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Autonomous coordination of multi-agent systems can improve the reaction and dispatching ability of multiple agents to
emergency events. The existing research has mainly focused on the reactions or dispatching in specific scenarios. However,
task-level coordination has not received significant attention. This study proposes a framework for autonomous switching of
task-level strategies (ASTS), which can automatically switch strategies according to different scenarios in the task execution
process. The framework is based on the blackboard system, which takes the form of an instance as an agent and the form
of norm(s) as a strategy; it uses events to drive autonomous cooperation among multiple agents. A norm may be triggered
when an event occurs. After the triggered norm is executed, it can change the data, state, and event in ASTS. To demonstrate
the autonomy and switchability of the proposed framework, we develop a fire emergency reaction dispatch system. This
system is applied to emergency scenarios involving fires. Five types of strategies and two control modes are designed for
this system. Experiments show that this system can autonomously switch between different strategies and control modes in
different scenarios with promising results. Our framework improves the adaptability and flexibility of multiple agents in an
open environment and represents a solid step toward switching strategies at the task level.

Keywords: task-level, autonomous switching strategies, blackboard system, norm.

1. Introduction
In recent years, fires have become a major threat to
humans and property worldwide. It has the potential
to cause billions of dollars’ worth of economic damage
and kill thousands of people every year, resulting
in catastrophic social, economic, and environmental
impacts. Considering the massive devastation caused
by fires, the use of unmanned devices to respond
to emergencies has become extremely important.
Collaborative or dispatching methods for the existing
multi-agent systems (MASs) have demonstrated their
performance (Li et al., 2022). In an MAS, multiple agents
are primarily controlled through supervised learning
(Landgren et al., 2021; Tan et al., 2022). Multiple agents
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primarily learn from specific scenarios that may be
encountered. These methods are based on the collected
data set for learning specific behaviours to determine the
optimal reaction. Fires occur in a variety of environments,
such as forests, grasslands, mountains, roads, etc. When
multiple agents encounter a certain scenario and are
unable to make a decision, a large amount of data is
required to support learning. However, poor data quality,
due to incompleteness, inaccuracy, and bias, leads to
poor judgments and decision making. Therefore, new
solutions are required to maximize the overall flexibility
of the MAS to react in different scenarios.

In the MAS, common accident scenarios are
predicted in advance by experts. The existing research
focuses mainly on reactions or dispatching in specific
scenarios (Wu et al., 2018; Wang et al., 2020; Bai
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et al., 2021; Sengupta and Yasser Mohammad, 2021; Roy
et al., 2018; Liu et al., 2022; Sun and Liu, 2021), whereas
little attention has been paid to task-level coordination
(Kanazawa et al., 2021). Wu et al. (2018) studied
the dual-objective rescue vehicle dispatching problem
of a multi-point forest fire to minimize the total fire
extinguishing time and the amount of fire equipment
required. However, this method lacks foresight and
feedback regarding long-term plans, which may lead to
short-sighted decision making. In addition, in some
special cases, heuristic methods may produce poor
efficiency and answers,which will affect the dispatching
decision. Therefore, Wang et al. (2020) proposed
a switching strategy based on real-time wind process
prediction, which mainly dynamically adjusts strategies
according to the wind type. Such a method-switching
strategy must predict the future and conduct cluster
analysis. Bai et al. (2021) studied the periodic
switching strategy method, which is different from the
conventional methods. They also proposed an operation
optimization model to obtain the best switching times and
corresponding time points. When an exception occurs in
the MAS, the periodic switching strategy may not react in
an unexpected situation. Sengupta and Yasser Mohammad
(2021) explored a framework for selecting, switching,
or combining strategies. Roy et al. (2018) proposed
a switching strategy framework of region-based shape
controllers for swarm robots to overcome the traditional
obstacle avoidance problem. Kanazawa et al. (2021)
investigated a new method to adaptively select two
objective functions according to the current operating area
of the robot, which can improve the safety of workers.
However, this approach does not allow the system to
evolve under unexpected circumstances.

The norms for controlling multiple agents within an
MAS depend on the expertise of the experts. However,
the experts cannot predict all unexpected scenarios. The
designed norms are not adequate for dealing with all
scenarios and must evolve to adapt to changing scenarios
(Zhao et al., 2017; Wang et al., 2020c). Sengupta
and Yasser Mohammad (2021) studied a component that
periodically replaces old strategies with new or better
ones for self-enhancement. Zhao et al. (2017) presented
a framework of software adaptation, norm generation,
and norm evolution based on reinforcement learning.
This framework automatically learns during the offline
stage and automatically evolves during the online stage.
According to Wang et al. (2020c), mutation is the primary
strategy for norm evolution. Their method used the
operator ‘crossover’ to evolve norms. The effectiveness of
the evolutionary approach was verified using a sweeping
robot that performed the sweeping task. However, this
method does not investigate the phenomenon wherein
evolved norms are not easily triggered when exceptions
occur for many norms.

For multiple agents to autonomously switch between
different strategies in different scenarios, this study
proposes a framework for autonomous switching of
task-level strategies (ASTS). In ASTS, multiple agents
cooperate to complete the overall goal. In the ASTS
framework, multiple agents perform a collection of
actions in one state and then change to a new one.
Subsequently, to prove the effectiveness of ASTS, a fire
emergency reaction dispatching (FERD) system based on
the ASTS framework is established. This dispatch system
is built for fire events and includes five types of strategies
and two control modes. There are always situations in
the operation of this system that are not considered by
the norms. Under unknown conditions, the system can
implement basic motion safety guidelines. They perform
their activities using these basic safety guidelines in the
case of multiple agents having accidents or not satisfying
the preconditions of the norms.

With the system operation, various sudden and
unexpected situations can be considered in the future.
Simultaneously, various emergency measures are planned
and implemented to avoid a short-term extension of the
accident and delayed firefighting. This study validates
the FERD system by applying some experiments to
the domain of extinguishing fireworks. Finally, the
effectiveness of this framework is proven, and the
experimental results are analysed. The main contributions
of this study are summarized as follows:

• This paper presents a framework for autonomous
switching strategies to achieve the overall goal,
which is at the task level. The strategies are used
to drive the autonomous collaboration of multiple
fire equipment according to different scenarios. The
switching between different strategies proves that the
framework is agile and extensible, benefiting from
the framework.

• The switch and strategy modules are designed for
the FERD system, which includes two switch modes
and five types of strategies. They reflect the (non)
autonomy, collaboration, and exception-handling
capabilities in different scenarios. These strategies
are obtained based on the environmental model, task
requirements, task execution, and dynamics of the
agent, as well as the processing of the collected
environmental information. They can be divided into
two levels: norm-level and agent-level strategies.

