorsC andY consist of 2N1N2+(N1−1)(N2−1)
elements.

Equation (27) can be rearranged into the following
form:

F = C−Y = 0. (28)

The vector C can be expressed as follows:

C = CH +CG1 +CG2 , (29)

where the indices denote products of C dependent on
the transfer functions H , G1, and G2, respectively. The
elements of the transfer function matrix H are defined,

but the elements g1kl and g2kl for l = N2 − 1 to 0 and
k = N1 − 1 to 0 of the transfer function matrices G1

and G2 have to be found. Therefore, F in (28) consists
of m = N1N2 + (N1 − 1)(N2 − 1) equations with
n = 2N1N2 variables and can be expressed as follows:

F = [f1 f2 . . . fi . . . fm]
T
= 0, (30)

where

fi(G1,G2) = CHi + CG1i + CG2i − Yi

= fi(g1 N1−1 N2−1, g1 N1−2 N2−1, . . . ,

g1 0 N2−1, . . . , g1 N1−1 0, . . . , g100,

g2 N1−2 N2−2, g2 N1−3 N2−2, . . . ,

g2 0 N2−2, . . . , g2 N2−2 0, . . . , g200) = 0

for i = 1, 2, . . . ,m.
Each function fi(G1,G2) for i = 1, 2, . . . ,m is a

function of n = 2N1N2 elements g1kl and g2kl for l =
N2 − 1 to 0 and k = N1 − 1 to 0. The set of equations
(30) can be expressed in a compact form as

F(x) = 0, (31)

where

x(G1,G2) = [x1 x2 . . . xN1N2 . . . x2N1N2 ]
T

[g1 N1−1 N2−1 g1 N1−2 N2−1 . . .

g1 0 N2−1 . . . g1 N1−1 0 . . . g100

g2 N1−2 N2−2 g2 N1−3 N2−2 . . .

g2 0 N2−2 . . . g2 N2−2 0 . . . g200]
T.

Newton’s method (Golub and Loan, 1996), which
can be written as

xi+1 = xi − [J(xi)]
−1F(xi), (32)

where J(x) is a Jacobi matrix given by

J(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

...
∂fm−1(x)

∂x1

∂fm−1(x)
∂x2

· · · ∂fm−1(x)
∂xn

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(33)
was used to solve (31) with the accuracy eps:

e = |MEAN[xi+1 − xi]| ≤ eps. (34)

According to the notation presented in (30) and (31), the
partial derivatives of fi(x) with respect to the variables
from the matrices G1 and G2 are expressed as follows:

for (−N1 + 1 ≤ k ≤ N1 − 1 and 1 ≤ l ≤ N2 − 1)

or (0 ≤ k ≤ N1 − 1 and l = 0)
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∂Ckl

∂g1ij
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

for 0 ≤ i ≤ N1 − 1
g1 k+i l+j and − k ≤ i ≤ N1 − 1− k

and 0 ≤ j ≤ N2 − 1− l,
0 otherwise,

+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

for 0 ≤ i ≤ N1 − 1
g1 −k+i −l+j and k ≤ i ≤ N1 − 1 + k

and l ≤ j ≤ N2 − 1− l,
0 otherwise,

(35)

∂Ckl

∂g2ij
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

for 0 ≤ i ≤ N1 − 1
g2 k+i l+j and − k ≤ i ≤ N1 − 1− k

and 0 ≤ j ≤ N2 − 1− l,
0 otherwise,

+

⎧

⎪

⎪

⎨

⎪

⎪

⎩

for 0 ≤ i ≤ N1 − 1
g2 −k+i −l+j and k ≤ i ≤ N1 − 1 + k

and l ≤ j ≤ N2 − 1− l,
0 otherwise.

(36)
Equation (32) generally requires a non-square system of
non-linear equations to be solved. Newton’s method was
chosen. The method has quadratic convergence. To ensure
convergence, the starting point x0 should be close to the
solution. Therefore, the method is usually modified before
it is applied to points far from the solution. In order to
obtain a good starting vector, a modification of (32) was
introduced for i = 0. It was proposed by Luenbergerand
and Ye (2008). It involves inserting the unit matrix I into
(32) instead of [J(xi)]

−1 and inserting CG1 + CG2 = 0
into (29) to determine the starting point x0.

