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We introduce an algebraically active disturbance rejection-based control solution for the trajectory tracking problem of an
uncertain second-order flat system with unknown external disturbances. To this end, we first algebraically identify the
system’s unknown dynamics and the external disturbances with a linear set of time-varying integral expressions for the
output and the control signal. We use the identified dynamics on an online feedback cancellation scheme to linearize the
second-order system and cancel the uncertainties. With a proportional-integral controller we stabilize the linearized system
without the need to estimate the velocity and have feedback from it. We carry out the stability analysis using linear systems
theory. Finally, we evaluate the effectiveness of the proposed controller in a partially known 2-DOF manipulator.
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1. Introduction
It is well known that the presence of uncertainties and
perturbations is one of the main problems when designing
a control strategy. The complexity of the technological
systems developed in recent years has given rise to the

*Corresponding author

emergence of the robust control area, which consists
of the different techniques and principles that guarantee
stability and satisfactory performance of dynamic systems
despite their parameter uncertainties and the presence
of disturbances (de Jesús Rubio, 2016; de Jesús Rubio
et al., 2015; Dullerud and Paganini, 2013; Liu and Yao,
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2016; Rubio et al., 2019). Robust controllers have been
developed in different engineering fields, such as robotics,
power systems, automotive, and aerospace, to ensure
safety and reliability.

Among the most popular robust control techniques,
one can find sliding mode control (Bartolini et al.,
2008; Edwards et al., 2006; Shtessel et al., 2014; Utkin
et al., 2017), the attractive (invariant) ellipsoid method
(Azhmyakov et al., 2013; Davila and Poznyak, 2011;
Poznyak et al., 2014), multi-model control (Boltyansky,
1999; Poznyak et al., 2002) and H∞ control (Petersen
and Tempo, 2014). Other control fields that handle
uncertain systems are adaptive control (Astolfi et al.,
2007; Krstic et al., 1995), identification schemes (Åström
and Eykhoff, 1971; Åström and Wittenmark, 1971; Fliess
and Sira-Ramirez, 2008; 2003; Romero et al., 2014;
de Jesús Rubio, 2016; de Jesús Rubio et al., 2015;
Dullerud and Paganini, 2013; Liu and Yao, 2016; Runio et
al., 2019) and high-gain observers in nonlinear feedback
control (Khalil, 2017; Khalil and Praly, 2014).

In the work of Freidovich and Khalil (2008), a robust
output feedback controller for feedback linearizable
systems is introduced, where the model uncertainties and
perturbations are estimated using an extended high-gain
observer. Another disturbance observer-based control
is introduced by Ferreira et al. (2010), who estimate
the states and the disturbance in finite time using
a sliding-mode-based observer. Finally, we mention
the work of Sanchez and Moreno (2021), where the
authors also propose a disturbance observer-based control
scheme for a class of nonlinear systems. Therein,
an extended-order higher-order sliding-mode observer is
used to estimate the states of the system and the matched
external disturbances exactly and in finite time. Active
disturbance rejection control (ADRC) (Gao et al., 2001;
Han, 2009) and the model-free control approach (MFCA)
(Fliess and Join, 2009; 2013) have been demonstrated to
be practical and efficient options to address the trajectory
tracking control problem for uncertain flat systems. We
refer the reader interested in these two topics to the
work of Lafont et al. (2015) and Sira-Ramı́rez et al.
(2018). Finally, we invited the reader to see the related
and interesting recently published works by Ordaz et al.
(2023) and Ding et al. (2020) and the papers therein.

ADRC is a suitable tool to solve the output-feedback
control problem for uncertain plants, where the
input-output behavior of the plant is assumed to be
well approximated within its operating range by an
ordinary differential equation. Roughly speaking, ADRC
algebraically estimates the unmodeled dynamics and
unknown external perturbations. A feedback controller
uses these estimates to cancel the undesired effects they
produce online. Following the ideas behind ADRC,
this study proposes an explicit control solution for the
trajectory tracking control problem for a second-order

uncertain flat system without requiring velocity feedback,
which is our study’s main contribution. The proposed
approach consists of an algebraic version of ADRC
for the online estimation and cancellation of the system
uncertainties, avoiding the use of extended state observers.
Inspired by the results presented by Aguilar-Ibanez et al.
(2021) and Cortés-Romero et al. (2017), the use of an
algebraic estimator consisting of iterated integrals of both
the system’s output and the control signal is proposed.