• This study provides an in-depth analysis of
strategies, and studies the relationship between
components of norms and the properties of
knowledge source (KS) in generic blackboard
open source (GBBopen). The FERD system is
implemented based on GBBopen, indicating its
expandability. This paper also improves the control
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shell of GBBopen with a few improvements,
primarily improving the properties of knowledge
source (KS) and adds a slot to KS, postcondition-
function. By taking the Chengdu Kestrel
Artificial Intelligence Institute’s IDL-Mapping
tool (KIS-CORBA) as the cross-language data
communication protocol, obtaining real-time
information with multiple sensors, and publishing or
subscribing to information through the serial port of
the robot operating system (ROS), which shows the
openness of the FERD system.

The remainder of this paper is organized as follows.
Section 2 discusses the related work. The framework
and terms of ASTS are given and the FERD system
proposed in Section 3. In Section 4, the experiments to
verify the effectiveness of the FERD system are presented;
subsequently, the experimental results are presented and
analyzed. Finally, Section 5 summarizes the significance
of the proposed framework and system, and discusses
future work.

2. Related work
Related studies have investigated MAS intelligence in
terms of collaboration, decision making, communication,
and learning. Among these, decision making is the
core research problem of MAS autonomous collaboration.
Autonomous collaboration is a popular topic in MAS
research.

2.1. MAS decision making. Tan et al. (2022) designed
an interactive framework to motivate each agent to
align personal goals with system goals. They also
proposed a novel online learning algorithm for MASs
in dynamic environments. The algorithm uses partial,
delayed, and noisy state information as well as reward
signals for learning. Lin et al. (2018) proposed a novel
Q-learning-based adaptive modulation-switching strategy
to select the appropriate strategy. Landgren et al.
(2021) designed a dynamic, consensus-based, distributed
estimation algorithm. The algorithm separately considers
unconstrained and constrained reward models and
estimates the average reward for each arm for selective
learning. The methods proposed by Tan et al. (2022), Lin
et al. (2018) or Landgren et al. (2021) make decisions
regarding MASs via reinforcement learning. The agents
of Tan et al. (2022), Lin et al. (2018) or Landgren
et al. (2021) require an exploration of the action space,
respectively. They can quickly adapt to new environments
to determine optimal strategies and actions. However,
these methods require considerable amounts of time and
computational resources. There are also situations in
which some strategies are not selectable, to the detriment
of discovering more valuable ones. The difference

between this study and their work is that the agents in
the FERD system do not need to explore the action space.
As multiple agents are tasked within a fixed environment,
the strategy or action has been predefined. A norm is
successfully triggered when the subscribed events are
published and the preconditions of the norm are satisfied.
Multiple agents are executed according to the predefined
actions.

The existing research is based on a collected data
set to learn specific behaviours to determine an optimal
action. Hook et al. (2021) focused on learning actions
in an MAS. These agents learn primarily by simulating
scenarios that may be encountered during autonomous
navigation. Ma et al. (2020) investigated a nonparametric
closed-loop behaviour learning method for MAS motion
planning. Data-driven learning offers objectivity,
validity, iterability, visualisation, and comprehensiveness;
however, it requires a large amount of data to support
learning or prediction. Data incompleteness, inaccuracy,
and bias lead to poor judgments and decisions. This
study differs from their work in that it is event-driven
to control multiple agents. Responding promptly when
an event occurs prevents polling; thus, the reaction speed
and efficiency of the FERD system can be improved and
the ability of real-time processing can be realized. The
FERD system can also add, remove, and modify events,
strategies, or control modes dynamically as needed,
thereby increasing its flexibility.

Ming et al. (2022) proposed a strategy selection
algorithm, which is modelled as a game. Zhou (2021)
proposed a novel optimal control framework for MASs
which introduces the mean-field game theory. The
above approaches require modelling the entire game
process. However, this information may be incomplete or
inaccurate, which may lead to instability and performance
degradation of the algorithm. In contrast, the approach in
this study relies on the current agent state and blackboard
content. Changes in the blackboard content must be
monitored in real time, which mainly includes data on
the blackboard, task status, and execution results. By
monitoring the contents of the blackboard, their failures
and abnormalities are detected in time to provide a basis
for subsequent strategy selection.

2.2. MAS decision making in different scenar-
ios. Some existing studies are similar to ours, such as
combining different scenarios with MAS decisions to
enable the MAS to switch decisions between multiple
scenarios (Sengupta and Yasser Mohammad, 2021; Roy
et al., 2018; Wang et al., 2020b; Nimmolrat et al., 2021).
Roy et al. (2018) proposed several obstacle avoidance
strategies, which are designed to overcome the traditional
obstacle avoidance problem. The robots form a group
and move within the circular area of the initial virtual
structure. Simultaneously, they move as various specific
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structures, such as a triangular structure. The virtual
circle can be allowed to shrink to a certain limit to
avoid static or dynamic obstacles. Wang et al. (2020b)
studied the configuration of rescue vehicles and dispatch
strategies in highway emergencies. First, traffic accidents
were classified into categories. Subsequently, based
on the research and statistics, the type and number of
rescue vehicles required were determined. Finally, three
dispatching methods are proposed and validated to enable
rescue vehicles to reach traffic accident points as soon
as possible. Nimmolrat et al. (2021) proposed linking
the dispatch centre to the rescue team to assist with the
mission. The first-aid centre receives information from
the geolocation system to determine the location of the
patient. The efficiency of the prehospital process is
improved, which also helps paramedics and rescue teams
allocate medical resources and deal with emergencies in a
timely manner.

Inspired by Wang et al. (2020c), we extend this
study to a task-level setting and use an evolutionary
algorithm for norm evolution. This minimizes the impact
of anomalous results on the FERD system and improves
its robustness. In addition, the proposed autonomous
switching strategy framework can be developed for
different contexts and states, thereby improving the
system availability; the number of strategies can be
dynamically increased or decreased based on the actual
demand, flexibly responding to different needs and
demonstrate the versatility of the proposed approach.

3. Task-level autonomous switching
strategy

This section introduces the basic knowledge of this study
and proposes an ASTS framework. The system for
applying this framework to extinguishing fire scenarios is
presented in the remainder of this section.