5. 2-D lossless FIR filter design
2-D FIR filters have many applications in image
processing. Using the synthesis of the paraunitary transfer
function matrix presented in this article, these filters can
be implemented in a lossless system. Some different
examples of 2-D FIR filters are used to demonstrate the
method described in this article. The coefficients hij of
the matrix H are given a priori, which is common in
image processing methods. This matrix is called a kernel
or a mask. In all presented examples, the filter mask size is
5× 5, filter coefficient values are rounded to four decimal
places, and the stopping criterion for Newton’s method
(34) is

e = |MEAN[xi+1 − xi]| ≤ 1 · 10−7. (37)

The stopping criterion (37) is determined from the
accuracy criteria for the state spaces in the paraunitary
matrix calculation methods for obtaining a lossless system
proposed by Piekarski and Wirski (2005) as well as Wirski
and Wawryn (2008).

To specify the starting point x0, the unit matrix I is
used in (32) instead of [J(xi)]

−1. The presented examples
demonstrate different image processing applications,

including edge detection and blurring or sharpening
an image. The applied filter masks have different
types of symmetry or no symmetry. In order to
verify each obtained lossless FIR filter system, the
characteristics of |H(ejω1 , ejω2)|, |H(ejω1 , ejω2)|2, and
|G1(e

jω1 , ejω2)|2 + |G2(e
jω1 , ejω2)|2 are plotted in

one figure. They should illustrate that the power
complementary property of the lossless filter described by
(26) is satisfied.

The number of iterations depends on each individual
case, and therefore it is not possible to estimate the
complexity of the calculations. However, it is possible
to estimate the complexity of an individual iteration. It is
assumed that the computational complexity is determined
on the basis of the number of time-consuming operations,
i.e., multiplication and division operations. The functions
f1, . . . , fm (30) and Newton’s method (32) contain the
most time-consuming operations. The calculation of
the inverse Jacobi matrix has the largest number of
operations. Assuming an n × n square matrix for
simplicity, the computational complexity (in O-notation)
is no greater than O(n3) (Cormen et al., 2009; Brent
and Zimmermann, 2010). All other operations are of
lower complexity; matrix-vector multiplication has a
complexity ofO(n2). Since n < m, by assuming n-based
complexities, we also consider the most pessimistic case.
Assuming the most common situation, whereN1 = N2 =
N , we have n = 2N2, so for the determination of the
inverse matrix, the complexity can be defined as O(N6),
where N is compatible with (5) and (9). As already
mentioned, the other operations are of lower complexity,
so they can be omitted.

5.1. Example 1: A high-pass sharpening filter with
octagonal symmetry. The matrix H (5) is given as the
following mask:

H =

⎡

⎢

⎢

⎢

⎢

⎣

0 −1 −1 −1 0
−1 2 −4 2 −1
−1 −4 13 −4 −1
−1 2 −4 2 −1
0 −1 −1 −1 0

⎤

⎥

⎥

⎥

⎥

⎦

1

HMAX
, (38)

and according to (3), HMAX = 43. The starting point for
i = 0 (Luenbergerand and Ye, 2008) is equal to

x0 = [0 0 0.0005 0.0011 0.0016 0.0011 0.0005

0 0 0 0.0011 − 0.0011 0.0032 0 0.0032

− 0.0011 0.0011 0 0.0005 − 0.0011

0.0119 − 0.0195 0.0087 − 0.0195

0.0119 − 0.0011 0.0005 0.0011 0.0032

− 0.0195 0.0508 − 0.0714 0.0508

− 0.0195 0.0032 0.0011 0.0016 0 0.0087

− 0.0714 0.1412 0 0 0 0 0 0 0 0 0].

(39)
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For the first iteration, (30) is

F = [0 0 0.0006 − 0.0026 0.0019 − 0.01

0.001 − 0.0028 0 0 0.0011

− 0.0012 0.0088 − 0.0018 0.006

− 0.0039 0.0015 0 0.0005

− 0.0011 0.0119 − 0.0238 0.0134

− 0.0206 0.0192 − 0.0009 0.0005

0.0011 0.0032 − 0.0198 0.0529

− 0.0812 0.0516 − 0.0299 0.0033

0.001 0.0016 − 0.0002 0.0174

− 0.0719 − 0.8215],
(40)

and from (32), the following can be obtained:

x1 = [0.0653 − 0.0976 − 0.8662 − 1.9908

− 0.5184 − 4.5931 5.4283 4.3785

− 2.4232 10.593 9.5398 − 6.0711

− 16.7465 − 2.5802 − 4.044 0.772

− 6.4239 − 4.523 6.8549 − 1.8654

11.1141 15.7006 − 37.4942 − 9.1179

13.1047 − 0.8381 1.6732 − 0.5466

2.815 − 0.7825 1.7605 − 4.2803

3.2877 − 0.3992 0.0087 − 2.4599

− 1.8226 6.5851 1.0076 1.2389

1.1363 7.7589 6.5491 2.8655

− 3.7485 0.6084 1.33 − 0.4292

− 1.8901 0.718].