The suggested solution to the trajectory tracking
problem for an uncertain second-order flat system is
presented in two stages. Firstly, it is derived for a scalar
system; then, it is extended to a generalized multivariable
system. The main contribution of our algebraic control
approach is that it allows us to solve the output-feedback
control problem for uncertain flat second-order systems
without needing to estimate the first-time derivative of
the system position. Our proposal avoids using extended
observers and exhibits fast convergence, performing
similarly to the controllers that use them to identify
uncertainties and velocities. As far as we know, our
algebraic approach has not yet been extensively studied at
this point. To illustrate the effectiveness of the proposed
control method, numerical simulations with satisfactory
outcomes are presented.

We organize the rest of this work as follows.
Section 2 presents the rationale of algebraic ADRC for a
second-order system and introduces the control problem
statement. Section 3 discusses the proposed control
strategy. Section 4 presents numerical simulations that
assess the control strategy’s effectiveness. Finally, some
concluding remarks are provided in Section 5.

2. Motivation
Consider the uncertain second-order flat plant

ẋ1 = x2,
ẋ2 = f0(x, d, t) + bu,
y = x1,

(1)

where x1 and x2 are the states, f0 represents the system’s
unknown dynamics, u and y are respectively the input and
output of the plant, b > 0 is a constant input gain; d is the
unknown bounded disturbance. Please note that function
f0 lumps the endogenous and exogenous perturbations,
which, additionally, can contain noisy signals that may
affect any system state variables. Regarding the plant
input-output behavior and the spirit of the MFCA, we can
rewrite the nonlinear model (1) as the following linear
perturbed system:

ÿ = F (t) + bu, (2)

where F is defined by

F (t) = f0(y, ẏ, d, t),
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which is regarded as a completely unknown function of
time. For simplicity, we assume that the input gain b is
known and the exogenous disturbance F (t) is uniformly
and absolutely bounded in some compact set in the
region of interest. It is necessary to notice that the
perturbations and the unknown endogenous injections
must be uniformly and absolutely bounded to guarantee
that the closed-loop differential equation (2) exhibits a
solution and avoids the corresponding finite-scape time
problem (Gliklikh, 2006; Cortés–Romero et al., 2017;
Guo and Zhao, 2011; 2013).

The main idea of our control solution consists in
algebraically estimating online the uncertainty F (t) using
the ADRC approach while simultaneously canceling it
(Fliess and Join, 2009). Summarizing, we apply to both
sides of Eqn. (2) the estimator operator [·]E , which acts
during a very short sliding time window of width δ, that is

[ÿ]E = [F ]E + b [u]E . (3)

Now, under some suitable assumptions, the uncertainty
estimate [F ]E can be approximated as

[F ]E ≈ κ ̂Ft, (4)

where κ > 0 is a convenient constant that depends on
the selection of [·]E , and, as mentioned above, ̂Ft is an
estimate of F computed inside the sliding time window of
width δ. Then, from Eqns. (3) and (4), we have that

̂Ft =
1

κ
([ÿ]E − b [u]E) ,

and, in general, ̂Ft satisfies the following inequality:
∣

∣

∣F (t)− ̂Ft

∣

∣

∣ ≤ ε(δ), ∀t ≥ T0 > 0, (5)

where δ > 0 and ε(δ) are small constants, and the time
T0 is sufficiently small. Specifically, the operator [·]E
acts during a very short sliding time window of width δ.
Therefore, if ̂Ft is very close to the current values of F (t),
then the control action can be proposed as

u = −1

b
( ̂Ft − u0), (6)

where u0 is the new system input. Evidently, if the
relation (5) is fulfilled, the system (2), in closed-loop with
(6), reads as

ÿ ≈ u0.