3.1. Preliminaries. sdf

Blackboard system. The blackboard system (BBS)
is a model for solving unstructured problems such as
intelligent decision-making and intelligent control, which
is driven by events. It comprises a KS, blackboard
(BB), and control shell (CS). The KS is similar to a field
specialist. The BB displays the data in real time. The CS
selects the appropriate KS according to the event. Many
articles on BBS are quite detailed (e.g., Shin et al., 2018).

Generic blackboard open source. Based on the different
characteristics of the application problems, BBS has many
different forms. The software GBBopen is developed and
implemented in the common list processing (Common
Lisp) language environment. GBBopen is open-source
software, and users can improve it by modifying the
source code. An expert system based on the norm-base

developed by Clips1 is a data-driven program. Unlike
Clips, GBBopen does not require a data abstraction
design; therefore, the implementation of a function may
be completed quickly during development.

Topic of the robot operating system. The topic of
communication frameworks in ROSs consists of three
parts: the speaker, the listener, and the master. The
data are then transferred from the talker to the listener
(Oguz-Ekim et al., 2020).

3.2. Overall framework. In this subsection, a
framework for ASTS is proposed for multiple agents
to switch strategies autonomously according to different
scenarios. The overall framework, terms, algorithms, and
implementation of the framework were introduced.

3.2.1. Terms for ASTS. An ASTS is described in the
form of the triple consisting of a set of norms N , state S,
and event E,

ASTS = 〈N,S,E〉. (1)

Norm N . N = {r1, r2, . . . } represents a set of norms,
which can be used to guide and constrain the behaviour
of the agent, ensuring the normal operation of the ASTS.
Norm ri is expressed as ri = {Trii, Acti, Expi}.

• Trii is the trigger condition and is used to determine
if the associated actions can be performed. Trii
comprises a series of logical judgment expressions
denoted as Trii = {trii1 , trii2 , . . . }; triij is a logical
judgment expression.

• Acti is the execution action. Acti consists of a series
of methods or actions, which can be expressed as
Acti = {acti1 , acti2 , . . . }; actij is a method or an
action.

• Expi is the expected result to verify the result
of Acti. Expi consists of a series of expected
conditions, which can be expressed as Expi =
{expi1 , expi2 , . . . }; expij is also a logical judgment
expression.

State S. The data are read by state S. State S represents
a set of instantaneous states denoted by S = {s1, s2, . . . }.
The elements in state S is arranged in chronological order.
The instantaneous state si can have multiple expressions,
which are represented as si = {si1 , si2 , . . . }.
Event E. E = {e1, e2, . . . , ei} represents a set
of instantaneous events sorted in chronological order.
ei denotes the i-th instantaneous event. Here ei =
{ei1 , ei2 , . . . } indicates that ei is composed of multiple
sub-events. When an event ei occurs, the instantaneous
state sj is read to determine the Trik of rk.

1https://www.clipsrules.net.

https://www.clipsrules.net
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Definition 1. (Norm, event, and state) Equation (1)
describes the components of the ASTS. Examples of
norms, events, and states are presented in Example 1.

Example 1. (Norm, event, and state) A robot named
Anna starts working at 8:00 every day. Anna maintains
a safe distance from the object in front of it and must obey
norms ra and rb listed in Table 1. The distance between
Anna and the object ahead is expressed as D. The safe
distance is set to 1 m. If D is greater than 1 m and the
power is greater than 20% when e1 occurs, then Anna
moves forward. To verify the result Acta of the norm ra,
we expect D to be equal to 1 m. If D is less than 1 m and
the power is less than 20% when e1 occurs, Anna stops.
The instantaneous events and states are listed in Table 2.

�

Definition 2. (Triggered norm) When ei occurs, the
instantaneous state si is read. If all logical judgment
expressions in Trix are satisfied, then norm rx is
referenced as the ‘triggered norm’ at instantaneous state
si. Examples of triggered norms are provided in
Example 2.

Example 2. (Triggered norm) At 8:00, an instantaneous
event e1 occurs. Tria is satisfied at the instantaneous state
s1; then Anna starts moving forward. Norm ra is denoted
as the ‘triggered norm’. �

Definition 3. (Obeyed norm and mutated norm) The
transient state of si reaches sj after the execution of
Actx. If all logical judgment expressions in Expx are
satisfied at sj , then norm rx is denoted as an ‘obeyed
norm.’ Otherwise, norm rx is denoted as a ‘mutated
norm.’ Examples of the obeyed norm and the mutated
norm are shown in Example 3.

Example 3. (Obeyed norm and mutated norm) Anna
starts executing Acta in s1 and the instantaneous state
from s1 reaches s2. Expa is satisfied at instantaneous
state s2. Therefore, norm ra is denoted as an ‘obeyed
norm.’ At 8:02, the norm ra is triggered. Anna starts
executing Acta in s2 again and the instantaneous state
from s2 reaches s3. Expa is not satisfied at instantaneous
state s3. Therefore, norm ra is denoted as a ‘mutated
norm.’ �

Definition 4. (Execution path of norms) This path
is formed by recording triggered norms, instantaneous
events, instantaneous states, results of triggered norms,
and other data. In this path, the norm is represented as
a circle, whereas an instantaneous state is presented as a
block. The result of a triggered norm is expressed as a
directed line segment. The ‘obeyed norm’ is marked by
a solid line and the ‘mutated norm’ is marked by a dotted
line. Examples of the execution paths of the norms are
presented in Example 4.

s1

s2

instantaneous state      obeyed norm          data flow

triggered norm             mutated norm   

Data

e1 Update

Update

s3

e2

e3 Update

ra

ra

rb

Fig. 1. Execution path of norms.

Example 4. (Execution path of norm) From Fig. 1, norm
ra is triggered at s1, then Acta is executed. The result
of Expa indicates that the norm ra is the ‘obeyed norm.’
Norm ra is triggered at s2 again. The result of Expa
indicates that the norm ra is a ‘mutated norm.’ Norm rb is
triggered at s3. �

Definition 5. (Transition state) When ei occurs, norm
rx is triggered at si, and Actx is executed. This process
causes the instantaneous state to change from si to sj ,
which can be expressed as

si
rx−→ sj , (2)

where ‘→’ denotes an instantaneous state changed from
si to sj as a result of triggering rx. Examples of the
transition states are shown in Example 5.

Example 5. (Transition state) From Fig. 1, the
instantaneous state changed from s1 to s2 as a result of
triggering ra. The instantaneous state changes from s2
to s3 as a result of triggering ra. These processes are
expressed as

s1
ra−→ s2

ra−→ s3. (3)

�

Definition 6. (Strategy) Norms describe the actions that
an agent should take in a given situation. Norms are the
basis of strategies and strategies are action plans based on
norms. Norms and strategies are often both interrelated
and interdependent. Examples of strategies are given in
Example 6.

