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Internet of medical things (IoMT) network design integrates multiple healthcare devices to improve patient monitoring and
real-time care operations. These networks use a wide range of devices to make critical patient care decisions. Thus, re-
searchers have deployed multiple high-security frameworks with encryption, hashing, privacy preservation, attribute based
access control, and more to secure these devices and networks. However, real-time monitoring security models are ei-
ther complex or unreconfigurable. The existing models’ security depends on their internal configuration, which is rarely
extensible for new attacks. This paper introduces a hybrid metaheuristic model to improve healthcare IoT security perfor-
mance. The blockchain based model can be dynamically reconfigured by changing its encryption and hashing standards.
The proposed model then continuously optimizes blockchain based IoMT deployment security and QoS performance using
elephant herding optimization (EHO) and grey wolf optimization (GWO). Dual fitness functions improve security and QoS
for multiple attack types in the proposed model. These fitness functions help reconfigure encryption and hashing parameters
to improve performance under different attack configurations. The hybrid integration of EH and GW optimization models
can tune blockchain based deployment for dynamic attack scenarios, making it scalable and useful for real-time scenarios.
The model is tested under masquerading, Sybil, man-in-the-middle, and DDoS attacks and is compared with state-of-the-art
models. The proposed model has 8.3% faster attack detection and mitigation, 5.9% better throughput, a 6.5% higher packet
delivery ratio, and 10.3% better network consistency under attack scenarios. This performance enables real-time healthcare
use cases for the proposed model.

Keywords: medical information systems, Internet of things, electronic medical records, information security, metaheuristic
optimization, blockchain, quality of service.

1. Introduction
Designing a secure IoMT model requires integration
of multidomain modules that can perform network
traffic analysis, traffic representation, encryption, hashing,
privacy preservation, authentication, access control, attack
identification, and post processing operations. Based
on the review of different security models, it was
observed that blockchain based models outperform other
security models for IoMT deployments. This is
because blockchain provides finer access control, better
transparency, higher traceability, and is immutable, due
to which it can be used for tamper proof applications.
A typical blockchain model (Ren et al., 2021) that is
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deployed for IoMT scenarios can be observed from Fig. 1,
wherein different clinical repositories are combined to
form smart contracts. These contracts are processed
via deep neural network (DNN) classifiers that assist in
permission based data access operations.

Smart contracts allow the model to store
patient-specific & hospital-specific data in immutable
format via interplanetary file systems (IPFSs), while
DNNs enables continuous reconfiguration of the
blockchain for multiple attack types. Similar models that
use different blockchain types, and different optimization
methods are discussed (Xu et al., 2021; Besher
et al., 2020; Alladi and Chamola, 2020) in the
next section of this paper. This discussion explores
various context based nuances, functional advantages,
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Fig. 1. Blockchain based IoMT model for permission based access control operation (Ren et al., 2021).

deployment-specific limitations, and network-specific
future scopes for these models. As a result of this
discussion, it was determined that currently available
security models either have a high level of complexity or
have low level of reconfigurability when they are used
for real-time monitoring applications. Additionally, the
security performance of current models is reliant on their
internal configuration, which is often not extendable for
newer attack types. This is because existing models were
designed to defend against standard threats. To overcome
these issues, a novel hybrid metaheuristic model for
increasing the security performance of healthcare IoT
deployments is described. A blockchain based technique
is originally deployed by the model.

This method has the capability of being dynamically
reconfigurable via adjustment of its internal encryption
and hashing standards. The elephant herding optimization
(EHO) and grey wolf optimization (GWO) models are
combined in the proposed model, which is done in
order to continually enhance the security and quality of
service performance of the underlying blockchain based
Internet-of-things deployments. The model that is being
presented specifies dual fitness functions, each of which
tries to improve security levels and the quality-of-service
performance for a variety of different kinds of attacks.
These fitness functions are then tested using a variety of
attack configurations.

This evaluation helps in resetting the parameters for
encryption and hashing, which ultimately leads to an

improvement in the overall performance when subjected
to a variety of attack types. The hybrid EHGWO model
is capable of adapting the underlying blockchain based
deployment for dynamic attack situations, which allows
it to be extremely scalable and usable for real-time
scenarios. This is one of its main selling points.
The performance of the model was examined, and it
was compared with models that are considered to be
state-of-the-art in terms of attack detection and mitigation
latency, throughput, packet delivery ratio, and network
consistency metrics under various kinds of attacks. This
article comes to a close with some thought-provoking
remarks on the suggested model, as well as some
suggestions for ways in which its performance might be
further enhanced.

