
Int. J. Appl. Math. Comput. Sci., 2023, Vol. 33, No. 4, 603–621
DOI: 10.34768/amcs-2023-0043

BAG OF WORDS AND EMBEDDING TEXT REPRESENTATION METHODS
FOR MEDICAL ARTICLE CLASSIFICATION

PAWEŁ CICHOSZ a

aInstitute of Computer Science
Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: pawel.cichosz@pw.edu.pl

Text classification has become a standard component of automated systematic literature review (SLR) solutions, where
articles are classified as relevant or irrelevant to a particular literature study topic. Conventional machine learning algorithms
for tabular data which can learn quickly from not necessarily large and usually imbalanced data with low computational
demands are well suited to this application, but they require that the text data be transformed to a vector representation.
This work investigates the utility of different types of text representations for this purpose. Experiments are presented using
the bag of words representation and selected representations based on word or text embeddings: word2vec, doc2vec, GloVe,
fastText, Flair, and BioBERT. Four classification algorithms are used with these representations: a naive Bayes classifier,
logistic regression, support vector machines, and random forest. They are applied to datasets consisting of scientific article
abstracts from systematic literature review studies in the medical domain and compared with the pre-trained BioBERT
model fine-tuned for classification. The obtained results confirm that the choice of text representation is essential for
successful text classification. It turns out that, while the standard bag of words representation is hard to beat, fastText word
embeddings make it possible to achieve roughly the same level of classification quality with the added benefit of much
lower dimensionality and capability of handling out-of-vocabulary words. More refined embeddings methods based on
deep neural networks, while much more demanding computationally, do not appear to offer substantial advantages for the
classification task. The fine-tuned BioBERT classification model performs on par with conventional algorithms when they
are coupled with their best text representation methods.

Keywords: text representation, text classification, bag of words, word embeddings.

1. Introduction

The rapidly growing amount of available textual data
as well as the progress in machine learning and
natural language processing make text classification an
interesting research direction and an area of successful
practical applications (e.g., McCallum and Nigam, 1998;
Joachims, 1998; Radovanović and Ivanović, 2008; Dařena
and Žižka, 2017; Zymkowski et al., 2022). These research
studies and applications deal with such diverse types of
text as email messages, online chats, website contents,
blog posts, forum discussions, customer opinions, product
reviews, or scientific articles. For the latter, text
classification has become a standard component of
automated systematic literature review (SLR) solutions,
where articles are classified as relevant or irrelevant to a
particular literature study topic (Garcı́a Adeva et al., 2014;

van den Bulk et al., 2022).

1.1. Motivation. This work focuses on the medical
domain because it is a part of a bigger research project on
automating systematic literature reviews for food safety
studies. However, medical article classification deserves
special interest for other reasons as well. It is one
of those application domains where large-scale literature
screening is routinely performed not only by individual
researchers or academic research teams but also by public
and private health care institutions, and the quality of
classification is of utmost importance, since it may have
consequences to human health. Medical articles may
be also quite challenging to classify, with subtle, hard
to capture class boundaries. Examining the utility of
text representation methods for this domain may therefore

mailto:pawel.cichosz@pw.edu.pl

604 P. Cichosz

provide more useful and interesting findings than for some
other more popular but not so demanding applications,
such as product review or social media post sentiment
classification or news article topic classification. Last
but not least, the availability of the domain-specific
pre-trained BioBERT deep-learning language model (Lee
et al., 2020), derived from BERT (Devlin et al., 2019),
which can be used to provide one possible type of text
representation, but also (after fine-tuning) serve as an
alternative classification algorithm, makes studying this
domain even better justified.

Scientific article classification with respect to
relevance may appear easier than the classification of
other types of text, as it may be less prone to being misled
by such issues as subjectivity, word sense ambiguity,
irony, etc., and less affected by imperfections such as
spelling and grammar errors, sloppy and concise style,
overusing of slang, colloquial and idiomatic expressions
etc. It is also less likely, although still possible, that
the relevance depends on specific word order or context
within sentences. It is therefore not essential to discover
and use hidden semantic information that may be hard to
capture, particularly for models that use word occurrence
statistics for text classification. On the other hand, there
are some inherent challenges related to scientific article
classification that may be not so common for other types
of text, such as a relatively small number of labeled
training instances (because, to be labeled, an article needs
to be screened by a human expert to determine relevance
to a particular topic), poor separation between classes
(because relevant and irrelevant articles are usually from
the same thematic area and may be quite similar), heavily
imbalanced classes (because the number of irrelevant
articles often vastly exceeds that of relevant ones), and
the requirement to create models quickly using limited
computational resources (because model creation takes
place as part of an interactive session with the user).

The non-necessity of unraveling deep semantics and
the necessity to learn quickly from not necessarily large
and usually imbalanced data with low computational
demands may favor conventional machine learning
algorithms for tabular data, rather than deep learning
neural networks (Borisov et al., 2022). While the latter
are increasingly popular and often highly successful in
complex natural language processing tasks, the former
still remain valid contenders for the classification task,
using a fraction of computational resources. Active
learning techniques that may reduce the number of labeled
training instances and the associated human expert effort
required to achieve high quality models are also mostly
developed for and easier to apply with conventional
learning algorithms (Ren et al., 2020). Since active
learning involves many iterations of model creation
and prediction, interleaved with user interaction, their
computational efficiency and capability to run on low-cost

CPU-only hardware becomes even more important. These
algorithms, however, require that the text data for
both model creation and prediction be transformed to
a vector representation. The quality of models that
they can produce may heavily depend on the type and
dimensionality of such a representation, as well as the
specific transformation method.

1.2. Related work. Text classification has been
one the the most extensively studied text mining tasks
(Yang and Pedersen, 1997; McCallum and Nigam, 1998;
Joachims, 1998; Forman, 2003; Hassan et al., 2007;
Radovanović and Ivanović, 2008; Aggarwal and Zhai,
2012; Dařena and Žižka, 2017; Zymkowski et al., 2022).
However, not so many of those prior studies focused on
the topic of the utility of different text representation
methods in combination with conventional classification
algorithms for tabular data. The most closely related
publications are presented in Table 1, highlighting text
representation methods and classification used as well as
metric employed for predictive performance evaluation
and data on which the experiments are performed.

These related studies bring interesting and useful
results which encourage further exploration of the
usefulness of embedding-based representations for text
classification, but each of them remains limited in one way
or another. They only use either pre-trained or custom
embedding vectors or models, without comparing these
two. Some of them do not compare embedding-based
representations to bag of words, which is known to work
well and often remains the most obvious choice. Some
of them do not use conventional (non-neural) learning
algorithms with embedding-based representations. This
is a particularly important omission, since the utility
of embeddings for conventional learning algorithms is
arguably more interesting and worthwhile to investigate
than for deep neural networks, which develop internal data
representations anyway. While some of these prior studies
evaluate the predictive performance using the area under
the ROC curve, which aggregates over all possible model
operating points, most of them focus on less informative
single-point metrics such as accuracy or F1, and none
of them uses the area under the precision-recall curve
which is more sensitive to false positives with imbalanced
data and therefore likely to reveal more performance
differences between text representation methods and
classification algorithms. Last but not least, these related
studies are either limited to a single dataset from a
particular application domain or to a few benchmark
datasets, which is hardly sufficient to draw general
conclusions.

1.3. Contributions. This work attempts to fulfill
the gap left by prior work by presenting systematic

Bag of words and embedding text representation methods for medical article classification 605

Table 1. Related work.

Work Text representations Classification algorithms Evaluation Data
Cichosz,
2018

bag of words, custom GloVe naive Bayes, logistic regression,
SVM, random forest

ROC AUC discussion forum
posts

Kaibi et al.,
2019

custom word2vec, fastText,
GloVe

naive Bayes, SVM, logistic
regression,random forest

precision, recall,
F1

Twitter sentiment

Helaskar and
Sonawane,
2019

bag of words, custom
word2vec

SVM accuracy,
precision, recall

Reuters

Wang et al.,
2020

pre-trained word2vec,
GloVe, fastText, char, ELMo,
BERT

deep neural networks (CNN,
Bi-LSTM)

accuracy, F1 20-Newsgroups,
SST-2, AAPD,
Reuters

Deb and
Chanda,
2022

bag of words, pre-trained
word2vec, GloVe, fastText,
BERT

for bag of words: decision trees,
random forest, logistic
regression;
for embeddings: deep neural
networks (softmax, Bi-LSTM)

accuracy, F1,
ROC AUC

Twitter disaster

experiments based on the design decisions listed below,
which may be considered its distinguishing features,

• Different variants of the bag of words
representation are used: term frequency, term
frequency-inverse document frequency, with and
without lemmatization.