Example 6. (Strategy) In Table 1, norms ra and
rb form a goal-following strategy. Norm rc forms an
obstacle-avoidance strategy. �

Definition 7. (Switching norms or strategies) When ei
occurs, norm rx is triggered at si. Then ej occurs and
ry is triggered at sj . The norm switches from rx to ry .
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Table 1. Example of a norm.
Norm Trigger Action Expectation
ra D > 1 m, power > 20% Anna forward D = 1 m
rb D < 1 m, power > 20% Anna stop D = 1 m
rc D < 0.5 m, power > 20% Anna backward D > 0.5 m

Table 2. Recording of instantaneous events and states.
Time Instantaneous event Instantaneous state

8:00 Robot open
D = 2.1 m, power = 28%Subscribe to Anna’s position

8:02 Subscribe to Anna’s position D = 1.5 m, power = 24%
8:05 Subscribe to Anna’s position D = 0.9 m, power = 21%
8:10 Subscribe to Anna’s position D = 0.8 m, power = 19%

Multiple switching norms accumulate when one norm is
switched to another. Examples of the switching norms and
strategies are presented in Example 7.

Example 7. (Switching norms or strategies) From Fig. 1,
when e1 occurs, norm ra is triggered at s1. Then, e2
occurs, and the norm ra is triggered at s2. Finally, e3
occurs, and the norm rb is triggered at s3. The norm
switches from ra to ra and eventually to rb. �

Based on the above description, this study
summarizes the algorithm and pseudocode (Algorithm 1)
of the ASTS as follows:

i. Input N,S,E, T ;

ii. Initialisation: Path = ∅, ResAct = ∅, ResExp = ∅,
i = 0, j = 0, k = 0.

iii. If an instantaneous event ei ∈ E occurs, the ASTS
data are read by the transient state sj ∈ S.

iv. Check Trik of norm N .

v. If Trik = True, norm rk is triggered; perform Actk
and check Expk.

vi. The results for Actk and Expk are restored as
ResAct and ResExp, respectively.

vii. si, ej, rk, ResAct, ResExp denote the restored paths.

viii. j ++, i++.

ix. Until i > T , exit ASTS.

3.3. Implementation for ASTS. This subsection
proposes a FERD system to respond to fire extinguishing
tasks based on the ASTS framework. The FERD system
aims to perform extinguishing fire tasks using multiple
heterogeneous types of agents. Subsequently, the details
of the FERD system are introduced.

3.3.1. Implementation system. The FERD system
consists of a set of tasks M , agent A, and norm N , based
on the ASTS.

• Task M . The FERD system is applied to handle fire
extinguishing tasks, task M = {m1,m2, . . . }. Each
task mi comprises a series of attributes denoted as
mi = {mi1 ,mi2 , . . . }.

• Agent A. A certain number of agents is needed
to achieve the ultimate goal. Each agent has a
unique identification number, such as a1, a2, so A
= {a1, a2, . . . }.

• Agent norm N ′. The norm set for the agent is N ′

= {r′1, r′2, . . . }, where norm r′k is expressed as r′k =
{Tri′k, Act′k, Exp′k}. The internal elements of Tri′k,
Act′k, Exp′k and the internal elements of Trik, Actk,
Expk are consistent.

3.3.2. Constituent. The FERD system operates based
on the GBBopen platform. In the FERD system, a
set of multiple KSs is expressed using the strategy of
agents. Each agent exists in the form of an instance.
The CS selects the appropriate KS for the multiple agents
to switch. After the strategy is executed, the data on
the BB are changed until the fire extinguishing tasks are
completed. Certain properties of the agent are obtained
from external sensors. The components of the FERD
system are introduced in detail.

1. Blackboard. The agent in the FERD system is
defined by a unit class. The unit class is the base
class for all classes defined by GBBopen. The task
is defined as a class. Each agent type is defined as a
class. Each class has several properties. The attribute
value of each agent is either defined directly (e.g.,
name) or obtained through the external interface of
the sensor (e.g., position coordinates obtained by the
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Algorithm 1. Autonomous switching of task-level
strategies (ASTS).
Require: r
rerr N , a set of norms
rerr S, a set of instantaneous states
rerr E, a set of instantaneous events
rerr T , a time threshold
rerr ResAct, a result of Acti
rerr ResExp, a result of Expi
Ensure: rer
rerr Path is a path of triggered norms

1: while i ≤ T do
2: si←data;
3: if ej 	= ∅ then
4: for each rk ∈ N do
5: Assess Trik;
6: if Trik = True then
7: ResAct←do Actk;
8: Assess Expk;
9: if Expk = True then

10: ResExp←obeyed norm;
11: else
12: ResExp←mutated norm;
13: end if
14: Path←add(si, ej, rk, ResAct, ResExp);
15: end if
16: k ++;
17: end for
18: j ++;
19: end if
20: i++;
21: end while
22: return Path;

positioning sensor). Each instance of an agent and its
attribute values are displayed on theBB.

2. Knowledge source. The KS is a core component of
the FERD system. Each knowledge source activation
(KSA) is an instance of a KS. In GBBopen, the
attributes of the KS are in one-to-one correspondence
with the agent norm N ′. In this study, the
properties of the KS are extended to ‘trigger-events’,
‘precondition-function’, ‘execution-function’, and
‘postcondition-function.’ The relationship between
N ′ and the KS can be formally described as follows:
ksi = {event, pre, exe, rating, post}; ksai={rating,
exe, post}; Tri′i = ksi.event and ksk.pre, Act′i =
ksi.exe, Exp′i = ksi.post.

KSs are divided into two submodules: the switch
module and the strategy module. In the strategy module,
the strategies are obtained based on the dynamics of the
robot and the processing of the collected environmental

Mobilization  
Strategy
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Avoidance
Strategy
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Virtual Right Triangle

Virtual Isosceles Triangle
Motor

Strategy
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Fig. 2. Classification in the strategy module.

Motor
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 Following
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Strategy

 

Obstacle
Avoidance
StrategyEvolutionary

Strategy

 Strategy
Module

Fig. 3. Relationship of strategies in the strategy module.

Fig. 4. Classification in the switch module.

information. In the switch module, the agent switches
strategies in the strategy module according to the different
control modes. Figures 2 and 4 show the classifications in
the strategy module and the switch module, respectively.