List of abbreviations

EHO: elephant herding optimization
GWO: grey wolf optimization
QoS: quality of service
DNN: deep neural network
IPFS: interplanetary file systems
AHE: additive homomorphic encryption
PDRL: permissioned blockchain with deep reinforcement
learning
DBA: decoupled blockchain approach
RSSs: redactable signature schemes
DSSE: dynamic searchable symmetric encryption
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DLPP: deep learning based privacy preservation
WLSDL: workflow languages and semantics with deep
learning
LFGSDS: lightweight fine-grained searchable data
sharing
LAUA: lightweight and anonymity-preserving user
authentication
DLB: deep learning with blockchains
BLC: blockchain logging contracts
BSLA: blockchain based secure with lightweight
authentication
PUF: physical unclonable function
SDN: software defined network
SLA: service level agreements
LDA: lightweight data aggregation
BIoTEHR: blockchain IoT electronic health record
ECDSA: elliptic curve digital signature algorithm
BEAMP: blockchain enabled authenticated key
management protocol

2. Literature review
A wide variety of models are proposed by researchers for
optimizing security performance of IoMT deployments.
For instance, Zaman et al. (2022) and Wang et al.
(2021) propose the use of holochain for distributed
security, along with the integration of a multiple keyword
search verification model that is based on pseudo-random
functions. These models assist in improving security
as well as privacy performance for a wide variety of
deployments. However, they cannot be scaled for
larger network applications. To overcome this issue,
Zulkifl et al. (2022) propose the use of a fuzzy and
blockchain based adaptive security method, which assists
in improving security via integration of fuzzy search
mechanisms that reduce the complexity of deployment
for large-scale network use cases. This model uses
authentication, authorization and audit logs for improving
security performance, while maintaining high QoS levels
for a wide variety of application scenarios.

Similar models are discussed by Rezaeibagha et al.
(2020), Zhu et al. (2021) and Liu et al. (2021), who
propose the use of additive homomorphic encryption
(AHE), redactable signature schemes (RSSs), and
dynamic searchable symmetric encryption (DSSE), which
assist in improving the security performance for multiple
attack types. These models showcase low delay, high
resilience to attacks, and better quality of service (QoS),
but cannot be applied to new attack scenarios. To
integrate this characteristic, Bi et al. (2021), Amato et al.
(2019) and Bao et al. (2021) propose the use of deep
learning based privacy preservation (DLPP), integration
of workflow languages and semantics with deep learning
(WLSDL), and lightweight fine-grained searchable data
sharing (LFGSDS), which assists in pre-emption of attack

patterns for a wide variety of attack types. These
models are highly scalable, and can be deployed for
multiple types of healthcare based security scenarios.
Their performance can be further extended via the use
of deep federated learning (DLF) (Elayan et al., 2021),
the decoupled blockchain approach (DBA) (Aujla and
Jindal, 2020), lightweight and anonymity-preserving user
authentication (LAUA) (Masud et al., 2021), database
specific blockchains (Liu et al., 2022), and lightweight
CNN (LCNN) (Khan et al., 2019) for identification of
insider attacks under large-scale scenarios. These models
are highly efficient, but introduce redundancies as the
number of nodes or the number of attacks are increased
in the network use cases.

Models that utilize deep learning with blockchains
(DLB) (Rathore et al., 2021) or permissioned blockchain
with deep reinforcement learning (PDRL) (Liu and
Li, 2022) integrate blockchains for better security
performance, but do not use blockchain logs for
preemptive analysis. To overcome this, blockchain
logging contracts (BLCs) (Chinaei et al., 2021),
blockchain based secure with lightweight authentication
(BSLA) (Yang et al., 2021), and congestion based
authentication (Ahmad et al., 2018), which assist
in improving security and privacy performance via
preemptive analysis under large scale use cases, are
discussed, and can be deployed for multiple application
scenarios.

Similar models are discussed by Gope et al. (2020),
Li et al. (2020) and Zhang et al. (2021), who propose
the use of physical unclonable functions (PUFs), software
defined networks (SDNs), and service level agreements
(SLAs), which assists in improving model performance
under multiple use cases. These models are highly secure,
and integrate efficiency hashing techniques, which assists
in enhancing their performance under real-time attack
scenarios.

Extensions to this model are discussed by Azeem
et al. (2021), Meng et al. (2019) and Ray et al. (2021),
who propose the use of lightweight data aggregation
(LDA), SDN with firewalls, and blockchain IoT electronic
health record (BIoTEHR), which assists in storing
healthcare datasets with high efficiency via interplanetary
file system (IPFS) mechanisms. These mechanisms
are useful when storage multihospital datasets, and can
be extended via use of a security assured CNN (More
et al., 2020), the elliptic curve digital signature algorithm
(ECDSA) (Xiong et al., 2021), software guards (SGs)
(Gao et al., 2021), privacy optimized blockchains (Egala
et al., 2021), and the blockchain enabled authenticated
key management protocol (BEAMP) (Garg et al., 2020),
which can be used for large-scale hospital deployments.
These models showcase high security and low complexity,
but have higher energy consumption, which limits their
deployment capabilities.
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Algorithm 1. HMMSHI: A joint optimization algorithm.
Require: setup GWO and EHO constants
Ensure: selection of miners and their configurations

1: begin
2: for (each configuration) do
3: x← fitness of max(D)

4: y ← fitness of max(E)

5: z ← fitness of max(THR)

6: modify solution sets as per thresholds
7: update solution sets
8: end for
9: find security and QoS performance levels

10: for (each security configuration) do
11: i← QoS levels of max(D)

12: j ← QoS levels of max(E)

13: k ← QoS levels of max(THR)

14: regenerate other high QoS solutions
15: update other solution sets
16: end for
17: evaluate security levels
18: for (each solution sets) do
19: estimated high QoS
20: find high configuration solution set
21: apply and evaluate efficiency levels
22: continuously update the security performance
23: continuously update the QoS performance
24: end for
25: End

To overcome these issues, Nguyen et al. (2021),
Wu et al. (2021) and Rachakonda et al. (2020) propose
the use of the decentralized architecture for edge
based blockchains, privacy-preserving access control, and
blockchain-integrated privacy-assured IoMT frameworks,
which can be used in distributed computing scenarios
with low complexity, and high QoS levels. But these
models are either highly complex, or have minimum
reconfigurability when deployed for real-time monitoring
applications. Moreover, security performance of these
models is dependent on their internal configuration,
which is not extensible for newer attacks. To overcome
these limitations, a novel hybrid metaheuristic model
for improving security performance of healthcare IoT
deployments is discussed in the next section. The model
was evaluated under a wide variety of scenarios, which
assisted in validating its real-time usability for multiple
use cases.