• Different variants of embedding-based
representations are used: word2vec, doc2vec,
fastText, Flair, BioBERT, obtained using both
publicly available pre-trained embedding vectors or
models and custom embedding vectors or models
trained on the data to be classified.

• Several classification algorithms are used that are
known to work well with text data: naive Bayes
classifier, logistic regression, SVM, and random
forest.

• Conventional classification algorithms coupled
with the best performing text representations are
compared with the pre-trained BioBERT model
fine-tuned for classification.

• Experiments are performed on 15 datasets from
medical systematic literature review studies, with
class labels representing relevance or irrelevance to
the study topic. The datasets are of of varying size
(between about 300 and 3000) and class imbalance
level (with the relevant class percentage between
about 2% and 35%).

• Predictive performance is evaluated with respect
to the area under ROC and precision-recall

curves using 5 × 10-fold cross-validation, with
a bootstrap significance test for text representation
and classification algorithm comparisons.

• The experimental procedure is described in
detail, including software libraries and algorithm
configurations.

These design decisions make it possible to obtain the
following contributions:

• A systematic evaluation of the predictive
performance of bag of words and several types of
word or text embeddings with different conventional
classification algorithms applied to medical article
classification.

• Rankings of text representation methods and
classification algorithms with respect to predictive
performance.

• An identification of the best performing text
representation methods for particular classification
algorithms and the best performing classification
algorithms for particular text representation methods.

• A comparison with a domain-specific pre-trained
deep learning biomedical language model fine-tuned
for the classification task.

This improves the state of knowledge in text classification
methods and may provide practically useful guidelines for
their applications.

The remainder of this article is organized as follows.
Section 2 presents the text representation methods used

606 P. Cichosz

in this work. Algorithms applied to create classification
models are briefly described in Section 3. Section 4
provides the details of the experimental procedure and
presents the obtained results. Section 5 summarizes the
major findings as well as limitations of this work and
outlines possible continuation directions.

2. Text representation methods
The first issue to be resolved when applying modeling
algorithms from the fields of machine learning and
statistics to text data is transforming the analyzed
document corpus into a representation that can be
handled by these algorithms. This is usually a vector
representation in which each document is assigned values
of a fixed, common set of attributes (Dumais et al.,
1998; Szymański, 2014). A document is then represented
by a vector of its attribute values, with the number
of vector elements being the same for all documents.
This work uses the simple and highly popular bag of
words representation and several types of word or text
embeddings, i.e., transformations that map single words
or sequences of words into a multidimensional real-valued
vector space of fixed dimensionality. The latter include
approaches using shallow and deep neural models (Babić
et al., 2020).

2.1. Bag of words. The simplest vector text
representation that remains popular in text classification
applications is the bag of words (BOW) representation
(McCallum and Nigam, 1998; Joachims, 1998; Aggarwal
and Zhai, 2012), in which attributes directly correspond
to words or, in a slightly more general setting, n-
grams—word sequences of length n (usually n ≤ 3).
Words or n-grams used for this representation are called
terms. In the most common term frequency (TF)
variant, for each term the value of the corresponding
attribute is the number of the term’s occurrences in a
given document. A TF-IDF variant is also popular
in which term frequencies are normalized by inverse
document frequencies to downweight terms occurring in
many documents and upweight terms unique to smaller
subsets of documents (Salton and Buckley, 1988). The
dimensionality of the representation can be controlled by
frequency-based term filtering. Lemmatization can be
applied to assign a single term to different inflected forms
of a word.

2.2. Word2vec and doc2vec. The word2vec
representation is the oldest but still popular type of
word embeddings in which a mapping of words to
vectors is obtained using a shallow two-layer neural
network (Mikolov et al., 2013). The network is trained
by processing word sequences occurring in fixed-length

context windows in one of the following two possible
modes:

continuous bag of words (CBOW): predicting the cur-
rent input word based on the words occurring in the
corresponding context window,

skip-gram (SG): predicting the words occurring in the
context window based on the current input word.

Of those, the former is faster and recommended for bigger
datasets, but the latter may more adequately represent the
context of less frequent words. In any case, the network
is trained on a text corpus and then used to extract word
vectors.

Word vectors can be used to obtain document vectors
for text classification by averaging: the document vector
is obtained as the weighted average of word vectors
for all words occurring in the document and present
in the vocabulary, with their occurrence counts serving
as weights (Mitchell and Lapata, 2010; Yessenalina and
Cardie, 2011). It makes sense to L2-normalize word
vectors (i.e., scale them to a unit length) prior to this
averaging so that the impact of individual words on the
document vector is only proportional to their occurrence
counts.

A more refined and potentially more useful approach
is a modified variation of the algorithm referred to as
doc2vec (Le and Mikolov, 2014). As original word2vec
predicts word occurrences within contexts of surrounding
words, thus identifying word vectors, the doc2vec
algorithm predicts word occurrences based on both the
context of surrounding words and of the document, thus
identifying both word vectors and document vectors.

2.3. GloVe. Global vectors or GloVe word embeddings
are determined based on term co-occurrence statistics
(Pennington et al., 2014). The algorithm creates a
co-occurrence matrix, containing, for all term pairs, the
number of occurrences of one term within a context
window of the other term. The matrix can be used
to estimate co-occurrence probabilities, i.e., for all term
pairs, the probability of one term appearing in the context
of the other term. The GloVe algorithm operates by
factorizing the co-occurrence matrix using stochastic
gradient descent to determine term vectors such that the
dot product of vectors for any two terms approximates
their co-occurrence probability.

Like word2vec (and unlike doc2vec), the GloVe
representation produces word vectors. Document vectors
can be obtained by averaging, as described above for
word2vec.

2.4. FastText. The fastText algorithm creates word
embeddings in a similar way as word2vec, with one
major difference that may lead to important practical

Bag of words and embedding text representation methods for medical article classification 607

advantages. To derive word representations it goes down
to the character level, treating each word as a set of
character n-grams (typically for n between 3 and 6),
corresponding to subwords. It then applies either the
CBOW or SG training mode to determine embedding
vectors for such character n-grams and additionally to
full words, and combines them into word vectors by
summation (Bojanowski et al., 2016). The CBOW mode,
similarly to word2vec, predicts a target word based on
words occurring in its context window. The SG mode
predicts a target word based on another nearby word,
which is similar to the co-occurrence approach of GloVe
and found to work better with subwords. An embedding
vector for a sequence of multiple words (a sentence,
a paragraph, or a document) is obtained by averaging
L2-normalized vectors for each of these words.

Morphologically similar words have some shared
character n-grams and therefore their resulting fast-
Text representations are partially shared. This makes a
more effective use of training data and permits learning
more adequate representations of even rarely occurring
words. Useful word embeddings can be obtained using
relatively small datasets, which is useful for creating
custom domain-specific text representation. Word vectors
can be obtained even for previously unseen words, which
is very convenient when applying a classification model
using text representation derived from available data to a
new dataset.

2.4.1. Flair. The type of word embeddings
referred to as Flair due to the name of the natural
language processing software library that provides
its implementation (Akbik et al., 2019) can be
described as contextual string embeddings. It takes
the character-level approach of fastText even further, by
abandoning any explicit notion of words which are only
considered sequences of characters, but combines it with
contextualization by surrounding text (Akbik et al., 2018).
Such embeddings are determined based on hidden states
of a recurrent neural network character-level language
model, using the LSTM architecture (Graves, 2013). It
can be a forward model that predicts the probability of
the next character based on the sequence of previous
characters, or a backward model that works in the
reverse direction. Word embeddings are obtained by
concatenating network hidden states. A combination
of a forward model and a backward model can be used
by the so called stacking, which basically concatenates
embedding vectors generated using the two models.

Flair embeddings can be obtained for arbitrary
sequences of characters, including rarely occurring or
previously unseen words. However, each word is
processed as part of a longer sequence (a sentence or a
paragraph) and different word vectors are obtained for the
same words in different contexts. This makes contextual

string embeddings potentially more powerful than more
basic word embeddings reviewed above. However,
they are also substantially more costly to train and to
calculate—the former requires training a recurrent neural
network with hundreds or thousands of hidden units,
and the latter—processing text through such a network
character by character.

2.5. BioBERT. BioBERT is a deep learning language
model obtained adopting the architecture and learning
algorithm of the BERT model (Bidirectional Encoder
Representations from Transformers (Devlin et al., 2019))
and pre-training it on large biomedical text corpora (Lee
et al., 2020). The BERT and BioBERT models use the
transformer network architecture based on the attention
mechanism, without recurrence, which makes them faster
and easier to train than LSTM networks (Vaswani et al.,
2017). Rather than combining a forward model and a
backward model, they use a masking approach to obtain a
contextual bidirectional model: randomly selected words
in a sequence are masked (replaced by a special mask
token or by random words) and have to be predicted based
on the remaining words. Therefore both the left and right
contexts of words are taken into account in all network
layers.