(41)

To satisfy (37), 22 iterations were executed and the
following matrices were obtained:

G1

=

⎡

⎢

⎢

⎢

⎢

⎣

0.0506 −0.0696 −0.0642 −0.0122 −0.0006
0.2754 −0.1192 0.0085 −0.0247 −0.0054
−0.4636 −0.3916 −0.0191 0.0037 −0.0076
−0.0337 −0.0990 −0.0337 −0.0041 −0.0024
0.1297 −0.0546 0.0054 −0.0038 −0.0005

⎤

⎥

⎥

⎥

⎥

⎦

,

(42)
G2

=

⎡

⎢

⎢

⎢

⎢

⎣

−0.0058 −0.0422 0.2770 0.1335 0.0080
−0.0591 −0.0636 0.2608 −0.2150 0.0669
−0.0425 −0.2262 0.2200 0.0909 −0.0091
0.0063 0.0183 −0.1390 0.0254 −0.0008
0.0095 0.0360 −0.0381 0.0035 −0.0043

⎤

⎥

⎥

⎥

⎥

⎦

.

(43)
The amplitude characteristics of |H(ejω1 , ejω2)|,

|H(ejω1 , ejω2)|2, |G1(e
jω1 , ejω2)|2 + |G2(e

jω1 , ejω2)|2
are presented in Fig. 2.

5.2. Example 2: A low-pass smoothing filter with
quadrantal symmetry. A 2-D blurring FIR filter can be
composed of two 1-D FIR filters, and the matrix H from
the transfer function (5) is of the form

H = HvHh =

⎡

⎢

⎢

⎢

⎢

⎣

0.0096
0.2054
0.5699
0.2054
0.0096

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0.0375
0.2391
0.4433
0.2391
0.0375

⎤

⎥

⎥

⎥

⎥

⎦

T

=

⎡

⎢

⎢

⎢

⎢

⎣

0.0004 0.0023 0.0043 0.0023 0.0004
0.0077 0.0491 0.0911 0.0491 0.0077
0.0214 0.1363 0.2526 0.1363 0.0214
0.0077 0.0491 0.0911 0.0491 0.0077
0.0004 0.0023 0.0043 0.0023 0.0004

⎤

⎥

⎥

⎥

⎥

⎦

,

(44)
where Hv and Hh are the coefficient vectors of two 1-D
filters for vertical and horizontal processing, respectively.
For H = HvHh, two different filters can be specified for
processing in both directions.

The starting point for i = 0 (Luenbergerand and Ye,
2008) is equal to

x0 = [0 0 0 0 0 0 0 0 0 0 0.0001 0.0004

0.0009 0.0012 0.0009 0.0004 0.0001

0 0.0001 0.0010 0.0048 0.0122 0.0167

0.0122 0.0048 0.0010 0.0001 0.0003

0.0043 0.0215 0.0547 0.0747 0.0547

0.0215 0.0043 0.0003 0.0006 0.0073

0.0370 0.0941 0.1284 0 0 0 0 0 0 0 0 0].

(45)

To satisfy (37), 28 iterations were executed and the
following matrices were obtained:

G1

=

⎡

⎢

⎢

⎢

⎢

⎣

0.0669 −0.1169 0.0257 −0.0223 0.0179
−0.0321 0.0484 −0.2868 0.2395 0.0369
0.1805 0.0025 0.3217 0.0717 −0.0608
0.0550 −0.3812 −0.0961 0.0561 0.0342
−0.0012 −0.0398 −0.0380 −0.0872 −0.0335

⎤

⎥

⎥

⎥

⎥

⎦

,

(46)

G2

=

⎡

⎢

⎢

⎢

⎢

⎣

−0.0720 −0.1556 0.0217 −0.0055 0.0284
0.0109 −0.1993 −0.0374 0.4062 0.0589
−0.1154 0.0459 −0.0728 −0.0297 −0.0983
−0.0348 0.2746 −0.1885 0.0154 0.0421
0.0007 0.0242 −0.0025 0.0405 −0.0311

⎤

⎥

⎥

⎥

⎥

⎦

.