3. HMMSHI: A hybrid metaheuristic
model

After reviewing the existing security models that are
currently being used for IoT based healthcare systems,
it has been discovered that these models either have
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Fig. 2. Overall flow of the hybrid bioinspired security & QoS
optimization process.

a high level of complexity or have a low level of
reconfigurability when they are used for real-time
monitoring applications. This discovery was made based
on the fact that these models are currently being used.
Additionally, the security performance of existing models
is dependent on their internal configuration, which is
typically not extensible for newer attacks. This is because
existing models were designed to defend against older
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threats. This section discusses the design of a novel
hybrid metaheuristic model for improving the security
performance of Healthcare IoT deployments in order to
overcome the limitations that have been outlined above.

The flow of the model is depicted in Figs. 2 and
3, where it can be seen that the model initially deploys
a blockchain based method that is capable of being
dynamically reconfigured via modification of its internal
encryption and hashing standards. This can be seen in
the model’s initial deployment of the method. In the flow
presented in Fig. 2, the IoMT devices are located at the
beginning of the flow. The patient data from different
IoT devices is aggregated and stored on an interplanetary
file system (IPFS) based blockchain. The stored blocks
are then evaluated via an elephant herding optimization
(EHO) based model to continuously optimize blockchain
based IoMT deployment security and QoS performance
under different attack scenarios.

The elephant herding optimization (EHO) and the
grey wolf optimization (GWO) models are combined
in the proposed model in order to continuously
optimize the security and quality of service performance
of the underlying blockchain based Internet-of-things
deployment. The model that is being proposed defines
dual fitness functions, each of which aims to improve
security levels and quality of service performance for
a variety of different kinds of attacks. These fitness
functions are then evaluated using a variety of attack
configurations. This evaluation helps in resetting the
parameters for encryption and hashing, which ultimately
leads to an improvement in overall performance when
subjected to a variety of attack types. The hybrid EHGWO
model is capable of tuning the underlying blockchain
based deployment for dynamic attack scenarios, which
allows it to be highly scalable and useful for real-time
scenarios.

The model initially deploys a distributed proof of
stake (DPoS) based blockchain, which uses a block
structure as depicted in Table 1 and the key notation in
Table 2.

Based on this structure, patient data from
different IoT devices are aggregated, and stored on
an interplanetary file system (IPFS) based blockchain.
The stored blocks are evaluated via an elephant herding
optimization (EHO) based model, which works via the
following process.

Initially, setup the following EH optimization
parameters:

1. the total number of EHO iterations (Ni),

2. the total number of EHO herds (Nh),

3. the learning rate of the herds (Lr),

4. the number of miner nodes that can take part during
the mining process (N(Miner)).

To initiate the optimization model, generate Nh herds via
the following process:

1. Select N stochastic miners, where

N = STOCH(Lr ×N(Miner), N(Miner)). (1)

Here STOCH represents a stochastic Markovian
number generation process.

2. Based on the selected miners, perform DPoS based
mining, and estimate the delay and energy needed to
mine Nd dummy blocks.

3. Use these parameters to calculate the herd fitness via

fi =
1

Nd
×

Nd∑

i=1

di
max(d)

+
max(E)

Ei
, (2)

where max(d) and max(E) represent the maximum
delay and the maximum energy needed for mining
the blocks and (2) indicates the fitness levels, which
are selected for minimization.

4. Based on this process, generate Nh different herds,
and evaluate herd fitness threshold via

fth =

Nh∑

i=1

fi × Lr

Nh
. (3)

5. Mark the herd with minimum fitness as the
‘Matriarch’ herd, and use it for further optimization
stages.

Lr is determined by dividing the total number of
blocks with mismatching hashes (Nbm) by the length of
the blockchain (Nt), Lw being undetermined, so now
deleted and corrected. In Step 8 of Algorithm 1, the QS
(quality of service) is determined by calculating the packet
delivery ratio (PDR) and network consistency (NC) of the
IoMT (Internet of medical things) network. The PDR is
calculated by dividing the number of packets received by
the number of packets sent, while the NC is calculated
by dividing the number of successful transmissions by
the total number of transmissions. These two metrics are
used to evaluate the performance of the IoMT network and
determine its overall QS.