BioBERT embeddings for individual words with no
context (i.e., single-word sequences) could be aggregated
by weighted averaging to obtain document vectors,
similarly as for GloVe or word2vec, but this would loose
the context-sensitivity which is supposed to be their
substantial advantage over those simpler approaches. For
relatively short texts it makes therefore more sense to
treat the entire text as one sequence for which the model
generates an embedding vector.

3. Classification algorithms
A selection of well known classification algorithms for
tabular data that have proved useful for text classification
is used for this study a. These algorithms are relatively
resistant to overfitting, which is a serious threat in
high-dimensional input spaces, and do not require
extensive hyperparameter tuning to achieve a reasonable
level of prediction quality.

3.1. Naive Bayes. One of the simplest practically
useful classification algorithms, the naive Bayes classi-
fier, is often successfully applied to text classification.
It predicts the class probability given attribute values
using the Bayes theorem and assuming the conditional
independence of attribute values given the class. The
algorithms does not tend to overfit and requires practically
no tuning.

For the bag of words representation, where attributes
correspond to word occurrence frequencies, conditional

608 P. Cichosz

attribute value probabilities given the class can be
estimated using the multinomial distribution (McCallum
and Nigam, 1998; Lewis, 1998). The resulting version
of the algorithm is referred to as the multinomial naive
Bayes classifier. For representations based on word or text
embeddings, where attribute values cannot be interpreted
as frequencies, the standard approach of handling numeric
attributes using normal density function values can be
applied. This is referred to as the Gaussian naive Bayes
classifier.

3.2. Logistic regression. A logistic regression model
combines an inner linear representation function with an
outer logit transformation which makes it possible to
interpret model outputs as predicted class probabilities
(Hilbe, 2009). Training such a model consists in finding
parameters of the inner linear function which maximize
the log-likelihood of training set classes.

The algorithm is easy to apply and not overly
prone to overfitting unless used for high-dimensional data,
which is unfortunately often the case in text classification
applications, at least with the bag of words representation.
Logistic regression can be used with text data in arbitrary
vector representations.

3.3. Support vector machines. Support vector
machines (SVMs) use a simple linear-threshold model
representation in which a linear decision boundary is
identified using the objective of classification margin
maximization subject to class separation constraints
(Cortes and Vapnik, 1995; Platt, 1998; Hamel, 2009).
Nonlinear relationships can be represented by input
transformation with kernel functions. Signed distances of
classified instances from the decision boundary serve as
numeric decision function values.

An important advantage of SVMs, achieved by
margin maximization, is the insensitivity of model quality
to data dimensionality, which—unlike for many other
algorithms—does not increase the risk of overfitting. This
makes the algorithm well suited to text classification,
where high dimensionality is to be expected, at least
with the bag of words representation (Joachims, 1998;
Joachims, 2002).

3.4. Random forest. The random forest algorithm
creates an ensemble model consisting of unpruned
decision trees, grown based on multiple bootstrap samples
drawn with replacement from the training set, with
randomized split selection (Breiman, 2001). Random
forest prediction is performed by simple unweighted
voting of individual trees, and vote distribution can
be used to obtain class probability predictions. With
several dozens or hundreds of diversified trees this usually
delivers predictions of very high quality.

The algorithm is easy to use due to its resistance to
overfitting and rather low sensitivity to hyperparameter
settings. It is applicable to text classification with an
arbitrary vector representation, which is confirmed by
successful results reported in the literature (Rios and
Zha, 2004; Koprinska et al., 2007; Xue and Li, 2015).

4. Experimental study
The experimental study applies text representation
methods reviewed in Section 2 with classification
algorithms briefly described in Section 3 to datasets
containing scientific articles from biomedical SLR
studies. It also includes a comparison with a pre-trained
BioBERT model fine-tuned for classification.

4.1. Datasets. The datasets used for the experiments
come from drug class review SLR studies (Cohen et al.,
2006).1 There are 15 topics or study areas and articles
(identified by PubMed ID) are labeled as relevant or
irrelevant to those topics based on human evaluation of
abstracts and full texts. Abstracts for most of these
articles (with some not matching correctly ignored) have
been obtained from the MEDLINE database.2 Combining
article abstracts with relevant/irrelevant class labels for 15
topics yields therefore 15 datasets for text classification.3

Since full article texts are not available and classification
can be performed for abstracts only, relevant/irrelevant
class labels based on human evaluation of abstracts are
used.

Table 2 presents the size and class distribution of
each dataset. They differ slightly from those reported
by Cohen et al. (2006) due to possible changes of
the MEDLINE records or differences in the matching
procedure. As to be expected in the case of systematic
literature review studies, datasets are imbalanced (some
of them quite heavily) and relatively small.

Besides the work of Cohen et al. (2006) from which
the data origin, they were used in other studies (Matwin
et al., 2010; Jonnalagadda and Petitti, 2013; Khabsa
et al., 2016; Ji et al., 2017). They focused on workload
reduction in a systematic literature review process rather
than on predictive performance per se and their results
cannot be directly compared with those reported in this
article due to different performance measures and model
evaluation procedures.

1Available from https://dmice.ohsu.edu/cohenaa/sys
tematic-drug-class-review-data.html (this and all other
mentioned websites last accessed on 30 November 2023).

2Strictly speaking, from MEDLINE-exported files for the TREC
2004 Genomics Track, available from https://dmice.ohsu.edu
/trec-gen/2004data.html.

3The datasets prepared and used for this work, containing article
PubMed IDs, abstracts, and class labels, are available from https:/
/doi.org/10.6084/m9.figshare.23626656.v1.

https://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.html
https://dmice.ohsu.edu/cohenaa/systematic-drug-class-review-data.html
https://dmice.ohsu.edu/trec-gen/2004data.html
https://dmice.ohsu.edu/trec-gen/2004data.html
https://doi.org/10.6084/m9.figshare.23626656.v1
https://doi.org/10.6084/m9.figshare.23626656.v1

Bag of words and embedding text representation methods for medical article classification 609

Table 2. Dataset sizes and class distribution.

Dataset Size Relevant %
ACEInhibitors 2215 7.54
ADHD 797 10.41
Antihistamines 285 31.23
AtypicalAntipsychotics 1020 32.45
BetaBlockers 1849 14.49
CalciumChannelBlockers 1100 23.18
Estrogens 344 22.67
NSAIDS 355 23.38
Opiods 1760 2.44
OralHypoglycemics 466 28.11
ProtonPumpInhibitors 1193 18.69
SkeletalMuscleRelaxants 1341 2.24
Statins 2727 5.50
Triptans 585 34.36
UrinaryIncontinence 283 24.03

4.2. Algorithm implementations and setup. The
experimental study was, with one minor exception related
to GloVe embedding vectors training explained later,
performed in the Python language environment using
Python software libraries.

4.2.1. Text representation methods. Implementation
and setup details for all types of text representation
described in Section 2 are provided below. Notice that
for embedding-based representations the dimensionality
depends on available pre-trained embedding vectors or
models and is therefore not uniform across different
representation types. When using custom embedding
vectors or models trained on the data used for
these experiments, a uniform dimensionality of 100
is arbitrarily adopted. It is much smaller than for
pre-trained embeddings, consistently with the relatively
small size of the available training data, and increasing
the dimensionality was not found to improve predictive
performance in preliminary experiments.

Bag of words. The bag of words representation
is implemented using the CountVectorizer and
TfidfVectorizer classes from the scikit-learn
Python library4 (Pedregosa et al., 2011). The min df
and max df parameters, controlling the minimum and
maximum document frequency for a word to be included
in the vocabulary, were arbitrarily set to common-sense
values 0.01 and 0.95, respectively, resulting in a moderate
vocabulary size (typically between 1000 and 2000 words).
Prior to determining the vocabulary and counting word
occurrences, text was tokenized with non-word and

4Version 1.0.2, https://scikit-learn.org.

stop-word removal as well as with optional lemmatization
using the spaCy Python library5 (Honnibal et al., 2021).
The following versions of the bag of words representation
are used:

BOW-TF: with TF attribute values,

BOW-TFIDF: with TF-IDF attribute values,

BOW-L-TF: with lemmatization and TF attribute values,

BOW-L-TFIDF: with lemmatization and TF-IDF
attribute values.