1. Classification of the switch module. Multiple
agents can switch strategies in the strategy module
depending on the different control modes. The
control modes are divided into an automatic mode
and a command mode.

(a) Automatic mode. In different scenarios,
multiple agents can autonomously switch
strategies based on their own identification or
the environmental identification. This control
mode avoids the problem of an optimal strategy
not being selected due to insufficient manual
experience. For instance, Anna autonomously
switches the norms in Table 1 according to the
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comparison results of D and the safety distance
in the automatic mode.

(b) Command mode. In different scenarios,
multiple agents in the command mode can
switch strategies based on the user’s needs or
external session guidance. For example, Anna
switches the norms in Table 1 according to the
user commands in the command mode.

2. Classification of the strategy module. These
strategies are obtained based on the task
requirements, fire extinguishing task execution,
dynamics of the agent, and processing of the
collected environmental information by experts from
different fields. These mainly include the following
strategy, motor strategy, evolution strategy, obstacle
avoidance strategy, and mobilization strategy.
Figure 3 shows the relationship of strategies in the
strategy module. The relationship between these
strategies can be divided into two levels: norm-level
and agent-level. The motor strategy is the basis of
the agent movement. The following strategy, and
obstacle avoidance strategies are implemented using
various norms in the motor strategy. They belong to
the agent-level. The evolution strategy is used for
norm evolution, which belongs to the norm-level.

(a) Movement strategy. The movement strategies
are divided into forward, stop, and fall-
back. ‘Forward’ allows multiple agents
to move forward rapidly. This strategy
is suitable for specific scenarios such as
patrol, transportation, etc. ‘Stop’ can make
multiple agents stop precisely at a specified
position, thereby effectively avoiding collisions
and other unexpected situations. ‘Fallback’
can cause multiple agents to move backward
according to the specified path. Appropriate
motion commands can be selected as required
for different task scenarios.

(b) Following strategy. In this study, we
developed two strategies for agents to arrive
at fire scenarios rapidly. These are trajec-
tory following and goal following. ‘Goal
following’ can adaptively adjust the direction
and velocity of agents according to changes in
the position and motion state of the target or
fire. ‘Trajectory following’ can precisely repeat
the fire extinguishing task according to a pre-set
trajectory.

(c) Mobilization strategy. In different task
scenarios, multiple agents can choose the
appropriate control mode as required. The
FERD system provides three strategies: for-
mation, leave team, and return to team.

‘Formation’ enables multiple agents to form
an orderly queue of movements to collaborate
on tasks. This strategy can effectively avoid
collisions and mutual interference, thereby
improving security. This can also improve
the efficiency and speed of task execution.
‘Leave team’ allows multiple agents to move
and explore freely without constraints, explore
new environments and goals, and discover
new information and resources. ‘Return to
team’ can allow the agent to return to the
formation position precisely according to the
specified path and method, effectively avoiding
collisions and other unexpected situations for
this agent.

(d) Obstacle avoidance strategy. The FERD
system provides three obstacle avoidance
strategies: virtual circle, virtual right trian-
gle, and virtual isosceles triangle. Multiple
agents can adjust their path and direction
of motion based on changes in the obstacle
location. ‘Virtual right triangle’ and ‘virtual
isosceles triangle’ strategies usually allow for
movement directly along a line path without
requiring extra time to move around obstacles.
‘Virtual circle’ typically allows for movement
around obstacles while maintaining an overall
streamlined shape.

(e) Evolutionary strategy. When the FERD
system is operational, the results of the same
execution norm may differ for an agent.
However, experts cannot predict all states
in the system. Therefore, the norms of
the system must be evolved. The FERD
system provides two evolutionary strategies for
autonomously evolving norms: ‘crossover’ and
‘other method’. ‘Other method’ strategy is not
described in this paper.

In ‘crossover’, the expectation of one mutated norm
enrich the trigger of another mutated norm. The
crossover algorithm is as follows:

i. The path is entered, which is obtained from
Algorithm 1.

ii. Initialisation: the mutated norm (MN) = ∅.
iii. For each pathi ∈ path, check the mutated

norm rj . If a mutated norm rj occurs, it is
assigned to MN.

iv. If the length of MN is greater than 2, for each
mnk ∈ MN (k 	= 0), the expected condition
of the exception mnk takes the antonym and is
added to the trigger condition of mn0.

v. Output mn0.
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In particular, we assume that the norm execution
sequence obtained by the path is ra, rb and rc.
First, all mutated norms are detected from this path,
which are the norms ra and rc. The exception of
rc is detected to be caused by the exception of ra.
Second, we extract the mutated expectations of norm
rc, namely, expc3 , expc5 , expc6 ∈ Expc. They are
then considered as antonyms, namely, not expc3 , not
expc5 , and not expc6 , which is the new knowledge
of this system. Next, new knowledge is added to
the trigger of another mutated norm through the
crossover operator. Finally, an improved trigger is
obtained: Tria = {tria1 , tria2 , . . . , not expc3 , not
expc5 , not expc6}.

3 Control shell. The CS can manage the triggering
of various KSs and is responsible for dispatching
KSs in the FERD system. The running process of
the CS is as follows: Initialization: Various KSs,
agents, T and M exist within the FERD system.
When an instantaneous event ex occurs in the system,
the CS determines whether it is consistent with the
ksi.event of ksi ∈ KS. If they are consistent,
the instantaneous state sy reads the data of agents
from the BB and the function ksi.pre is executed.
The variable value of ksi.pre is provided by sy.
If the return value of the function ksi.pre is true,
then ksi is triggered and generates an instance
ksai, which stores a list of ‘pending-ksas.’ Then,
ksak.exe in ‘pending-ksas’ with the highest level
is executed. The data of the agents on BB are
changed and ksak.post is executed. The CS triggers
various norms based on event changes to achieve fast
switching strategies. When M = ∅ or t > T , the
FERD system ends its operation. The output path is
the execution sequence for KSs.

4. Experimental results and analysis
In this section, to verify the effectiveness and switchability
of the FERD system, experiments were designed
for multiple agents in response to emergency events.
Experiments were performed on a series of fire
extinguishing tasks as a specific application scenario
for the proposed FERD system. Multiple agents
can automatically or passively switch between different
strategies during their fire extinguishing tasks.

First, the experimental design is introduced,
including the experimental scenario, settings, platform,
equipment, contents, and evaluation. The steps of the
experiment are then described. Finally, the experimental
results from performing the tasks are presented and
analyzed.