(47)

The amplitude characteristics of |H(ejω1 , ejω2)|,
|H(ejω1 , ejω2)|2, |G1(e

jω1 , ejω2)|2 + |G2(e
jω1 , ejω2)|2

are presented in Fig. 3.
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Fig. 2. High-pass sharpening filter with octago-
nal symmetry: amplitude characteristics of
|H(ejω1 , ejω2)|, |H(ejω1 , ejω2)|2, |G1(e

jω1 , ejω2)|2+
|G2(e

jω1 , ejω2)|2.

5.3. Example 3: An emboss filter that is centrally an-
tisymmetric. The matrix H (5) is given as the following
mask:

H =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

1

HMAX
, (48)

and according to (3), HMAX = 4. The starting point for
i = 0 (Luenbergerand and Ye, 2008) is equal to

x0 = [− 0.0625 0 0 0 0 0 0 0 0 0

− 0.1250 0 0 0 0 0 0 0 0 0

− 0.0625 0 0 0 0 0 0 0 0 0

0.1250 0 0 0 0 0 0 0 0 0

0.2500 0 0 0 0 0 0 0 0 0].

(49)

To satisfy (37), 13 iterations were executed and the

Fig. 3. Low-pass smoothing filter with quadran-
tal symmetry: amplitude characteristics of
|H(ejω1 , ejω2)|, |H(ejω1 , ejω2)|2, |G1(e

jω1 , ejω2)|2+
|G2(e

jω1 , ejω2)|2.

following matrices were obtained:

G1

=

⎡

⎢

⎢

⎢

⎢

⎣

−0.3154 0.0005 0.1911 0.0078 0.0001
−00174 −0.0602 −0.0060 −0.1083 −0.0005
−0.1744 −0.0099 −0.0379 −0.0050 −0.0118
0.0024 0.0987 0.0018 0.0114 0.0144
−0.0883 0.0078 −0.2790 −0.0007 −0.1982

⎤

⎥

⎥

⎥

⎥

⎦

,

(50)
G2

=

⎡

⎢

⎢

⎢

⎢

⎣

−0.0020 0.1822 −0.0070 0.0690 0.0006
−0.3530 0.0083 −0.1424 −0.0049 0.0063
0.0085 −0.1874 −0.0030 0.1089 −0.0032
−0.1607 −0.0011 0.1666 0.0029 0.1077
0.0079 0.2447 0.0170 −0.2749 0.0037

⎤

⎥

⎥

⎥

⎥

⎦

.

(51)

The amplitude characteristics of |H(ejω1 , ejω2)|,
|H(ejω1 , ejω2)|2, |G1(e

jω1 , ejω2)|2 + |G2(e
jω1 , ejω2)|2

are presented in Fig. 4.

5.4. Example 4: A Kirsch vertical edge detection filter
without symmetry that is antisymmetric. The matrix
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Fig. 4. Emboss filter that is centrally antisymmetric: amplitude
characteristics of |H(ejω1 , ejω2)|, |H(ejω1 , ejω2)|2,
and |G1(e

jω1 , ejω2)|2 + |G2(e
jω1 , ejω2)|2.

H (5) is given as the following mask:

H =

⎡

⎢

⎢

⎢

⎢

⎣

9 9 9 9 9
9 5 5 5 9
−7 −3 0 −3 −7
−7 −3 −3 −3 −7
−7 −7 −7 −7 −7

⎤

⎥

⎥

⎥

⎥

⎦

1

HMAX
, (52)

and according to (3), HMAX = 126. The starting point for
i = 0 (Luenbergerand and Ye, 2008) is equal to

x0 = [− 0.0040 − 0.0079 − 0.0119 − 0.0159

− 0.0198 − 0.0159 − 0.0119 − 0.0079

− 0.0040 − 0.0079 − 0.0118 − 0.0157

− 0.0197 − 0.0276 − 0.0197 − 0.0157

− 0.0118 − 0.0079 − 0.0049 − 0.0052

− 0.0061 − 0.0074 − 0.0133 − 0.0074

− 0.0061 − 0.0052 − 0.0049 0.0073

0.0111 0.0152 0.0190 0.0263 0.0190

0.0152 0.0111 0.0073 0.0195 0.0273

0.0356 0.0480 0.0711 0 0 0 0 0 0 0 0 0].