Control problem. Based on the differential-algebraic
approach, we develop a control scheme that solves
the output trajectory tracking control problem for the
uncertain flat system (2). That is, we propose the
following piece-wise continuous controller:

u = C(y − yr),

where C(·) is a smooth function and yr is a continuous
and bounded time-varying reference, with its first and
second-time derivatives being bounded. Then, the
above-introduced controller u ensures that

|y(i−1)(t)− y(i−1)
r (t)| ≤ εi,

t ≥ T0 > 0, i = {1, 2},
where T0 > 0 is the time required for the states to enter
a region of confinement and the constants εi > 0 are as
small as needed.

To solve the problem under consideration, we must
take into account that f0(x, d, t) is a continuous and
locally Lipschitz function with respect to x, in some
region of interest x ∈ D ⊂ R

2. Besides, F (t) =
F0(x, d, t) and Ḟ (t) = Ḟ0(x, d, t) are continuous and
uniformly bounded in D. That is, F is uniformly
continuous.

Consequently, F could be approximated by a
piece-wise continuous function in the sliding time window
[T − δ, T ].

Novelty. This study proposes a suitable scheme for
simultaneous online algebraic estimation and cancellation
of the function F (t), corresponding to the unknown
dynamics. Our approach differs from previously
presented solutions by extending the method to apply it to
more complex unknown flat systems. We accomplish this
generalization based on the following estimation operator:

[x(T )]
m
δ

=

∫ T

T−δ

∫ Tm

Tm−δ

· · ·
∫ τ2

τ2−δ

x(τ1) dτ1 dτ2 . . . dτm, (7)

where the window of width δ suggests evaluating the
integral during the interval (T − δ, T ), where T stands
for the running time and T > δ, and m is the number
of iterated integrals. This operator was introduced by
Aguilar-Ibanez et al. (2021) and Cortés-Romero et al.
(2017).

Remark 1. The idea behind the estimation operator
consists in obtaining an algebraic expression of the
estimated function in a sufficiently short sliding time
window [T − δ, T ], where δ < T is the size of this
window and T is the evolution time during which we want
to obtain the estimate. In other words, we want to recover
information by using the integral operator several times to
estimate the function.

Because our approach algebraically recovers the
unknown dynamics, it has the advantage of doing
it in finite time, contrarily to what has been done
when applying the ADRC approach, where the solution
is accomplished using asymptotic extended-order state
observers (Chen et al., 2007; Han, 2009; Tian and Gao,
2007; Zhao and Gao, 2013; Zhou et al., 2009).
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Figure 1 shows an illustrative scheme that
summarizes the particularities of the problem under
consideration and the proposed solution.

3. Control strategy
3.1. Design of algebraically active disturbance
rejection-based control for a scalar system. To solve
the trajectory tracking control problem for the uncertain
flat system (2), we first algebraically estimate the
uncertain disturbance F , using measurements of y and
u. Afterward, we propose the corresponding stabilizing
controller. Then, to obtain the estimate ̂Ft, we consider
the short sliding time window [T − δ, T ], where δ > 0
is the window size and T is the evolution time during
which we want to obtain the approximated value of F (T ).
Evidently, the current sliding time window starts after
T − δ > 0. The tracking error is defined as

ε = y − yr, (8)

where yr is the desired reference trajectory, with its first
and second-time derivatives bounded. Hence, according
to (2), we have

ε̈ = F (T ) + bu− ÿr. (9)

To stabilize (9), we need to feed back the damping
term defined by kdε̇, with kd > 0. To accomplish that,
this term is added to both the sides of Eqn. (9), which
yields

ε̈+ kdε̇ = Fn(T ) + bu, (10)

where Fn(t) is the new uncertainty of the system (10),
defined as

Fn(T ) = kdε̇+ F (T )− ÿr.