4.1. Experiment design.

4.1.1. Experimental scenario. The experimental
scenario was set as an outdoor rectangular environment.
The size of the rectangle is 5.5 m×4.1 m and is composed
of four ultra wide band (UWB) anchors laid on the
base station, which are located at the same horizontal
position. One of the anchors is used as the origin of
the rectangle. Two fire scenarios are simulated in the
experiment. Scenario 1 is a scenario without an obstacle,
whereas Scenario 2 is a scenario with an obstacle.

4.1.2. Description of experimental settings. sdf

Extinguish fire task. In this experiment, M is set as the set
of fire situation. mi is a fire expressed as mi = {num, mp},
where num is the serial number of mi, which is denoted
as numi. mp is the fire position coordinate of mi and is
denoted as mpi. In the experiment, the number of fires
is set to 3. Their coordinates are mp1 = (0.511, 3.31),
mp2 = (3.54, 3.92), and mp3 = (2.311, 0.889).

Fire equipment. The fire equipment aj has various
properties

aj = {id, p, p lst, p v, a v, r, s, tp, υ, ω, d, fs}. (4)

Table 3 summarises the properties of the fire equipment.
In this experiment, the number of fire equipment

items is set to 2: a1 and a2. They are randomly placed in
this scenario with the real positions being (4.9, 2.9) and
(5.0, 0.1), respectively.

Strategy and norm. Several strategies for the fire
extinguishing tasks are designed. This study considers
different aspects of these strategies, such as the
surroundings of the fire and the attributes of each piece of
fire equipment. Table 4 lists the norm bases for the FERD
system. Norm r1 creates two instances of fire equipment.
Norms r2 and r3 are the norms that set the ‘control mode’
and order the fire extinguishing tasks. Norms r4∼r8 are
the norms for the ‘following strategy’. Norms r4 and r5
are the norms for judging ‘following strategy’ of the fire
equipment ai. Norm r4 affects the longitudinal and lateral
control of the whole fire equipment on the FERD system
by the spacing between adjacent fire equipment.

In the considered rectangular area, it is recommended
that the linear velocity range of the fire equipment be set
at 0.05∼0.5 m/s. The angular velocity range of the fire
equipment should be set at 0∼36 rad/s. If fire equipment
ai is found to be farther away from the fire equipment in
front, its speed is increased to reduce the distance from
the fire equipment in front, and vice versa. If there is a
need to create a gap between the fire equipment, norm r5
is used to instruct the fire equipment to brake urgently in
the case of an expected accident. The fire equipment ai
corresponds to the parameters of the ‘following’ strategy
set in norms r7 and r8. Norms r9∼r13 are the norms of
the ‘mobilization’ strategy, including ‘formation’, ‘leave
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Table 3. Symbol notation.
Symbol Unit Description

pj (m,m,rad) Position
p lstj (m,m,rad) Position list
tpj (m,m) Position of target point
υj m/s Linear velocity of fire equipment
ωj rad/s Angular velocity of fire equipment
dj m Euclidean distance between tpj and pj
p vj – Previous fire equipment’s ID
a vj – Next fire equipment’s ID
rj – Role (leader or follower)
sj – State (stuck or normal)
fsj – Following mode (goal following or trajectory following)

team’, and ‘return’ to ‘team’. Norms r12 and r13 are set
to correspond to the parameters of the leader or follower.
Objective and constraint. The objectives and constraints
of the FERD system are expressed as follows:

{
min tmax,
M = ∅, (5)

s.t. p lstj.f irst = p lstj .last (6)

Equation (5) minimizes the maximum time to complete
this task and ensures that all fires in M are completely
extinguished. Equation (6) establishes that each piece
of fire equipment can return to the starting point after
completing the task, where p lstj .f irst denotes the first
position of p lstj and p lstj.last represents the final
position of p lstj .

4.1.3. Experiment platform and equipment.
All experiments require a PC platform and an
ARM-embedded platform. The application simulation
is realized and executed using GBBopen. The
ARM-embedded platform used in this experiment is
the Raspberry Pi (RPI). RoboMaster (Fig. 5) is used as
the fire equipment for the FERD system to perform tasks.
The three pieces of fire equipment carried, including the
UWB anchor (Fig. 6(a)), the module of IMU (Fig. 6(c)),
and the RPI (Fig. 6(b)), are shown in Fig. 6. The Python
environment (3.7.0), KIS-CORBA, and ROS platforms
are installed into the RPI. The Visual Studio environment
(VS2017), KIS-CORBA, Lisp environment (Allegro
Common Lisp 10.1 express), LinkTrack technology
(NoopLoop for NAssistant applications), and GBBopen
are installed on the PC.

4.1.4. Experimental contents. This experiment
involves multiple fire equipment set performing fire
extinguishing tasks in two scenarios: an outdoor scenario
without an obstacle and an outdoor scenario with an
obstacle. Multiple pieces of fire equipment are randomly

Fig. 5. Fire equipment.

(a) anchor (b) RPI (c) IMU module

Fig. 6. Components of fire equipment.

placed at different positions. Their true positions are
(4.9, 2.9) and (5.0, 0.1), respectively. The coordinates of
the fire extinguishing tasks are (0.511, 3.31), (3.54, 3.92),
(2.311, 0.889), respectively. All fire equipment sets share
all the norms all of which must be abided by. Each piece
of fire equipment can freely switch between appropriate
norms based on its state using the sensors it carries. If a
fire is successfully extinguished, all fire equipment pieces
move to the next fire. When all the fires are extinguished,
it is indicated that the fire extinguishing tasks are over. In
addition, to check whether multiple fire equipment pieces
can automatically switch strategies according to different
environments, this experiment sets the control mode of the
FERD system to the ‘automatic mode’.

4.1.5. Experimental metrics. This study proposes
metrics that quantify the effective switching strategy of
the FERD system. The evaluation criteria proposed herein
can be viewed from two perspectives, being considered
from the perspective of the task and from the perspective
of the BBS. From the task perspective, the time required
to complete the tasks and the length of each fire equipment
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path serve as the evaluation criteria. From the perspective
of the BBS, the number of switches between different
strategies per piece of fire equipment is the evaluation
criterion.

4.2. Experimental steps.

4.2.1. Cross-language data sharing. Because fire
equipment is written in Python, and GBBopen is written
in Lisp, cross-language communication is required.
These experiments focused on the communication
between Python and Lisp and finally applied the FERD
system. The steps in cross-language communication are
summarised as follows.