Word2vec. The 300-dimensional word2vec vectors
pre-trained on the Google News corpus were used.6 For
training custom vectors the Word2Vec class from the
Gensim Python library was used (Řehůřek and Sojka,
2010; Řehůřek, 2021), with vector dimensionality set to
100, CBOW training mode, and other parameters left
at their default settings. The following versions of the
representation are used:

W2V-P: pre-trained word2vec vectors,

W2V-CS: custom word2vec vectors trained on data from
the single SLR study for which a classification model
is to be created,

W2V-CA: custom word2vec vectors trained on combined
data from all SLR studies.

Doc2vec. A pre-trained doc2vec embedding model
appears not to be available. For training custom doc2vec
embedding models the Doc2Vec class from the Gensim
Python library was used (Řehůřek and Sojka, 2010;
Řehůřek, 2021), with vector dimensionality set to 100
and other parameters left at their default settings. The
following versions of the representation are used:

D2V-CS: a custom doc2vec embedding model trained
on data from the single SLR study for which a
classification model is to be created,

D2V-CA: a custom doc2vec embedding model trained on
combined data from all SLR studies.

GloVe. The 300-dimensional GloVe vectors pre-trained
on the Wikipedia 2014 and Gigaworld 5 corpora were
used.7 For training custom vectors the GloVe C code
was used,8 with vector dimensionality set to 100, context

5Version 3.0.5, http://spacy.io.
6Available from https://code.google.com/archive/p/

word2vec.
7Available from https://nlp.stanford.edu/projects/

glove.
8Available from https://github.com/stanfordnlp/Glo

Ve.

https://scikit-learn.org
http://spacy.io
https://code.google.com/archive/p/word2vec
https://code.google.com/archive/p/word2vec
https://nlp.stanford.edu/projects/glove
https://nlp.stanford.edu/projects/glove
https://github.com/stanfordnlp/GloVe
https://github.com/stanfordnlp/GloVe

610 P. Cichosz

window size set to 5, and other parameters left at their
default settings. The following versions of the GloVe
representation are used:

GV-P: pre-trained GloVe vectors,

GV-CS: custom GloVe vectors trained on data from the
single SLR study for which a classification model is
to be created,

GV-CA: custom GloVe vectors trained on combined data
from all SLR studies.

FastText. The 300-dimensional fastText vectors
pre-trained on the Common Crawl corpus were used.9

For training custom fastText vectors, the fasttext
Python library10 was used (Bojanowski et al., 2020),
with vector dimensionality set to 100, SG training mode,
and other parameters left at their default settings. The
following versions of the representation are used:

FT-P: pre-trained fastText vectors,

FT-CS: custom fastText vectors trained on data from the
single SLR study for which a classification model is
to be created,

FT-CA: custom fastText vectors trained on combined
data from all SLR studies.

Flair. The 2048-dimensional Flair embedding model
pre-trained on the one-billion word news corpus
distributed with the flair Python library11 (Akbik et al.,
2021) was used, in the “fast” (“CPU-friendly”) version
of reduced complexity. The same library was used
to train custom Flair embedding models, with vector
dimensionality set to 100, the number of layers set to 1,
and other parameters left at their default settings. In both
cases stacked forward and backward models were used.
The following versions of the representation are used:

FL-P: a pre-trained Flair embedding model,

FL-CS: a custom Flair embedding model trained on data
from the single SLR study for which a classification
model is to be created,

FL-CA: a custom Flair embedding model trained on
combined data from all SLR studies.

BioBERT. The 768-dimensional pre-trained BioBERT
model was applied,12 using the BertModel class from

9Available from https://fasttext.cc/docs/en/englis
h-vectors.html.

10Version 0.9.2, https://fasttext.cc.
11Version 0.10, https://github.com/flairNLP/flair.
12Available from https://huggingface.co/dmis-lab/bi

obert-base-cased-v1.1.

the transformers Python library13 (Wolf et al., 2020).
When applying the model to obtain text embeddings,
the input text was truncated to the model’s maximum
sequence length of 512 tokens, which marginally affects
only about 0.5% articles. Due to the computational
expense of generating text embeddings from this model,
a simplified de-contextualized application method of the
pre-trained model was additionally considered: vectors
for single words from the bag of words vocabulary were
determined and then document vectors were obtained
by averaging such vectors for words occurring in each
document, weighted by their occurrence frequency. The
following versions of the representation are therefore
used:

BB-PT: a pre-trained BioBERT model applied to texts,

BB-PW: a pre-trained BioBERT model applied to single
words from the bag of words vocabulary and
then aggregated by averaging by their occurrence
frequency.

4.2.2. Classification algorithms. The following
implementations of classification algorithms described
in Section 3 provided by the scikit-learn Python
library (Pedregosa et al., 2011) were used:

NB: naive Bayes classifier, classes MultinomialNB
for the bag of words representation and
GaussianNB for all the embedding-based
representations, with the default hyperparameter
setup,

LR: logistic regression, class LogisticRegression
with the maximum number of iterations set to 200
and other hyperparameters left at default settings,

SVM: class SVC with radial kernel, balanced class
weighting, and other hyperparameters left at default
settings, with data standardization performed using
the StandardScaler class,

RF: random forest, which is implemented as class
RandomForestClassifier with 500 trees,
balanced class weighting, and other hyperparameters
left at default settings.

While some settings were manually adjusted,
as specified above, no hyperparameter tuning was
performed. This is because with hyperparameter tuning
a separate test set or an external cross-validation loop
would be needed for reliable predictive performance
evaluation. Otherwise, predictive performance estimates
might be overoptimistic. However, with relatively small
datasets, as in the presented experimental study (and

13Version 4.29.2, https://huggingface.co/docs/transf
ormers.

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc
https://github.com/flairNLP/flair
https://huggingface.co/dmis-lab/biobert-base-cased-v1.1
https://huggingface.co/dmis-lab/biobert-base-cased-v1.1
https://huggingface.co/docs/transformers
https://huggingface.co/docs/transformers

Bag of words and embedding text representation methods for medical article classification 611

as typically encountered in systematic literature review
applications) saving some data for final model evaluation
after hyperparameter tuning would be problematic and
have potentially harmful effects on model quality
and evaluation reliability, outweighing the benefits of
tuning. Mostly default settings are used therefore, which
may prevent some algorithms from reaching their top
possible performance level and make the reported results
conservative. From a practical point of view, it may
be actually even more interesting to see what level
of prediction quality particular algorithms coupled with
different text representations method achieve in default
configurations than in carefully tuned ones.

4.2.3. BioBERT fine-tuning. The same pre-trained
BioBERT model providing text embeddings mentioned
above was also fine-tuned for the classification task
using the BertForSequenceClassification
and Trainer classes from the transformers
Python library (Wolf et al., 2020). Consistently with the
approach adopted for the conventional algorithms,
no hyperparameter tuning was performed, with
the associated computational expense adding to the
justification for this decision already discussed above.
Two exceptions are some preliminary experiments with
a custom weighted cross-entropy loss function, using
class-rebalancing weights, and with model layer freezing.
Based on these experiments, the training process was
configured to use the custom weighted loss function, with
class weights inversely proportional to the square roots
of class counts, and to keep the embedding layer and the
first 7 encoder layers frozen. The former was found to
improve performance in comparison with the standard
unweighted cross-entropy loss function, and the latter
was found to save computation time without classification
quality degradation. As for BioBERT text embeddings,
the input text for training and prediction was truncated
to the model’s maximum sequence length of 512 tokens,
which marginally affects only about 0.5% articles.

4.3. Predictive performance evaluation. Common
simple classification quality measures such as the
misclassification error or classification accuracy are not
useful whenever classes are imbalanced or likely to have
different predictability. In this article classification quality
is evaluated using the ROC analysis (Egan, 1975; Fawcett,
2006), considering all possible tradeoff points between
the true positive rate and the false positive rate. The
former is the share of instances of the positive class which
are correctly predicted to be positive and the latter is
the share of instances of the negative class which are
incorrectly predicted to be positive. The performance
across all possible tradeoffs, corresponding to different
predicted positive class probability or decision function

value thresholds, can be summarized using the area under
the ROC curve (AUC).

With heavily imbalanced classes and most instances
being negative, the false positive rate is not sensitive
to even a substantial share of incorrect positive class
predictions, because the number of false positives remains
small relative to the dominating negative class count. It
is therefore useful to additionally consider the precision,
which is the share of positive class predictions that
are correct. Its tradeoff against the recall, which is
another term for the true positive rate, is represented by
precision-recall (PR) curves and can be summarized by
the area under the PR curve (PR AUC).