(53)

Fig. 5. Kirsch vertical edge detection filter without sym-
metry that is antisymmetric: amplitude charac-
teristics of |H(ejω1 , ejω2)|, |H(ejω1 , ejω2)|2, and
|G1(e

jω1 , ejω2)|2 + |G2(e
jω1 , ejω2)|2.

To satisfy (37), 13 iterations were executed and the
following matrices were obtained:

G1

=

⎡

⎢

⎢

⎢

⎢

⎣

−0.0913 0.0483 −0.0663 −0.0735 −0.0666
−0.2233 0.1000 −0.1800 0.2245 0.0440
−0.2757 0.0977 0.2632 0.0108 0.0133
−0.1676 −0.2100 0.1911 0.1112 0.0198
−0.0299 0.0542 −0.1138 −0.1131 −0.0443

⎤

⎥

⎥

⎥

⎥

⎦

,

(54)
G2

=

⎡

⎢

⎢

⎢

⎢

⎣

0.0137 0.0582 −0.0734 0.0533 0.0178
0.0227 0.0592 0.2037 −0.0089 −0.0267
0.1465 0.0655 −0.1254 0.2747 −0.0612
0.0586 −0.4018 0.0274 0.0356 −0.0013
0.1110 0.1928 0.2358 0.0066 −0.0059

⎤

⎥

⎥

⎥

⎥

⎦

.

(55)
The amplitude characteristics of |H(ejω1 , ejω2)|,
|H(ejω1 , ejω2)|2, |G1(e

jω1 , ejω2)|2 + |G2(e
jω1 , ejω2)|2

are presented in Fig. 5.
In all the examples presented above, the coefficients

hij of the matrix H of the 2-D FIR filter are given a pri-
ori. If they are not given, then the Fourier series can
be used to calculate the coefficients hij of the matrix
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H. The frequency response of the filter is given by
(Charalambous, 1985)

H(e−jω1 , e−jω2) = e−j[(N1−1)ω1+(N2−1)ω2)]

×
N1−1
∑

k=0

N2−1
∑

l=0

hkl cos kω1 cos lω2.

(56)
If quadrantal symmetry in the 2-D constant-phase

FIR filter is desired, then additional conditions (7) and (8)
hold (Charalambous, 1985). With respect to (56) and (6),
the coefficients hkl in the rectangle k = 0, 1, . . . , n1 and
l = 0, 1, . . . , n2 are sufficient to describe the frequency
response of the filter, as shown in Fig. 6. The frequency
response (56) of the filter with a constant phase delay
and quadrantal symmetry (Charalambous, 1985) can be
expressed in the following form:

H(e−jω1 , e−jω2)

= e−j(n1ω1+n2ω2)
n1
∑

k=0

n2
∑

l=0

akl cos kω1 cos lω2,
(57)

where

a0,0 = hn1,n2 ,

ak,0 = 2hn1−k,n2 for 1 ≤ k ≤ n1,

a0,l = 2hn1,n2−l for 1 ≤ l ≤ n2,

ak,l = 4hn1−k, n2−l for 1 ≤ k ≤ n1, 1 ≤ l ≤ n2,
(58)

n1 and n2 are described by (6).
If octagonal symmetry in the 2-D constant phase FIR

filter is also desired, then additional conditions (9) and
(10) hold. With respect to (56), (6), and n1 = n2 = n,
the coefficients hkl in the triangle k = 0, 1, . . . , n and
l = 0, 1, . . . , n are sufficient to describe the frequency
response of the filter, as shown in Fig. 7. The frequency
response (56) of the filter with a constant phase delay and
octagonal symmetry can be expressed in the following
form:

H(e−jω1 , e−jω2)

= e−jn(ω1+ω2)
n
∑

k=0

n
∑

l=0

akl cos kω1 cos lω2,
(59)

where

a0,0 = hn,n ,

ak,k = 4hn−k,n−k for1 ≤ k ≤ n,

ak,0 = 4hn−k,n for1 ≤ k ≤ n,

ak,l = 8hn−k,n−l for2 ≤ k ≤ n, 1 ≤ l ≤ k − 1.
(60)

The coefficients hkl can be found using an approximation
of the 2-D FIR filter transfer function (56). The 2-D FIR
filter transfer functions (58) and (60) and the coefficients
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for the calculations expressed by (57) and (58) are inside
the rectangle marked with a thick line.
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Fig. 7. Locations of the (n+1)(n+1)
2

hkl coefficients used for the
calculations expressed by (59) and (60) are inside the
triangle marked with a thick line.

akl can be found using an approximation, and then they
can be used to find the coefficients hij .