1. Describe interfaces by the interface description
language. This experiment involves data sharing
between Python and Lisp. These two interfaces
are defined with the interface description language
(IDL). One of the IDL interfaces is defined using
Python to transfer the data to Lisp. The other IDL
interface is defined using Lisp and transmits data to
Python. Subsequently, the IDL files are compiled.
After IDL is compiled, Python generates two files:
‘ .py’ and ‘ skel.py’, while Lisp generates three files:
‘-sysdcl.lisp’, ‘-procs.lisp’, and ‘-basics.lisp’.

2. Server and client in KIS-CORBA. The overall
framework of the KIS-CORBA server program is
generated using an IDL compiler, and the client
and server are established. It is noteworthy that
the IDL used by the server and client must be
consistent. Otherwise, cross-language data sharing is
not normal communication. Finally, the data of the
fire equipment is sent to GBBopen, including pose,
velocity, distance, etc. GBBopen sends the data to
the fire equipment such as target point, speed, etc.

4.2.2. APIs of fire equipment. DJI-Innovations
(DJI) provides several API instances2 written in Python.
This experiment is conducted to realize communication
between the fire equipment and GBBopen and to control
the wheels of the fire equipment. For example, an API
program is added to control the wheels in GBBopen.

4.2.3. Pose information of fire equipment. This
experiment assumes that the position information
obtained by multiple sensors indicates the position
information of the actual fire equipment. The remote
server is connected to control the fire equipment through
a secure shell (SSH). Positioning errors occur due to
various factors (e.g., the deployment mode of the base

2https://robomaster-dev.readthedocs.io/zh_CN/
latest/.

A0

A2

A3

A1

a2

a1

x-axis (m)
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Fig. 7. Two fire equipment settings in the experimental sce-
nario.

station and the weakening of the signal) in the external
environment. The average value of the real-time position
of each anchor is calculated to reduce noise interference.
In addition, the three-axis attitude angle is obtained using
the IMU technology. The ROS serial port then reads the
obtained position data and publishes them in the form of
topics. Finally, they are transmitted to GBBopen through
KIS-CORBA.

Figure 7 displays the positions of the carried anchor
in two fire equipment settings, where A0, A1, A2, and A3

are four manually arranged base stations. Additionally,
each piece of the fire equipment is mapped to a point.
The position of a1 is displayed in light gray, whereas
the position of a2 is displayed in gray. According
to the average value of the calculated posture, p1 of
fire equipment a1 is (4.929, 3.049, 1.2), and p2 of fire
equipment a2 is (4.928, 0.065, 3.8).

4.2.4. Fire equipment performing tasks. Because
GBBopen is developed in the Lisp programming
language, the server and client are embedded in the
GBBopen program. Each KS in GBBopen can read
or send data using KIS-CORBA. The detailed processes
for controlling the fire equipment using GBBopen are
described below. First, GBBopen sends the target position
using KIS-CORBA to each piece of fire equipment. The
position and other information of the two pieces of fire
equipment are obtained in real time using sensors. Each
piece of fire equipment can adjust its own linear and
angular velocities based on the target position obtained
from GBBopen. The pose, distance, and velocity of the
fire equipment are sent to GBBopen using KIS-CORBA.
The CS then switches between these KSs in different
scenarios. The actions of the switched KS cause the
position of each piece of fire equipment to be adjusted
such that each piece of fire equipment takes the fastest
path to the target point. Finally, the process ends when the
fire extinguishing tasks are completed.

https://robomaster-dev.readthedocs.io/zh_CN/latest/
https://robomaster-dev.readthedocs.io/zh_CN/latest/
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Notably, there is a communication delay during
system operation such that Trii of norm ri is continuously
satisfied. This phenomenon is known as the ‘Zeno effect.’
Our solution is to add a global variable to the FERD
system; a judgment of the global variable value should
also be added to Trii. When Trii of norm ri is satisfied,
the value of the global variable is immediately changed
to prevent the infinite triggering of norm ri in a finite
time. For example, a global variable ‘tag’, tag = 1.
Tria of norm ra is added to the judgment expression for
the variable. Then, Tria = {D > 1 m, power > 20%,
tag = 1}. When Tria is satisfied, but acta is not executed.
The value of the tag is changed immediately. At this point,
Tria is not satisfied, and ra is not triggered again in finite
time. When Acti is executed, the value of tag is restored
to 1. In this case, Tria can be rejudged.

4.3. Results and analysis.

4.3.1. Experimental results. Some experimental
results for the fire equipment in the two scenarios have
been obtained. Figure 8 shows the trajectories of two
pieces of fire equipment. A0, A1, A2 and A3 represent
four manually arranged base stations, and mp1, mp2, and
mp3 represent the fire positions. M̄ represents the centre
point of all fire positions, and is calculated as the average
value of the x-axis and y-axis using the coordinates
of all fire locations. The calculation of M̄ results in
(2.120,2.706). The light gray and gray lines represent the
tracks of the fire equipment a1 and a2, respectively, from
right to left. They extinguish fire tasks in the order of m2,
m3, and m1.

Figure 8 demonstrates that the distance from a1 to
M̄ is smaller than that from a2 to M̄ . According to norms
r2 and r3, the FERD system switches to the ‘formation’
strategy, where a1 is the leader and a2 is the follower.
In addition, we find that the distance from a1 to m2,
m3, and m1 increases in turn. Therefore, the order
of the two pieces of fire equipment used to extinguish
fire tasks is m2, m3, and m1. The distance between
a1 and m2 is compared with the threshold β, and the
distance between a1 and a2 is compared with threshold
β. According to norm r14∼r16, fire equipment a1 and
a2 can independently be switched to ‘forward’, ‘stop’ and
‘fallback’ in the motor strategy.

Figure 8(a) shows the experimental results of
Scenario 1. It is obvious from Fig. 8(a) that the turning
point C is the switching point from ‘goal following’ to
‘trajectory following.’ It can be seen from this figure that
a2 follows a1 as a follower when it moves towards m2.
Before turning point C, the trends for the red and green
tracks are observed to be significantly different. Because
a1 has not reached turning point C, the distance between
a1 andm2 is greater than thresholdα. According to norms
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(a) for the outdoor scenario without an obstacle
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(b) for the outdoor scenario with an obstacle

Fig. 8. Trajectories of all fire equipment pieces in different sce-
narios.

r4, r6, and r8, the following strategy of a2 is switched to
‘goal following’ in the process of moving to a1. After
the turning point C, the motion trajectories of a1 and a2
are consistent. In this experiment, the distance between
position a2 and position a1 is set to be less than 0.3 m,
which implies that the positions of a2 and a1 coincide.
The distance from a1 to m2 is equal to the threshold α.
According to norms r5 and r8, the following strategy of
a2 is switched to ‘trajectory following’ in the process of
moving to a1. Finally, a1 and a2 start from turning point
C and jointly complete the fire extinguishing tasks for m2,
m3, and m1.