For reliable prediction quality evaluation the n ×
k-fold cross-validation procedure is applied (Arlot and
Celisse, 2010), which effectively uses the available data
for both model creation and evaluation. This is achieved
by randomly splitting it into k equally sized subsets,
each of which serves as a test set for evaluating the
model created on the combined remaining subsets. This
process is repeated n times for further variance reduction.
The true class labels and predictions for all n × k
iterations are then combined to determine ROC curves,
PR curves, and the corresponding AUC values. This
micro-averaging approach, suggested by Fawcett (2006)
as an alternative to curve averaging, may sometimes
underestimate the predictive performance if predicted
probabilities or decision function values are obtained for
different data folds and are not calibrated with one another
(Forman and Scholz, 2010). The effect is usually small
and may be in fact considered desirable in the case of
text classification for systematic literature reviews, since
it penalizes the inconsistency of class probabilities or
decision values, which would make it problematic to set
the classification threshold for the relevant class. The
cross-validation procedure uses k = 10 folds and n = 5
repeats.

4.4. Results. Two major types of results are presented
in this section:

text representation utility: assessing the utility of
different text representation methods for particular
classification algorithms, based on aggregated
predictive performance over all datasets,

classification quality comparison: comparing the
quality of predictions obtained by particular
classification algorithms coupled with their
respective best text representation methods on
each dataset, as well as by a pre-trained BioBERT
model fine-tuned for classification.

4.4.1. Text representation utility. Due to the large
number of dataset, text representation, and classification

612 P. Cichosz

Table 3. Average ROC AUC and PR AUC values over all datasets.

(a) ROC AUC

NB LR SVM RF
BOW-TF 0.82 0.79 0.81 0.84
BOW-TFIDF 0.77 0.84 0.81 0.83
BOW-L-TF 0.82 0.79 0.81 0.84
BOW-L-TFIDF 0.77 0.84 0.81 0.83
W2V-P 0.71 0.77 0.81 0.80
W2V-CS 0.70 0.79 0.76 0.75
W2V-CA 0.76 0.77 0.81 0.81
D2V-CS 0.77 0.78 0.80 0.80
D2V-CA 0.77 0.75 0.79 0.78
GV-P 0.73 0.77 0.82 0.80
GV-CS 0.76 0.76 0.80 0.80
GV-CA 0.76 0.76 0.82 0.81
FT-P 0.78 0.75 0.83 0.81
FT-CS 0.77 0.76 0.83 0.82
FT-CA 0.79 0.77 0.84 0.83
FL-P 0.68 0.74 0.81 0.77
FL-CS 0.71 0.69 0.81 0.78
FL-CA 0.69 0.67 0.78 0.76
BB-PT 0.76 0.81 0.83 0.81
BB-PW 0.71 0.75 0.80 0.79

(b) PR AUC

NB LR SVM RF
BOW-TF 0.50 0.47 0.50 0.55
BOW-TFIDF 0.43 0.53 0.51 0.53
BOW-L-TF 0.50 0.47 0.49 0.55
BOW-L-TFIDF 0.43 0.53 0.51 0.54
W2V-P 0.32 0.42 0.50 0.47
W2V-CS 0.32 0.45 0.42 0.40
W2V-CA 0.39 0.42 0.50 0.49
D2V-CS 0.41 0.41 0.47 0.44
D2V-CA 0.42 0.38 0.47 0.45
GV-P 0.35 0.42 0.50 0.48
GV-CS 0.39 0.42 0.48 0.48
GV-CA 0.39 0.41 0.50 0.49
FT-P 0.42 0.37 0.54 0.50
FT-CS 0.42 0.39 0.52 0.50
FT-CA 0.45 0.41 0.55 0.53
FL-P 0.29 0.37 0.51 0.46
FL-CS 0.35 0.32 0.49 0.46
FL-CA 0.32 0.29 0.47 0.42
BB-PT 0.38 0.49 0.54 0.49
BB-PW 0.32 0.41 0.48 0.46

algorithm combinations only aggregated summary results
over all 15 datasets are presented here. They not only take
up less space, but are also easier to interpret and lead to
clearer conclusions.

Table 3 presents ROC AUC and PR AUC values
for all text representation and algorithm combinations,
averaged over all datasets.

The following observations can be made based on
these results:

• the term-frequency bag of words representation is
the most useful overall, there is no improvement
due to lemmatization, and using TF-IDF gives mixed
results (better predictions for logistic regression,
worse predictions for the naive Bayes classifier, and
no significant effect for the other algorithms);

• the custom fastText model trained on all combined
datasets appears the most useful embedding-based
representation and approaches the performance level
of the bag of words representations;

• custom word2vec vectors trained on a single dataset
and Flair embeddings are less useful than the other
embedding-based representations;

• despite the refinement and computational expense
of the BioBERT model, the resulting text
representations appear to have no major advantages

over simpler and more efficient alternatives such as
fastText or GloVe;

• the naive Bayes classifier works best with the bag
of words representations and is less effective when
using embedding-based representations;

• the SVM and random forest algorithms are the most
effective overall, usually outperforming the other
two.

To more reliably determine which text
representations work best with particular classification
algorithms, for each algorithm a 1000-sample bootstrap
statistical significance test was performed to determine
for all pairs of text representation methods whether
one of them significantly outperformed the other on a
particular dataset with respect to the area under the PR
curve. Based on the results of these tests, Table 4(a)
presents the ranking of text representations for each of
the classification algorithms used in the experiments
(corresponding to table columns), according to the
number of times each representation significantly
outperformed any other representation. The higher a
text representation method appears in the table column
corresponding to a given algorithm, the more frequently it
performed significantly better than another representation
method with this algorithm. The following observations
can be made:

Bag of words and embedding text representation methods for medical article classification 613

Table 4. Rankings of text representations and classification algorithms.

(a) ranking of text representations for particular classification algorithms

NB LR SVM RF
BOW-TF BOW-L-TFIDF FT-CA BOW-L-TF
BOW-L-TF BOW-TFIDF FT-P BOW-TF
FT-CA BB-PT BB-PT BOW-TFIDF
FT-P BOW-TF FT-CS BOW-L-TFIDF
FT-CS W2V-CS GV-CA FT-CA
BOW-TFIDF BOW-L-TF BOW-TFIDF FT-P
BOW-L-TFIDF W2V-CA GV-P FT-CS
D2V-CS GV-CA BOW-L-TFIDF GV-CA
D2V-CA GV-CS FL-P BB-PT
GV-CS FT-CA BOW-TF W2V-CA
GV-CA GV-P W2V-CA GV-CS
W2V-CA D2V-CS BOW-L-TF GV-P
BB-PT W2V-P W2V-P W2V-P
FL-CS FT-CS FL-CS BB-PW
GV-P BB-PW BB-PW D2V-CA
W2V-CS D2V-CA GV-CS FL-CS
W2V-P FT-P D2V-CA FL-P
FL-CA FL-P FL-CA D2V-CS
BB-PW FL-CS D2V-CS W2V-CS
FL-P FL-CA W2V-CS FL-CA

(b) ranking of classification algorithms for particular text
representations

BOW-TF RF SVM NB LR
BOW-TFIDF LR RF SVM NB
BOW-L-TF RF SVM NB LR
BOW-L-TFIDF LR RF SVM NB
W2V-P SVM RF LR NB
W2V-CS LR SVM RF NB
W2V-CA SVM RF LR NB
D2V-CS SVM RF LR NB
D2V-CA SVM RF NB LR
GV-P SVM RF LR NB
GV-CS SVM RF LR NB
GV-CA SVM RF LR NB
FT-P SVM RF NB LR
FT-CS SVM RF NB LR
FT-CA SVM RF NB LR
FL-P SVM RF LR NB
FL-CS SVM RF NB LR
FL-CA SVM RF NB LR
BB-PT SVM RF LR NB
BB-PW SVM RF LR NB

• the bag of words representations are always among
the most successful representations for all algorithms
except for SVM;

• the basic term-frequency variant of bag of words
usually works best except for logistic regression,
where the TF-IDF variant is usually superior;

• the custom fastText representation trained
on all combined datasets is the most useful
embedding-based representations for all the
algorithms except for logistic regression, where the
BioBERT model applied to texts is usually superior.

Similarly, to determine which classification
algorithms work best with particular text representation
methods, for each representation a 1000-sample bootstrap
statistical significance test was performed to determine
for all pairs of classification algorithms whether one of
them significantly outperformed the other on a particular
dataset with respect to the area under the PR curve.
Based on the results of these tests, Table 4(b) presents the
ranking of classification algorithms for each of the text
representations used in the experiments (corresponding
to table rows), according to the number of times each
algorithm significantly outperformed any other algorithm.
The more to the left a classification algorithms appears in
the table row corresponding to a given text representation,

the more frequently it performed significantly better than
another algorithm with this representation. The following
observations can be made:

• the random forest algorithm is the most successful
for the term frequency bag of words representation;

• the SVM algorithm is the most successful for most
of the embedding-based representations;

• the naive Bayes classifier cannot significantly
outperform the random forest and SVM algorithms,
but it tends to work better than logistic regression
with the term frequency bag of words representation
and with the fastText embeddings;

• logistic regression works well for the TF-IDF version
of bag of words and for some types of embeddings
(in particular, word2vec, GloVe and BioBERT).