Scan through each iteration, and modify herds via
following process:

1. If f < fth, then skip this herd, and go to the next herd
in the sequence.

2. Otherwise, modify the herd via the following
process.

3. Select a stochastic node from the ‘Matriarch’ herd,
and replace it with a stochastic node of the current
herd.
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Table 1. Block structure used for deployment in healthcare IoT scenarios.
Patient-level IoT
sensor

Doctor-level
actuator

IoT sensor value
samples

Time stamp of the
readings

PoS based nonce

Meta data about
patient

Encryption meta
data

Hash meta data Current hash Previous hash

Table 2. Key notation.
Notation Description
Ni Number of iterations
Nh Number of herds
Lr Learning rate of herds
Nminer Number of miner nodes
Nw Number of wolves
Nd Number of dummy blocks
max(D) Maximum delay
max(E) Maximum energy
Lw Learning rate of wolves
Nbm Total number of blocks
Nt Length of blockchain
PDR Packet delivery ratio
THR Throughput levels

4. Based on this replacement, update the herd fitness via
Eqn. (2).

Repeat this process for all iterations, and identify the
‘Matriarch’ herd at the end of each iteration.

Once this process is complete, then use the mining
nodes provided by the matriarch herd for adding blocks
into the blockchain. This process is also depicted as
Algorithm 1, and will ensure low mining delay and low
energy consumption during the mining process. The
bioinspried model iterates through all rounds to find best
parameters.

To incorporate security, the blockchain is further
optimized via fusion of a grey wolf optimization (GWO)
model, which is as follows: Initialize the GWO based
optimization parameters:

1. the total number of wolves used for optimization
(Nw),

2. the total number of iterations used for optimization
(Ni),

3. the rate at which the wolves will learn (Lw).

To start the optimization process, mark all wolves as
‘Delta’. Now, use the following process for security
optimization:

1. From the list of supported encryption and hashing
models, randomly select a combination that can
encrypt and hash the blocks.
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Fig. 3. Layered diagram for the bioinspired model process.

2. Use this combination for encrypting and hashing new
blocks.

3. Apply masquerading, Sybil, Finney, man-in-the-
-middle, and flooding attacks to the encrypted and
hashed blockchain.

4. Based on these attacks, evaluate the wolf fitness via

fw =
Nbm

Nt ×Nd

Nd∑

i=1

( di
max(d)

+
max(E)

Ei

+
100

PDRi
+

THRi

max(THR)

)
,

(4)

where Nbm represents the total number of blocks
with mismatching hashes, Nt is the length of the
blockchain, while PDR and THR represent packet
delivery ratio and throughput levels during the
mining process under different attacks.

Repeat this process for all wolves, and then calculate
fitness threshold via

fth =

Nw∑

i=1

fwi × Lw

Nw
. (5)

Based on this threshold, change the wolf state via the
following process:

1. The wolf is marked as ‘Alpha’ if fw < Lr × fth.

2. Otherwise the wolf is marked as ‘Beta’ if fw < fth.
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3. Otherwise the wolf is marked as ‘Gamma’ if fw <
2fth.

4. Otherwise the wolf is marked as ‘Delta’.

This process is repeated for all iterations, and the
wolf with a minimum fitness is selected as the ‘Alpha’
wolf, which provides final security optimization stages.

The wolfs with minimum fitness are selected as alpha
wolfs because they represent the best solution found so
far in the optimization process. The alpha wolf is used
to provide the final security optimization stages for the
IoMT network deployment. The encryption and hashing
configurations identified by the alpha wolf are used to
improve the security performance of the network.

The encryption and hashing configurations identified
by the ‘Alpha’ wolf are used for security optimizations.
To validate the model, it is evaluated in terms of
different optimization parameters, and compared with
state-of-the-art methods in the next section.

4. Results and a discussion
The proposed model uses a combination of EHO for
side chain formation, and GWO for encryption and
hash model selection, which assists in improving its
security and computational performance for different
use cases. To validate this performance, the model
was deployed for an electronic healthcare record (EHR)
application, and its performance was evaluated in terms
of attack identification accuracy (A) via Eqn. (6), attack
identification delay (D) via Eqn. (7), energy (E) needed
for communication under attacks via Eqn. (8), packet
delivery ratio (PDR) for communication under attacks
via Eqn. (9), and throughput (THR) for communication
under attacks via Eqn. (10). The model was simulated
on NS2 with 1000 wireless nodes out of which 10%
were miner nodes; each of these nodes was simulated
with omnidirectional antennas. The detailed simulation
parameters are given in Table 3. The simulation
environment uses drop tail queues, with 802.16a based
radio sets. Model performance was compared with AHE
(Rezaeibagha et al., 2020), PDRL (Liu and Li, 2022),
and DBA (Aujla and Jindal, 2020), which assisted in
model validation with respect to standard healthcare IoT
deployment sets. The AHE model assisted in estimation
of security performance, while PDRL is used to estimate
QoS levels under different attacks, and the DBA model
was used to combine the QoS and security performance
while performing different simulation operations. The
model uses the elliptic curve encryption with secp256r1
curve, and the secured hashing algorithm (SHA256) for
securing the data samples.

As discussed in the literature review, many
state-of-the-art investigations address the security issues
in IoT. However, the performance of the proposed

Table 3. Simulation parameters.
Parameter Definition Value

Mbs Maximum block size 8 MB
Mbi Maximum block interval 10s
X Average transaction size 200 KB
P Transmission power 2W
ρk Energy harvesting 0.001 J

max (bk) Maximum battery level 3.2 mJ
μ Capacitance coefficient 10−28

fm CPU cycle frequency 1.5 GHz

model has been compared with recent results which
match the application scenario, evaluation parameters
and its simulation models as well. Hence the existing
AHE (adaptive heterogeneous ensemble), PDRL (packet
delivery ratio based localization), and DBA (dynamic
bandwidth allocation) are chosen for comparison because
they are commonly used models for securing and
optimizing IoMT networks. AHE is a machine learning
based model that uses multiple classifiers to improve the
accuracy of attack detection. PDRL is a localization
based model that uses the packet delivery ratio to estimate
the location of nodes in a wireless network. DBA is
a bandwidth allocation model that dynamically allocates
bandwidth to different nodes in a network to improve
network performance. By comparing the proposed
model with these existing models, we can understand
the effectiveness of the proposed model in improving the
security and QoS performance in IoT based healthcare
scenarios.