The desired amplitude response A(ω1, ω2) of a 2-D
FIR filter is usually given by m amplitude discrete values
Ai(ω1i , ω2i), where i = 1, . . . ,m. The approximation of
the 2-D FIR filter transfer function satisfying the desired
specifications may be performed using several methods. A
weighted least-squares method and a minimax method are
among the methods that are most often used (Lu, 2002).
If W (ω1, ω2) is the weighted function in the weighted
least squares method, then the coefficients akl (58) can
be obtained by minimizing (Mitra and Kaiser, 1993)

E =

m
∑

i=1

[W (ω1i , ω2i) (H(ω1i , ω2i)−A(ω1i , ω2i))]
2.

(61)
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5.5. Example 5: A low-pass denoising filter from
approximation with octagonal symmetry. A 2-D
low-pass filter can be designed to satisfy the amplitude
response from Fig. 8 for ψp = 0.34 and ψa = 0.37 (ψp

and ψa are the passband and stopband, respectively). The
coefficients hij of the H matrix (4) are obtained from (5)
and (6) with the use of the minimax approximation, and
H is of the form

H =

⎡

⎢

⎢

⎢

⎢

⎣

0.0425 0.0258 0.0632 0.0258 0.0425
0.0258 0.0157 0.0384 0.0157 0.0258
0.0632 0.0384 0.0942 0.0384 0.0632
0.0258 0.0157 0.0384 0.0157 0.0258
0.0425 0.0258 0.0632 0.0258 0.0425

⎤

⎥

⎥

⎥

⎥

⎦

.

(62)
The starting point for i = 0 (Luenbergerand and Ye, 2008)
is

x0 = [0.0018 0.0022 0.0060 0.0055 0.0089

0.0055 0.0060 0.0022 0.0018 0.0022

0.0027 0.0073 0.0066 0.0109 0.0066

0.0073 0.0027 0.0022 0.0060 0.0073

0.0202 0.0183 0.0299 0.0183 0.0202

0.0073 0.0060 0.0055 0.0066 0.0183

0.0165 0.0270 0.0165 0.0183 0.0066

0.0055 0.0089 0.0109 0.0299 0.0270

0.0443 0 0 0 0 0 0 0 0 0].

(63)

To satisfy (37), 22 iterations were executed and the
following matrices were obtained:

G1

=

⎡

⎢

⎢

⎢

⎢

⎣

0.1330 0.0079 −0.2285 −0.2271 −0.0278
0.0919 −0.1656 0.1305 0.1408 −0.0210
0.2120 0.0383 0.0344 0.0770 −0.0299
0.0766 0.1590 −0.0080 0.0473 −0.0048
0.1336 −0.2035 0.0004 −0.0035 −0.0264

⎤

⎥

⎥

⎥

⎥

⎦

,

(64)
G2

=

⎡

⎢

⎢

⎢

⎢

⎣

0.0356 −0.0743 −0.1119 −0.0285 0.0482
−0.0067 −0.1829 0.0983 0.0927 0.0275
0.0304 −0.2989 0.0378 0.0969 0.0770
0.0343 −0.4162 0.0392 −0.0372 0.0335
0.0396 0.4899 −0.0693 0.0573 0.0479

⎤

⎥

⎥

⎥

⎥

⎦

.

(65)
The amplitude characteristics of |H(ejω1 , ejω2)|,
|H(ejω1 , ejω2)|2, |G1(e

jω1 , ejω2)|2 + |G2(e
jω1 , ejω2)|2

are presented in Fig. 9.
All of the lossless systems obtained in Examples

1–5 satisfy the paraunitary condition (25) and the power
complementary property of the paraunitary all-pass FIR
filter (26), because the second and third plots of the figures
provided for each example show that the sum of the
characteristics |H(ejω1 , ejω2)|2 and |G1(e

jω1 , ejω2)|2 +
|G2(e

jω1 , ejω2)|2 is 1.