It can be interesting to verify to what extent the
predictions of particular classification algorithms change
when switching text representation methods. Figure 1
provides some insight into that by presenting correlation
plots for predicted positive class probabilities (for the
naive Bayes classifier, logistic regression, and random
forest algorithms) or decision function values (for the
SVM algorithm) obtained by each algorithm when used
with different text representations methods. It can be
observed that:

614 P. Cichosz

Fig. 1. Correlations between predictions obtained using different text representation methods.

• as to be expected, the bag of words variants with and
without lemmatization yield very highly correlated
predictions;

• higher correlations are observed between the
predictions obtained using the word2cec and GloVe
representations;

• for logistic regression, the predictions obtained
using the TF-IDF bag of words representations
have higher correlations with the predictions of
the embedding-based representations than those
obtained using TF bag of words;

• the logistic regression predictions obtained using the
fastText and Flair embeddings are highly correlated;

• the overall level of prediction correlations is
the highest for the random forest algorithm
(which can be therefore considered the most
representation-insensitive) and the lowest for the
naive Bayes and logistic regression algorithms
(which can be therefore considered the most
representation-sensitive).

4.4.2. Classification quality comparison. For a more
detailed view of the predictive performance, Table 5

Bag of words and embedding text representation methods for medical article classification 615

Table 5. ROC AUC and PR AUC values for particular datasets obtained by each algorithm with the best text representation.

(a) ROC AUC

NB LR SVM RF BB
ACEInhibitors 0.82 0.85 0.85 0.83 0.88
ADHD 0.92 0.93 0.93 0.94 0.94
Antihistamines 0.75 0.77 0.72 0.79 0.73
AtypicalAntipsychotics 0.79 0.80 0.81 0.79 0.82
BetaBlockers 0.79 0.83 0.84 0.80 0.81
CalciumChannelBlockers 0.80 0.83 0.85 0.84 0.85
Estrogens 0.87 0.87 0.86 0.86 0.81
NSAIDS 0.89 0.89 0.90 0.90 0.88
Opiods 0.84 0.86 0.89 0.85 0.81
OralHypoglycemics 0.74 0.75 0.75 0.76 0.77
ProtonPumpInhibitors 0.77 0.79 0.80 0.81 0.79
SkeletalMuscleRelaxants 0.82 0.87 0.85 0.84 0.76
Statins 0.81 0.84 0.85 0.82 0.81
Triptans 0.86 0.89 0.89 0.89 0.88
UrinaryIncontinence 0.84 0.85 0.86 0.85 0.83
Average 0.82 0.84 0.84 0.84 0.82

(b) PR AUC

NB LR SVM RF BB
ACEInhibitors 0.33 0.40 0.41 0.40 0.45
ADHD 0.48 0.56 0.60 0.63 0.64
Antihistamines 0.53 0.61 0.59 0.64 0.54
AtypicalAntipsychotics 0.66 0.66 0.69 0.67 0.72
BetaBlockers 0.44 0.51 0.49 0.45 0.50
CalciumChannelBlockers 0.55 0.60 0.62 0.66 0.65
Estrogens 0.64 0.67 0.67 0.64 0.50
NSAIDS 0.69 0.74 0.74 0.77 0.72
Opiods 0.17 0.17 0.23 0.24 0.32
OralHypoglycemics 0.58 0.61 0.58 0.61 0.59
ProtonPumpInhibitors 0.49 0.54 0.51 0.55 0.51
SkeletalMuscleRelaxants 0.25 0.24 0.30 0.35 0.10
Statins 0.33 0.38 0.41 0.36 0.35
Triptans 0.72 0.76 0.75 0.78 0.79
UrinaryIncontinence 0.59 0.56 0.65 0.57 0.62
Average 0.50 0.53 0.55 0.55 0.53

presents the area under the ROC and PR curves obtained
for each dataset by each classification algorithm coupled
with its overall best text representation, as determined
by the ranking shown in Table 4(a) (i.e., the overall
top-ranked representation for a given algorithm is selected
and used for all datasets). This is also where the results
obtained by the pre-trained BioBERT model fine-tuned for
classification are presented in the last column. The bottom
row of each table presents the average over all datasets.
The maximum value in each row is marked by a bold font
and the minimum value in each row is marked by an italic
font. The following observations can be made based on
these results:

• when coupled with the best text representation
methods, all the conventional algorithms deliver a
similar level of prediction quality, with the SVM
and random forest algorithms slightly better on the
average than the naive Bayes and linear regression
algorithms;

• no single algorithm is the best or the worst on all
datasets;

• the random forest, SVM, and fine-tuned BioBERT
algorithms are the most frequent winners, and the
naive Bayes classifier is the most frequent loser;

• the average predictive performance of the fine-tuned
BioBERT model is similar to that of the conventional
algorithms, although for some datasets it differs
substantially, e.g., it is clearly better for the Opiods
datasets, but much worse for the SkeletalMuscleRe-

laxants dataset (interestingly, these two datasets are
of similar size and imbalance ratio).

It is interesting to observe how the prediction
quality on particular datasets is related to their properties
presented in Table 2. Table 6 demonstrates the linear
correlation values between the PR AUC of each algorithm
and the size as well as relevant class percentage. It can be
seen that the predictive performance of all the algorithms
is quite strongly correlated positively with the relevant
class percentage, which is clearly to be expected. What
may appear somewhat more surprising is the negative
correlation with the dataset size. The contradiction
with the expectation, based on both common sense and
machine learning theory, that more data permits better
models, is only apparent, though, since this expectation
would be justified only if the number of training instances
were increased for the same classification task, while
keeping the test set size unchanged. Here different
datasets correspond to different classification tasks, the
training and test data are sized proportionally under the
k-fold cross-validation procedure, and bigger datasets are
likely to contain more articles that are hard to correctly
separate.

Finally, to visualize the predictive performance
possible to obtain on the “easiest” and “hardest” data,
Figures 2 and 3 present the ROC and PR curves obtained
using the two most successful classification algorithms,
SVM and random forest, with selected text representation
methods, on the SkeletalMuscleRelaxants and Triptans
datasets. These are the two datasets with the highest and
lowest level of class imbalance, respectively.

616 P. Cichosz

Fig. 2. Selected ROC curves.

Not surprisingly, precision-recall curves differ
between the two datasets much more substantially than
ROC curves. This confirms that class imbalance makes it
a serious challenge for classification models to maintain a
reasonable level of precision for useful values of recall.
The results on the dataset with just above 2% relevant
articles can be hardly considered satisfactory, while those
on the dataset with more that one-third of relevant articles
are quite good. The performance differences between
particular text representation methods are also more
pronounced on the more imbalanced data.

4.5. Discussion. Unfortunately no single classification
algorithm and text representation combination yields the
best models for all data. However, based on the results
obtained on 15 datasets, corresponding to different SLR
studies and exhibiting varying size and class imbalance
level, it is possible to derive some recommendations.
While the bag of words representation makes it possible
to achieve the best level of prediction quality, some
embedding-based representation reach nearly the same
predictive performance and offer other noteworthy
advantages. In particular, fastText embeddings, obtained
using either a general purpose pre-trained model or,

Bag of words and embedding text representation methods for medical article classification 617

Fig. 3. Selected PR curves.

preferably, a custom domain-specific model, turned out
particularly useful, making it possible to achieve a high
level of classification quality. It worked particularly
well with the SVM and random forest algorithms, made
it possible to keep input dimensionality relatively low,
and did not incur a high computational expense. The
SVM algorithm was found to be the most effective for
all of the embedding-based representations, although the
random forest algorithm can be considered more universal
and safe to use, since it delivered models of nearly the
same quality for several embedding-based representations
and performed better with bag of words. Its relatively

low sensitivity to the choice of text representation,
confirmed by a high level of prediction correlations
obtained with different representations, is an interesting
and useful property, which adds to its low sensitivity to
hyperparameter settings and makes it particularly easy to
use for text classification. For the other algorithms, more
sensitive to the choice of text representation, it is possible
that combining representations for which predictions are
of similar quality but not very highly correlated would
give some improvement. However, the weakest prediction
correlations usually tend to occur for representation pairs
of which one is clearly superior to the other and this does

618 P. Cichosz

Table 6. Correlations between PR AUC values and the dataset
size as well as relevant class percentage.