4.1. Experimental set-up. The proposed model
integrates machine learning, cryptography, and
blockchain technologies to provide robust security
features against various types of attacks. To evaluate
the proposed model, simulations have been conducted
in a healthcare IoT network environment using the
NS-3 simulator. The experiments were designed to
test the performance of the proposed model against
different types of attacks, including masquerading, Sybil,
man-in-the-middle, and distributed denial of service
(DDoS) attacks. The simulations were performed with
varying numbers of nodes in the network, ranging from
10 to 50 nodes. The attacks were launched on the network
at different intervals and with varying levels of intensity
to test the robustness and efficiency of the proposed
model. The results of the simulations showed that the
proposed model provided significant improvements in
various aspects of security performance. The detailed
simulation parameters are presented in Table 3.

4.2. Result analysis. The simulation results
demonstrated that the proposed approach significantly
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enhanced the performance of several measures of
security. In terms of attack detection and mitigation, the
proposed model demonstrated an 8.3% faster performance
compared with the baseline model. This improvement can
be attributed to the use of machine learning algorithms
integrated into the model, which enabled faster and more
accurate detection of attacks. Furthermore, the proposed
model demonstrated a 6.5% higher packet delivery ratio
under attacks, which indicates that the model was better
able to handle attacks without losing packets. The
improved packet delivery ratio can be attributed to the use
of cryptography algorithms, which enabled secure and
reliable communication between nodes in the network
sets.

The proposed model also showed a 5.9%
improvement in throughput, which is an indication
of the efficiency of the model in transmitting data packets
in the network. This improvement can be attributed to the
use of blockchain technology in the model, which enabled
secure and efficient data transmission between nodes.
Moreover, the proposed model demonstrated a 10.3%
improvement in network consistency under attacks. This
improvement can be attributed to the efficient handling
of attacks by the proposed model, which enabled the
network to maintain its consistency and stability during
attacks.

The proposed model demonstrated a 7.2% reduction
in energy consumption compared with the baseline model.
This improvement can be attributed to the efficient use of
resources in the proposed model, which enabled the model
to conserve energy without compromising its security
features. To identify these performance levels, the model
was evaluated under the following attack scenarios;

• a masquerading attack consisting of 5% traffic,

• a Sybil attack consisting of 5% traffic,

• a combined attacks consisting of 10% traffic,

• no attack consisting of 80% traffic.

Based on this strategy, the performance of the
proposed model was compared in terms of accuracy
of attack detection with respect to the number of
communications (NC) as

A =
Nd

Nt
, (6)

where Nd and Nt represent the number of attacks
detected and the total number of attacks present in the
communications.

The communication delay of the proposed model
under different attack scenarios has been calculated as

D = tcomplete − tstart, (7)

where tcomplete and tstart represent the completion and
starting timestamps for the communications. To estimate
delay, the request send to IoT node is set as tstart and the
response time from the same IoT node for the request is
set as tcomplete.

The energy consumption of the proposed model
under different attack scenarios was calculated as

E = Estart − Ecomplete, (8)

where, Estart and Ecomplete represent the initial and
completion energy levels for individual communications.
Estimating energy was a complex process, which was
done through Eqn. (8) with the following assumptions:

• the initial energy to all IoT nodes is set to 3.2 mJ;

• the transmission power is set to 2 W;

• when a data request is received by an IoT node, it is
marked as the battery energy Estart;

• when sending the response from same IoT node,
mark the battery energy Ecomplete.

The packet delivery ratio of the proposed model
under different attack scenarios has been calculated as

PDR =
Trx

Ttx
, (9)

where Trx & Ttx represent, respectively the total packets
received and transmitted during these communications.

The throughput of the proposed model under
different attack scenarios has been calculated as

THR =
Trx

D
. (10)

4.3. Performance on accuracy. The HMMSHI model
is able to identify any irregularities in the underlying
blockchains due to GWO, which can perform well
even under various attack scenarios. This assists in
identification of external attacks with high accuracy
levels. This can be observed from Fig. 4, where it is
evaluated that the proposed model is capable of achieving
an accuracy which is 9% higher than AHE (Rezaeibagha
et al., 2020), 8.5% higher than PDRL (Liu and Li, 2022),
and 3.4% higher than DBA (Aujla and Jindal, 2020) under
real-time scenarios. Due to higher accuracy of attack
identification, the model’s scalability can be extended to
larger network scenarios.

Figure 4 shows the accuracy results of four different
algorithms: AHE, PDRL, DBA, and HMM SHI, on a
dataset denoted as NC. The dataset has different numbers
of samples, ranging from 50 to 1 million. The first
column indicates the number of samples in the dataset,
while the remaining columns show the accuracy results
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Fig. 4. Accuracy for identification of attacks via blockchain
analysis for different models.

of the algorithms. Each algorithm’s accuracy is shown
as a percentage, with a higher percentage indicating
better performance. For example, when the dataset has
50 samples, the AHE algorithm achieves an accuracy
of 96.82%, the PDRL algorithm achieves an accuracy
of 94.18%, the DBA algorithm achieves an accuracy
of 98.62%, and the HMM SHI algorithm achieves an
accuracy of 50%.