Fig. 8. Sample points of the amplitude response for a 2-D low-
pass FIR filter for ψp = 0.34 and ψa = 0.37.

Fig. 9. Low-pass denoising filter from approximation
with octagonal symmetry: amplitude character-
istics of |H(ejω1 , ejω2)|, |H(ejω1 , ejω2)|2, and
|G1(e

jω1 , ejω2)|2 + |G2(e
jω1 , ejω2)|2.

6. Concluding remarks
The presented method makes it possible to determine the
paraunitary transfer function matrices of two-dimensional
lossless FIR filters. A modified Newton’s method was
used to solve the paraunitary conditions of the matrices
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described by a set of non-linear equations. As they
are often used in image processing, 5 × 5 kernel filters
and 2-D low-pass filters obtained through approximation
were used as examples. For all examples, the number of
equations was 41 and the number of variables was 25. The
modified Newton’s method converged with an accuracy of
e = |MEAN[xi+1 − xi]| ≤ 1 · 10−7 and the produced
solutions for all presented FIR filters after less than 50
iterations. The obtained matrices of the lossless FIR filters
H(z1, z2) have a size of 3 × 1. This means that they
have three outputs, resulting in three transfer functions
H(z1, z2), G1(z1, z2), and G2(z1, z2) for each output.

A sample image processed by the Kirsch filter
(Section 5.4) has been included. The original initial image
is shown in Fig. 10(a) and the image processed by the filter
H(z1, z2) (52) is shown in Fig. 10(b). The typical effect
of direction edge filters is visible. The image processed
by the filter G1(z1, z2) (54) is shown in Fig. 10(c).
Diagonal edges are visible at places where there are strong
dynamics among neighbouring pixel values. Figure 10(d)
shows the image with blurred details that results from
using the G2(z1, z2) filter (55). Additionally, the Scilab
code for a 5× 5 filter is provided in Appendix.

2-D lossless FIR filters can be implemented in
hardware, usually as a direct realisation composed
of adders, multipliers, and delay units (Lu, 2002;
Antoniou, 2005; Wnuk, 2008). A better realisation
consists of delay units and rotators (Givens rotation
elements), which are the simplest possible components
for orthogonal filtering (Dewilde, 2019; Andraka, 1998;
Wawryn et al., 2010; Puchala, 2022). Householder
reflectors based on Householder transformations are also
possible components that are suitable for orthogonal filter
realisation (Puchala, 2022; Anju and Mathurakani, 2016;
Brugière et al., 2019). Further work with presented filters
may also involve statistical analyses used for harmonic
signals (Sienkowski and Krajewski, 2021).
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Appendix
The Scilab code for a 5 × 5 example filter is as
follows (some assignments and argument lists have been
simplified due to the large number of elements):

//input H 5x5 matrix - example
H=[ 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1]./25

CH=zeros(41,1)
CG1=zeros(41,1)
CG2=zeros(41,1)
Y=[zeros(40,1);1]
JG1=zeros(41,25)
JG2=zeros(41,25)
x=[(CH)’ zeros(9,1)’]
e=1

for i=1:41 then
//function to calculate values of
//i-element of the CH() vector
CH(i)=get_value_for_ch(i,H)

end

while e>=10ˆ-7 do
g144=x(1)
g143=x(2)
...
g101=x(24)
g100=x(25)

g244=x(26)
g243=x(27)
...
g201=x(49)
g200=x(50)

for i=1:41 then
//function to calculate a
//i-element of the CG1() vector
CG1(i)=get_value_for_ch(i,g100,
...,g144)

//function to calculate a
//i-element of the CG2() vector
CG2(i)=get_value_for_ch(i,g200,
...,g244)

end

//function to calculate elements
//of the JG1() matrix
JG1=set_value_jg1(g100,...,g144)
//function to calculate elements
//of the JG2() matrix
JG2=set_value_jg1(g200,...,g244)

F=CH+CG1+CG2-Y
J=[JG1 JG2]
delta=(pinv(J)*F)’
x=(x-delta)
e=abs(mean(delta))

end

G1= [g100 g110 g120 g130 g140
g101 g111 g121 g131 g141
g102 g112 g122 g132 g142
g103 g113 g123 g133 g143
g104 g114 g124 g134 g144]

G2= [g200 g210 g220 g230 g240
g201 g211 g221 g231 g241
g202 g212 g222 g232 g242
g203 g213 g223 g233 g243
g204 g214 g224 g234 g244]
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