NB LR SVM RF BB
Size –0.74 –0.69 –0.72 –0.77 –0.56
Relevant % 0.91 0.88 0.86 0.86 0.81

not appear to be a very promising direction of further
exploration.

Interestingly, BioBERT—a state-of-the art contex-
tual bidirectional neural language model trained on
biomedical text corpora—did not provide a more useful
representation for text classification, whereas requiring
much more computation time. Similarly as the text
embeddings obtained using BioBERT were comparably
useful to those from simpler and more efficient embedding
models, the BioBERT model fine-tuned as a classifier
delivered predictions of similar quality to that of
conventional algorithms when they were coupled with
their respective best text representation methods. One
possible reason of the fine-tuned BioBERT not showing
its full potential may be the relatively small size and
high level of class imbalance of the datasets. It is not
unlikely that with some hyperparameter tuning, different
class weights for a custom loss function or a resampling
scheme increasing sensitivity to the minority class, or
some data augmentation the BioBERT model would
deliver improved prediction quality, exceeding that of the
conventional algorithms, but examining this possibility is
beyond the objectives and scope of this article.

5. Conclusion
The results of this work confirm that the choice
of text representation is essential for successful text
classification. While not at all surprising, this has not
apparently received as much recognition as it deserves.
Several studies on text classification focus much more on
classification algorithms and their setup than on the type
of vector representation to which the text is transformed
to make these algorithms applicable.

Indeed, according to the presented experimental
study, each of the four applied classification algorithms
is usually capable of delivering top prediction quality
when coupled with an appropriate text representation,
although some of them (SVM, random forest) work
well with a broader range of text representations
than some others (naive Bayes, logistic regression).
However, predictive performance differences for the
same classification algorithm used with different text
representation may be more substantial than differences
between different algorithms. While the ubiquitous bag
of words representation makes it possible to achieve

the best level of prediction quality, it has some serious
competition among representations based on word or
text embeddings, with the fastText representation being
particularly promising because of its good predictive
performance and low computational expense.

Interestingly, the pre-trained BioBERT model
fine-tuned for classification performed on par with
conventional classification algorithms with the best text
representation methods. This may appear surprising and
contradict the popular belief in the universal superiority
of deep learning language models. These models achieve
indeed spectacularly good performance in a variety
of complex natural language processing tasks, such
as summarization, translation, question answering, or
topic detection (Babić et al., 2020). They can be also
successfully fine-tuned for classification (Zymkowski
et al., 2022). Nevertheless, one should not take it for
granted they would necessarily always beat conventional
algorithms in tasks to which the latter are well suited.
When they achieve similar predictive performance,
conventional algorithms would be clearly preferred due
to much lower computational demands.

Despite the broad scope of the experimental study
reported in this article it leaves some interesting issues
postponed for future work. Two continuation directions
are particularly noteworthy. First, since the hardness
of text classification is often related to class imbalance
and it is natural for systematic literature review data
to have heavily imbalanced classes, it would make
sense to investigate the utility of different imbalance
compensation techniques when combined with selected
text representation methods and classification algorithms.
In the reported experiments class rebalancing weights
were used, but data resampling approaches, including
generating synthetic minority class instances (Chawla
et al., 2002; Menardi and Torelli, 2014; Koziarski and
Woźniak, 2017), might sometimes work better. Second,
since text classification models for systematic literature
reviews usually have to be created using a small set of
labeled training instances, it would be desirable to verify
the utility of particular classification algorithms and text
representations when applied as part of training schemes
specifically designed for model creation with few class
labels, such as active learning (Cohn et al., 1994) or
semi-supervised learning (Zhu and Goldberg, 2009).

Acknowledgment
This work has been supported by Norway Grants under
the contract no. NOR/POLNOR/REFSA/0059/2019-00.

References
Aggarwal, C.C. and Zhai, C.-X. (Eds) (2012). Mining Text Data,

Springer, New York.

Bag of words and embedding text representation methods for medical article classification 619

Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S. and
Vollgraf, R. (2019). FLAIR: An easy-to-use framework for
state-of-the-art NLP, Proceedings of the 2019 Annual Con-
ference of the North American Chapter of the Association
for Computational Linguistics (Demonstrations), Strouds-
burg, USA, pp. 54–59.

Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S. and
Vollgraf, R. (2021). Flair: A Very Simple Framework for
State-of-the-Art NLP, Version 0.10, https://github.
com/flairNLP/flair.

Akbik, A., Blythe, D. and Vollgraf, R. (2018). Contextual
string embeddings for sequence labeling, Proceedings of
the 27th International Conference on Computational Lin-
guistics, COLING-2018, Santa Fe, USA, pp. 1638–1649.

Arlot, S. and Celisse, A. (2010). A survey of cross-validation
procedures for model selection, Statistics Surveys
4: 40–79.

Babić, K., Martincic-Ipsic, S. and Meštrović, A. (2020).
Survey of neural text representation models, Information
11(11): 511.

Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. (2016).
Enriching word vectors with subword information, arXiv:
1607.04606.

Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. (2020).
fastText: Library for Efficient Text Classification and Rep-
resentation Learning, Version 0.9.2, https://fastte
xt.cc.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M.
and Kasneci, G. (2022). Deep neural networks and tabular
data: A survey, arXiv: 2110.01889.

Breiman, L. (2001). Random forests, Machine Learning
45(1): 5–32.

Chawla, N.V., Bowyer, K. W. Hall, L.O. and Kegelmeyer,
W.P. (2002). SMOTE: Synthetic minority over-sampling
technique, Journal of Artificial Intelligence Research
16: 321–357.

Cichosz, P. (2018). A case study in text mining of discussion
forum posts: Classification with bag of words and
global vectors, International Journal of Applied Math-
ematics and Computer Science 28(4): 787–801, DOI:
10.2478/amcs-2018-0060.

Cohen, A.M., Hersh, W.R., Peterson, K. and Yen, P.-Y. (2006).
Reducing workload in systematic review preparation using
automated citation classification, Journal of the American
Medical Informatics Association 13(2): 206–219.

Cohn, D., Atlas, L. and Ladner, R. (1994). Improving
generalization with active learning, Machine Learning
15(2): 201–221.

Cortes, C. and Vapnik, V.N. (1995). Support-vector networks,
Machine Learning 20(3): 273–297.

Dařena, F. and Žižka, J. (2017). Ensembles of classifiers for
parallel categorization of large number of text documents
expressing opinions, Journal of Applied Economic Sci-
ences 12(1): 25–35.

Deb, S. and Chanda, A.K. (2022). Comparative analysis
of contextual and context-free embeddings in disaster
prediction from Twitter data, Machine Learning with Ap-
plications 7: 100253.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019).
BERT: Pre-training of deep bidirectional transformers
for language understanding, Proceedings of the 17th
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT-2019, Minneapolis,
USA, pp. 4171–4186.

Dumais, S.T., Platt, J.C., Heckerman, D. and Sahami, M.
(1998). Inductive learning algorithms and representations
for text categorization, Proceedings of the 17th Interna-
tional Conference on Information and Knowledge Man-
agement, CIKM-98, Bethesda, USA, pp. 148–155.

Egan, J.P. (1975). Signal Detection Theory and ROC Analysis,
Academic Press, New York.

Fawcett, T. (2006). An introduction to ROC analysis, Pattern
Recognition Letters 27(8): 861–874.

Forman, G. (2003). An extensive empirical study of feature
selection measures for text classification, Journal of Ma-
chine Learning Research 3: 1289–1305.

Forman, G. and Scholz, M. (2010). Apples-to-apples in
cross-validation studies: Pitfalls in classifier performance
measurement, ACM SIGKDD Explorations Newsletter
12(1): 49–57.

Garcı́a Adeva, J.J., Pikatza Atxaa, J.M., Ubeda Carrillo, M. and
Ansuategi Zengotitabengoa, E. (2014). Automatic text
classification to support systematic reviews in medicine,
Expert Systems with Applications 41(4): 1498–1508.

Graves, A. (2013). Generating sequences with recurrent neural
networks, arXiv: 1308.0850.

Hamel, L.H. (2009). Knowledge Discovery with Support Vector
Machines, Wiley, Hoboken.

Hassan, S., Mihalcea, R. and Banea, C. (2007). Random-walk
term weighting for improved text classification, Proceed-
ings of the 1st IEEE International Conference on Semantic
Computing, ICSC-2007, Irvine, USA, pp. 53–60.