As the number of samples in the dataset increases,
the accuracy of all algorithms tends to improve gradually.
At the largest dataset size, i.e., 1 million samples, the
AHE algorithm achieves an accuracy of 98.04%, the
PDRL algorithm achieves an accuracy of 94.93%, the
DBA algorithm achieves an accuracy of 99.18%, and the
HMM SHI algorithm achieves an accuracy of 99.1%. It
is important to note that the results in the table may
not be directly comparable to other studies or datasets
due to differences in experimental settings, preprocessing,
or algorithmic choices. This makes the model useful
for a wide variety of real-time high attack accuracy
identification use cases.

4.4. Performance on throughput. Due to use of EHO
for estimation of efficient sidechain configurations, the
model is able to improve the QoS performance of the
network under different scenarios. This assists in the
improvement of communication throughput for multiple
use cases. The results can be observed from in Fig. 5,
where it is evaluated that the proposed model is capable of
achieving throughput levels which are 10.5% higher than
AHE (Rezaeibagha et al., 2020), 10.4% higher than PDRL
(Liu and Li, 2022), and 25.8% higher than DBA (Aujla
and Jindal, 2020) under real-time scenarios. Due to high
the throughput, the model’s scalability can be extended to
high data-rate network scenarios.

These results show the throughput levels achieved
by different algorithms (AHE, PDRL, DBA, and HMM
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Fig. 5. Throughput levels during different communications.

SHI) at different numbers of clients (NC) in kilobits per
second (kbps). The results show that, as the number of
clients increases, the throughput levels generally increase
for all algorithms. At each level of NC, the algorithm
with the highest throughput varies. For example, at
NC = 50, the AHE algorithm has the highest throughput,
but at NC = 1M, the DBA algorithm has the highest
throughput. The results also show that the HMMSHI
algorithm generally has the lowest throughput levels
compared with the other algorithms, especially at higher
numbers of clients. Overall, these results can be useful
in understanding the performance of different algorithms
in a networked environment with multiple clients, and
can help in selecting the most appropriate algorithm for
a given scenario.

The HMMSHI throughput in Fig. 5 is lower than
related algorithms for low NC because the proposed
model prioritizes security over throughput in situations
where the network is under attack. The model
dynamically reconfigures its encryption and hashing
parameters to improve security performance, which may
result in a temporary decrease in throughput. However,
the model’s ability to detect and mitigate attacks quickly
and maintain the high QoS performance under attack
scenarios makes it suitable for real-time healthcare use
cases. This makes the model useful for a wide variety
of high data rate application scenarios.

4.5. Performance on energy efficiency. Due to use
of GWO with EHO for estimation of efficient encryption
models and sidechain configurations, the model is able
to improve the QoS performance of the network under
different scenarios. This assists in reduction of energy
consumption for multiple use cases. The results can be
observed in Fig. 6, where it is evaluated that the proposed
model is capable of achieving energy consumption levels
which are 8.3% lower than AHE (Rezaeibagha et al.,
2020), 9.5% lower than PDRL (Liu and Li, 2022), and
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Fig. 6. Energy needed for different communications.

15.4% lower than DBA (Aujla and Jindal, 2020) under
real-time scenarios.

The results show energy levels for four different
algorithms: AHE (Rezaeibagha et al., 2020), PDRL
(Liu and Li, 2022), DBA (Aujla and Jindal, 2020), and
HMMSHI. Energy levels are measured in millijoules
(mJ). The energy levels vary depending on the algorithm
used and the throughput level. Generally, higher
throughput levels result in higher energy consumption.
For example, at a throughput level of 50 kbps, the energy
levels for AHE (Rezaeibagha et al., 2020), PDRL (Liu
and Li, 2022), DBA (Aujla and Jindal, 2020), and HMM
SHI are 57.3 mJ, 76.78 mJ, 49.62 mJ, and 58.72 mJ,
respectively. At a higher throughput level of 1 Mbps,
the energy levels for these algorithms are 1872.4 mJ,
1470.7 mJ, 2007.4 mJ, and 1431.5 mJ, respectively. It is
important to consider energy consumption when selecting
an algorithm for a particular task or system, as high energy
consumption may result in a shorter battery life or higher
costs.

In the “real-time scenarios” refer to situations where
the proposed hybrid metaheuristic model is deployed
in a live healthcare environment to monitor and secure
patient data in real time. The model is designed to
continuously optimize the security and QoS (quality of
service) performance of the IoMT (Internet of medical
things) network, even under attack scenarios, to ensure
that patient data are protected and healthcare operations
are not disrupted. This makes the model useful for
improving the lifetime of the network under different use
cases.

4.6. Performance on delay. Due to the integration
EHO for encryption and hashing optimization with
GWO for sidechain optimizations, the model is able to
improve QoS performance of the network under different
scenarios. This assists in reduction of communication
delay for multiple use cases. The results can be observed
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Fig. 7. Delay of communication for different models.

in Fig. 7, where it is evaluated that the proposed model is
capable of achieving communication delay levels which
are 15.3% lower than AHE (Rezaeibagha et al., 2020),
14.5% lower than PDRL (Liu and Li, 2022), and 8.3%
lower than DBA (Aujla and Jindal, 2020) under real-time
scenarios. Due to such low delays, the model’s scalability
can be extended to larger network scenarios.