Figure 8(b) shows the experimental results of
Scenario 2. After a1 and a2 extinguish the fire m2,
they continue to extinguish fire m3. Subsequently, a2
continues to follow a1 along the ‘trajectory following.’
When a1 drives towards m3, it passes through X1 and
becomes stuck by obstacle D. According to norm r10, fire
equipment a1 automatically switches strategy to ‘leave
team’. In addition, the ‘crossover’ is automatically
switched to evolve the original norm r14. Norm r14 is
detected as a mutated norm, leading to the exception of
other norms such as norm r20. The Exp20 of norm r20
is denoted as Exp20 = {si is stuck}. In fact, s1 is
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normal; therefore, r20 is a mutated norm. Then, Tri14
of the norm r14 evolves to Tri14 = {di > β, si =
normal}. Because s1 does not satisfy Tri4 of norm r4,
fire equipment a1 cannot be moved. For fire equipment
a1, v2 is relatively small, and a2 does not reach obstacle
D. Therefore, according to norm r19, fire equipment
a2 switches to the ‘virtual right triangle’ and changes its
role of the leader. The track of fire equipment a2 passes
through X1→ X2→X3. It can be said that fire equipment
a2 successfully bypasses the obstacles and reached the fire
m3; this indicates that in the case of an obstacle, the FERD
system can still switch various strategies to effectively
complete the fire extinguishing tasks. Therefore, the
switchability, agility, and robustness of the FERD system
are verified using the two scenarios shown in Fig. 8.

4.3.2. Evaluation. In the experiment, different
scenarios required different times to complete the fire
extinguishing tasks. The results of the FERD system
performing the fire suppression tasks were evaluated
using the evaluation metrics in Section 4.1.5. The time
to complete the fire extinguishing tasks, the length of
each fire equipment path, and the number of switching
strategies were counted in the two scenarios. Table 5 lists
the completion times and lengths of each fire equipment
path. Table 6 shows the change when switching between
different strategies for the two fire equipment pieces.

Table 5 provides the times to complete the fire
extinguishing tasks and the lengths of each fire equipment
path in scenarios 1 and 2. In Scenario 1, the time required
by the FERD system to complete the fire-extinguishing
tasks was 4 min 51 s. In Scenario 2, the time taken by
the FERD system to complete the fire extinguishing tasks
was 7 min 37 s, which was 2 min 56 s longer than the time
used in Scenario 1. In Scenario 1, the length of the path
of a1 was 10.52 m, and the length of the path of a2 was
12.86 m. In Scenario 2, the length of the path of a1 was
5.01 m, and the length of the path of a2 was 14.13 m.

As shown in Table 6, there is a little difference in the
number of switching strategies between the two pieces of
fire equipment in different scenarios. In Scenario 1, the
total number of switching strategies for fire equipment
a1, a2 were 648 and 745, respectively. However, in
scenario 2, the total number of switching strategies for fire
equipment a1 was 448, which was 30.8% less than that
in Scenario 1. The total number of switching strategies
for fire equipment a2 was 937, which was 25.8% more
than in Scenario 1. Note that there were no obstacles
in scenario 1. The number of switching strategies for
fire equipment that a1 switched to ‘forward’ is 534, and
the number of switching strategies for fire equipment that
a2 switched to ‘forward’ is 646. However, there were
obstacles in Scenario 2. In Scenario 2, the number of
switching strategies for fire equipment a1 was 322, which
was 39.7% fewer than that in Scenario 1. The number

Table 5. Completion time and length of each piece of the fire
equipment path.

Scenario Scenario 1 Scenario 2
Completion time 4 min 51 s 7 min 37 s
Fire equipment a1 a2 a1 a2
Length of the path (m) 10.52 12.86 5.01 14.13

Table 6. Strategies and the number of switches for each piece of
fire equipment (times).

Scenario Scenario 1 Scenario 2
Fire equipment a1 a2 a1 a2
Formation 1 1 1 1
Trajectory following 27 1 35 1
Goal following 75 76 81 82
Forward 534 646 322 816
Stop 5 17 4 27
Fallback 6 4 4 9
Leave team - - 1 0
Virtual right triangle - - 0 1

Total 648 745 448 937
1393 1385

of switching strategies for fire equipment a2 was 816,
which is 26.3% greater than that in Scenario 1. This is
because fire equipment a1 was intercepted by this obstacle
and was forced to stop and the system autonomously
switched to the ‘evolutionary strategy.’ Finally, norm r14
evolved; namely, the judgment expression of Tri14 was
increased. The fire equipment s1 was not satisfied the
trigger condition of r14, so a1 was switched to ‘forward’.
In addition, the fire equipment a2 makes the driving path
longer than that in scenario 1 because a2 is autonomously
switched to the ‘virtual right triangle’ approach. Based
on this analysis, we conclude that the FERD system can
autonomously switch strategies in different scenarios.

5. Conclusion
In practical applications, it is of great research
significance that agents can switch strategies
autonomously, effectively, and quickly. The existing
research switching strategies mainly focus on reactions
to specific scenarios, and very little attention has been
paid to the effects of the task level. This paper proposes
a framework of ASTS, which is a framework that can
automatically switch strategies according to the different
scenarios to reaction to various emergencies. To prove the
autonomy and switchability of the framework, this paper
has developed a FERD system applied to fire scenarios.
It aims to switch between different strategies and control
modes for multiple types of fire equipment based on the
on-site environment. It improves the adaptability and
flexibility of multiple agents in an open environment and
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represents a significant step toward switching strategies at
the task level.

In future work, the proposed FERD system will be
implemented on other platforms (indoors) for verification.
It is also considered to address more complex situations,
such as external environments (e.g., roads or intersections)
and participants (e.g., pedestrians), which can add
multiple strategies and control modes. Moreover, the
strategies and control modes formulated in the FERD
system are highly dependent on network communication
and sensors (e.g., positioning) carried fire equipment.
The existing perception and real-time problems (e.g.,
positioning by a sensor and network latency) are potential
problems of the autonomous switching strategies of
multiple fire equipment, which require further research.
For the perception problem of each piece of fire
equipment, it is necessary to use multiple sensors to assist
in correcting the perception and further reduce sensor
errors.
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