Helaskar, M.N. and Sonawane, S.S. (2019). Text classification
using word embeddings, Proceedings of the 5th Interna-
tional Conference on Computing, Communication, Con-
trol, and Automation, ICCUBEA-2019, New York, USA,
pp. 1–4.

Hilbe, J.M. (2009). Logistic Regression Models, Chapman and
Hall, Boca Raton.

Honnibal, M., Montani, I., Van Landeghem, S. and Boyd, A.
(2021). spaCy: Industrial-Strength Natural Language Pro-
cessing in Python, http://spacy.io.

Ji, X., Ritter, A. and Yen, P.-Y. (2017). Using ontology-based
semantic similarity to facilitate the article screening
process for systematic reviews, Journal of Biomedical In-
formatics 69: 33–42.

https://github.com/flairNLP/flair
https://github.com/flairNLP/flair
https://fasttext.cc
https://fasttext.cc
http://spacy.io

620 P. Cichosz

Joachims, T. (1998). Text categorization with support vector
machines: Learning with many relevant features, Proceed-
ings of the 10th European Conference on Machine Learn-
ing, ECML-98, Chemnitz, Germany, pp. 137–142.

Joachims, T. (2002). Learning to Classify Text by Support Vec-
tor Machines: Methods, Theory, and Algorithms, Springer,
New York.

Jonnalagadda, S. and Petitti, D. (2013). A new iterative method
to reduce workload in systematic review process, Interna-
tional Journal of Computational Biology and Drug Design
6(1–2): 5–17.

Kaibi, I., Nfaoui, E.H. and Satori, H. (2019). A comparative
evaluation of word embeddings techniques for Twitter
sentiment analysis, Proceedings of the 2019 International
Conference on Wireless Technologies, Embedded and In-
telligent Systems, WITS-2019, Fez, Morocco, pp. 1–4.

Khabsa, M., Elmagarmid, A., Ilyas, I., Hammady, H. and
Ouzzani, M. (2016). Learning to identify relevant studies
for systematic reviews using random forest and external
information, Machine Learning 102(3): 465–482.

Koprinska, I., Poon, J., Clark, J. and Chan, J. (2007). Learning
to classify e-mail, Information Sciences: An International
Journal 177(10): 2167–2187.

Koziarski, M. and Woźniak, M. (2017). CCR: A combined
cleaning and resampling algorithm for imbalanced data
classification, International Journal of Applied Math-
ematics and Computer Science 27(4): 727–736, DOI:
10.1515/amcs-2017-0050.

Le, Q.V. and Mikolov, T. (2014). Distributed representations of
sentences and documents, Proceedings of the 31st Interna-
tional Conference on Machine Learning, ICML-2014, Bei-
jing, China, pp. 1188–1196.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S.and So, C.H.
and Kang, J. (2020). BioBERT: A pre-trained biomedical
language representation model for biomedical text mining,
Bioinformatics 36(4): 1234–1240.

Lewis, D.D. (1998). Naive (Bayes) at forty: The independence
assumption in information retrieval, Proceedings of the
10th European Conference on Machine Learning, ECML-
98, Chemnitz, Germany, pp. 4–15.

Matwin, S., Kouznetsov, A., Inkpen, D., Frunza, O. and
O’Blenis, P. (2010). A new algorithm for reducing the
workload of experts in performing systematic reviews,
Journal of the American Medical Informatics Association
17(4): 446–453.

McCallum, A. and Nigam, K. (1998). A comparison of event
models for naive Bayes text classification, Proceedings of
the AAAI/ICML-98 Workshop on Learning for Text Cate-
gorization, Madison, USA, pp. 41–48.

Menardi, G. and Torelli, N. (2014). Training and assessing
classification rules with imbalanced data, Data Mining and
Knowledge Discovery 28(1): 92–122.

Mikolov, T., Chen, K., Corrado, G.S. and Dean, J. (2013).
Efficient estimation of word representations in vector
space, arXiv: 1301.3781.

Mitchell, J. and Lapata, M. (2010). Composition in distributional
models of semantics, Cognitive Science 34(8): 1388–1429.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M. and Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python, Journal of Ma-
chine Learning Research 12: 2825–2830.

Pennington, J., Socher, R. and Manning, C.D. (2014). GloVe:
Global vectors for word representation, Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP-2014, Doha, Qatar,
pp. 1532–1543.

Platt, J.C. (1998). Fast training of support vector machines using
sequential minimal optimization, in B. Schölkopf et al.
(Eds), Advances in Kernel Methods: Support Vector Learn-
ing, MIT Press, Cambridge, pp. 185–208.

Radovanović, M. and Ivanović, M. (2008). Text mining:
Approaches and applications, Novi Sad Journal of Math-
ematics 38(3): 227–234.

Řehůřek (2021). Gensim: Topic Modeling for Humans, Version
4.0.1, https://radimrehurek.com/gensim.

Řehůřek, V. and Sojka, P. (2010). Software framework for topic
modelling with large corpora, Proceedings of the LREC
2010 Workshop on New Challenges for NLP Frameworks,
Valletta, Malta, pp. 45–50.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta, B.B.,
Chen, X. and Wang, X. (2020). A survey of deep active
learning, ACM Computing Surveys 54(9): 1–40.

Rios, G. and Zha, H. (2004). Exploring support vector machines
and random forests for spam detection, Proceedings of
the 1st Conference on Email and Anti Spam, CEAS-2004,
Moutain View, USA, pp. 284–292.

Salton, G. and Buckley, C. (1988). Term weighting approaches
in automatic text retrieval, Information Processing and
Management 24(5): 513–523.

Szymański, J. (2014). Comparative analysis of text
representation methods using classification, Cybernetics
and Systems 45(2): 180–199.

van den Bulk, L.M., Bouzembrak, Y., Gavai, A., Liu, N.,
van den Heuvel, L.J. and Marvin, H.J.P. (2022). Automatic
classification of literature in systematic reviews on food
safety using machine learning, Current Research in Food
Science 5: 84–95.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł. and Polosukhin, I. (2017).
Attention is all you need, Advances in Neural Informa-
tion Processing Systems, NIPS-2017, Long Beach, USA,
pp. 6000–6010.

Wang, C., Nulty, P. and Lillis, D. (2020). A comparative
study on word embeddings in deep learning for text
classification, Proceedings of the 4th International Con-
ference on Natural Language Processing and Information
Retrieval, NLPIR-2020, Seoul, Korea, pp. 37–46.

https://radimrehurek.com/gensim

Bag of words and embedding text representation methods for medical article classification 621

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi,
A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison,
J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J.,
Xu, C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q. and
Rush, A. M. (2020). Transformers: State-of-the-art natural
language processing, Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing:
System Demonstrations, pp. 38–45, (online).

Xue, D. and Li, F. (2015). Research of text categorization model
based on random forests, 2015 IEEE International Confer-
ence on Computational Intelligence and Communication
Technology, CICT-2015, Ghaziabad, India, pp. 173–176.

Yang, Y. and Pedersen, J. (1997). A comparative study on feature
selection in text categorization, Proceedings of the 14th In-
ternational Conference on Machine Learning, ICML-97,
Nashville, USA, pp. 412–420.

Yessenalina, A. and Cardie, C. (2011). Compositional
matrix-space models for sentiment analysis, Proceedings
of the 2011 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP-2011, Edinburgh, UK,
pp. 172–182.

Zhu, X. and Goldberg, A. (2009). Introduction to Semi-
Supervised Learning, Morgan & Claypool, San Rafael,.

Zymkowski, T., Szymański, J., Sobecki, A., Drozda, P.,
Szałapak, K., Komar-Komarowski, K. and Scherer, R.
(2022). Short texts representations for legal domain
classification, Proceedings of the 21st International Con-
ference on Artificial Intelligence and Soft Computing,
ICAISC-2022, Zakopane, Poland, pp. 105–114.

Paweł Cichosz received his MSc and PhD degrees in computer science
from the Warsaw University of Technology in 1994 and 1998, respec-
tively. He is an assistant professor at the Institute of Computer Science
there. His areas of research interests include machine learning, data min-
ing, natural language processing, and artificial intelligence. He has also
practical experience in applied data science projects.

Received: 19 April 2023
Revised: 19 July 2023
Accepted: 28 August 2023

	Introduction
	Motivation
	Related work
	Contributions

	Text representation methods
	Bag of words
	Word2vec and doc2vec
	GloVe
	FastText
	Flair

	BioBERT

	Classification algorithms
	Naive Bayes
	Logistic regression
	Support vector machines
	Random forest

	Experimental study
	Datasets
	Algorithm implementations and setup
	Text representation methods
	Classification algorithms
	BioBERT fine-tuning

	Predictive performance evaluation
	Results
	Text representation utility
	Classification quality comparison

	Discussion

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