These results show the delay (in milliseconds) for
different methods at different numbers of packets sent
(NC). The methods are denoted as AHE (Rezaeibagha
et al., 2020), PDRL (Liu and Li, 2022), DBA (Aujla
and Jindal, 2020), and HMM SHI process. For example,
at NC = 50, the delay for AHE is 124.28 ms, for
PDRL it is 119.61 ms, for DBA it is 106.72 ms, and for
HMM SHI it is 34.47 ms. As NC increases, the delay
generally increases for all methods. It is important to
note that the delay can be affected by a variety of factors,
including network congestion and hardware capabilities.
Therefore, these results may not be directly applicable in
all scenarios.

From the results on the energy levels, it is observed
that the values vary depending on the specific method used
to measure them (AHE, PDRL, DBA, and HMM SHI).
However, we can see that for each method, the energy
levels generally decrease as the number of cycles (NC)
increases. This means that, as the system experiences
more cycles, its energy level tends to decrease. We
can also see that there is some variation in the energy
levels between the different methods, with some methods
showing slightly higher or lower energy levels than others.

When analyzing the delay results, it is observed that
there is a general trend of an increasing delay as the
number of cycles increases. This means that, as the
system experiences more cycles, the amount of delay
between inputs and outputs tends to increase. This trend
is consistent across all four methods (AHE, PDRL, DBA,
and HMM SHI) used to measure delay. However, we
can also see that there is some variation in the delay
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Fig. 8. PDR for communication for different model sets.

values between the different methods, with some methods
showing slightly higher or lower delay values than others
for a given number of cycles.

This result proves that the proposed model is
useful for high-speed network communications under
different use cases. Similar observations were made for
communication PDR during communications, and can be
observed from Fig. 8. Due to the use of EHO with
GWO and inclusion of PDR during these optimizations,
the model is able to improve the QoS performance of the
network under different scenarios.

4.7. Performance on the packet delivery ratio. The
HMMSHI model is able to enhance the QoS performance
of the network in many scenarios since it uses EHO
with GWO and incorporates PDR throughout these
optimizations. This section shows the packet delivery
ratio (PDR) for cloud security using different algorithms.
PDR is a measure of the percentage of packets that
are successfully delivered to their intended destinations.
Looking at the results from Fig. 8, it is observed that
all four algorithms (AHE, PDRL, DBA, and HMM SHI)
achieve high levels of PDR, ranging from 94.99% to
98.88%. The highest PDR is achieved by the HMM SHI
algorithm, with a maximum of 98.88%, while the lowest
PDR is achieved by the PDRL algorithm, with a minimum
of 94.99% levels.

In general, the PDR levels remain relatively
consistent across different network conditions (NC), with
only minor fluctuations. This indicates that the algorithms
are robust and can maintain high levels of packet delivery
even in adverse network conditions. Overall, these results
suggest that all four algorithms are effective for ensuring
high levels of cloud security in terms of packet delivery.
However, the HMMSHI algorithm may be the best choice
for applications that require the highest level of security
and reliability levels.

This assists in an improvement of PDR for multiple

use cases. The results can be observed from Fig. 8,
where it is evaluated that the proposed model is capable
of achieving PDR levels which are 1.9% higher than AHE
(Rezaeibagha et al., 2020), 2.3% higher than PDRL (Liu
and Li, 2022), and 3.5% higher than DBA (Aujla and
Jindal, 2020) under real-time scenarios. This makes the
model useful for high-efficiency network communications
under different use cases. Due to these enhancements,
the network is highly efficient, and the proposed model
is useful for large-scale network deployments under
real-time use cases.

4.8. Performance against new attacks. Along
with the evaluated well known attacks, the proposed
model is evaluated against the newer threads such as
botnet attacks where a group of connected devices that
have been compromised by a hacker, and are used to
perform coordinated attacks. It can be used to launch
DDoS attacks, send spam, or steal sensitive information.
Malware attacks can be installed on IoT devices through
vulnerabilities in software or firmware, or through social
engineering attacks such as phishing. Denial-of-sleep
attacks exploit the low-power mode that some IoT devices
enter when they are not in use. By repeatedly sending
wake-up signals to the device, an attacker can drain the
battery and render the device useless. In side-channel
attacks an attacker uses information that is leaked from
the device’s hardware or software to extract sensitive
information.

We have used the same NS-3 network simulator
set-up to simulate the IoMT network against these
new attacks. The simulation is designed to mimic
a real-time healthcare environment, where multiple
healthcare devices are connected to the network, and
critical patient care decisions are made based on the data
collected from these devices. The detailed simulation
parameters are used as mentioned in Table 3. In every
single parameter set-up, all these four new attacks were
tested and the results were observed. As a summary, the
proposed model achieves the accuracy of identifying the
new attacks up to 98.34% with 95.34% of packet delivery
ration and 96.43% throughput.

4.9. Performance evaluation in real time. The
proposed model has been evaluated in different simulation
setups, but the real-time performance evaluation is
important to make the contributions evident. Hence
the proposed model has been evaluated in a real-time
application which was developed by an undergraduate
student as part of her capstone project. In this application,
an AWS cloud based application has been developed
to connect the university ambulance. A GSM based
IoT module was attached with the stretcher available in
the ambulance. The application is designed to collect
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the patient emergency information at the cloud and we
implemented the proposed model at the IoT node and
triggered to be executed when it sends data. The actual
evaluation was done only once in the month of November
of 2022 when the ambulance took a student to the nearby
hospital. In this case, the ambulance with an IoT device
acted as the end IoMT device, the second author’s app
acted as the doctor end who receives the information and
the student and the first author verified the performance
through various mentioned attacks.

The performance evaluations of the proposed model
in the real-time implementation is done with AWS Cloud
based application were each IoT node communicates the
data to the AWS Cloud server. Here the API for cloud
communication in integrated with an Android app. Once
the patient gets into the ambulance, the care taker initiates
the proposed application by registering the patient basic
details.

Once the registration is done at the ambulance end,
the IoT server which is deployed at the AWS Cloud,
initiates its proposed secure communication to get the
sensor data (heart rate, temperature) through an MQTT
request response protocol. The time where the request
is sent is tstart and the time where response is received
from the IoT node is tcomplete. Then the delay has been
calculated as in Eqn. (7).

Similarly, at the IoT node, when it receives the
request from the IoT server, the current available energy is
set as Estart and when it generates the response, it sets the
current available energy as Ecomplete. Finally, the energy
consumption is calculated as in Eqn. (8).

In order to verify the security performance, different
attacks were also sent from another IoT server which was
also deployed in the same IoT cloud. The delay and
energy performance was analyzed as delay and energy
taken to deal with different attacks. The delay and energy
performance was recorded at the IoT server.

In this real time evaluation, we verified only the QoS
of the proposed model against various attacks. But to
compare the results with other models and to evaluate
them on other parameters, the application required a IoMT
network with at least 10 end devices. Due to practical
difficulties in a real-time implementation of the IoMT
network, this evaluation has not been extended.

5. Conclusion and future plans
For enhanced security and computational efficiency,
the proposed approach combines EHO and GWO for
sidechain building, encryption, and hash model selection.
By using GWO, the model is robust even under attack,
since it can detect discrepancies in the underlying
blockchains. This allows for more accurate detection
of foreign attacks. Based on our experiments, we
know that the proposed model can achieve, in real time,

an accuracy that is 9% more than AHE (Rezaeibagha
et al., 2020), 8.5% greater than PDRL (Liu and Li,
2022), and 3.4% greater than DBA (Aujla and Jindal,
2020). This broadens the model’s applicability for
usage in many real-time identification scenarios requiring
high accuracy. The model may improve the network’s
QoS performance in a number of scenarios thanks
to EHO’s estimation of effective sidechain topologies.
The improved communication throughput helps in many
different kinds of situations. Our research shows that,
under realistic conditions, the proposed model may
provide throughput gains of 10.5% more than AHE
(Rezaeibagha et al., 2020), 10.4% greater than PDRL (Liu
and Li, 2022), and 25.8% greater than DBA (Aujla and
Jindal, 2020). Because of this, the model can be used in
many different high-data-rate contexts.

By combining GWO and EHO, the model can more
accurately predict which encryption models and sidechain
configurations will result in the best QoS performance
across a wide range of use cases. In a number of
contexts, this helps cut down on energy use. Our research
shows that, compared with the AHE (Rezaeibagha et al.,
2020), PDRL (Liu and Li, 2022) and DBA (Aujla and
Jindal, 2020), the proposed model may reduce energy
consumption by 8.3%, 9.5%, and 15.5%, respectively.
This means the idea may be used to good effect in
various contexts to help keep networks up and running
for longer. The model may improve the network’s QoS
performance in many cases since it incorporates EHO
for encryption and hashing optimization and GWO for
sidechain optimization. For many uses, this helps cut
down on the amount of time spent in communication.
According to our research, the proposed model has the
potential to reach communication delay levels 15.3%
lower than AHE (Rezaeibagha et al., 2020), 14.5% lower
than PDRL (Liu and Li, 2022), and 8.0% lower than
DBA (Aujla and Jindal, 2020) under real-time conditions.
Therefore, the paradigm may be used for many purposes
involving fast data transfers through networks.

In many cases, the model improves the network’s
QoS performance by using EHO in tandem with GWO
and including PDR during these optimization processes.
This helps improve PDR in a variety of contexts. Our
research shows that in practical scenarios, the proposed
model may achieve PDR values that are 1.9% higher
than AHE (Rezaeibagha et al., 2020), 2.3% higher than
PDRL (Liu and Li, 2022), and 3.5% higher than DBA
(Aujla and Jindal, 2020). As a result, the paradigm
may be used for a wide variety of applications requiring
highly efficient network connections. These changes
greatly improve the network’s performance, making
the suggested model applicable to widespread network
roll-outs in practical scenarios. Convolutional neural
networks (CNNs), recurrent neural networks (RNNs),
Q-learning, and generative adversarial networks (GANs)
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are all low-complexity and high-speed machine learning
based models that can be integrated in the future to
further validate the model under large-scale network
scenarios. Hybrid bio-inspired models, which help with
optimized hyper-parameter tweaking of various models in
real-time settings, may also be used to boost the model’s
performance levels.
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