To estimate the new uncertain term Fn(T ), we use the
estimation operator [·]m=2

δ on both the sides of Eqn. (10)
to obtain

∫ T

τ1=T−δ

∫ τ1

τ2=τ1−δ

(ε̈+ kdε̇) dτ2 dτ1

=

∫ T

τ1=T−δ

∫ τ1

τ2=τ1−δ

(Fn(·) + bu(·)) dτ2 dτ1.

Assuming that Fn could be approximated by a
piece-wise continuous function in the sliding time window
[T − δ, T ], after some simple calculus it is easy to see that

ε(T )− 2ε(T − δ) + ε(T − 2δ)

+ kd

(

[ε(T )]1δ − [ε(T − δ)]1δ

)

= δ2 ̂Fn(T ) + b [u(T )]2δ . (11)

Algebraic manipulations of Eqn. (11) lead us to the
following estimate of Fn:

̂Fn(T ) =
1

δ2

(

ε(T )− 2ε(T − δ) + ε(T − 2δ)

+ kd

(

[ε(T )]
1
δ − [ε(T − δ)]

1
δ

)

(12)

− b [u(T )]2δ

)

.

Notice that, using (11), we actually approximate the
double integral (12), employing only the error position
(8); therefore, there is no need to measure the acceleration.
We underscore that the estimations of quantities [u(T )]2δ ,
[ε(T )]1δ and [ε(T − δ)]1δ may be implemented as a discrete
linear filter. According to (6) and (10), we propose the
current controller u as

u = −1

b

(

̂Fn − u0

)

, (13)

where we compute ̂Fn using Eqn. (12), and u0 can be
fixed as

u0 = −kpε(T ), (14)

where kp > 0. Therefore, by substituting (13) and (14)
into (10), we have that

ε̈+ kdε̇+ kpε = Fn − ̂Fn, (15)

where kd > 0 and kp > 0. Notice that, by construction,
̂Fn is a very good numerical approximation. Hence, if the
roots of the characteristic polynomial p(s) = s2+kds+kp
are far enough from the imaginary axis in the open left half
complex s-plane, we can ensure that the error ε tends to
be very close to zero. Alternatively, we can define u0 as a
PI controller as follows:

u0 = −kpε(T )− kI

∫ T

τ=0

ε(τ) dτ, (16)

where kI > 0. Now, introducing (14) and (16) into (10),
we obtain the following dynamic error equation

ε̈+ kdε̇+ kpε+ kI

∫ T

τ=0

ε(s) ds = Fn − ̂Fn.

Once again, choosing kd, kp, and kI such that the
roots of the characteristic polynomial p(s) = s3+ kds

2+
kps + kI p(s) are far enough from the imaginary axis in
the open left half complex s-plane, we can ensure again
that the error ε tends to be very close to zero. Finally,
according to (13), the control action u can be taken as

u =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

b
u0 for t ∈ [0, 2δ],

1

b
(− ̂Fn + u0) for t > 2δ,

(17)
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3. Stabilize  the linearized plant

Fig. 1. Block diagram of the control problem in question.

where u0 can be fixed as (14) or (16), and ̂Fn is computed
as (12).

Notice that, if we introduce the control law (17) in
combination with (14), we will only be introducing the
controller proportional action into the system (10), leading
to the following closed-loop equation:

ε̈+ kdε̇+ kpε = Fn(t)− ̂Fn(t). (18)

When we conveniently place the dominant linear
characteristic polynomial roots in the open left half of the
complex s-plane, the tracking error ε converges to a small
neighborhood of zero. We must note that the estimation
error Fn(t) − ̂Fn(t) is very small because the algebraic
estimation method is highly accurate; consequently, the
trajectory tracking error is linearly dominated by the
characteristic polynomial p(s). Furthermore, suppose we
conveniently place the dominating linear characteristic
polynomial roots in the open left half of the complex
s-plane. In that case, the tracking error converges
to a small neighborhood of zero of the output’s
associated phase space once the disturbance cancelation
is accomplished. As the estimates rely on the sliding
time window size and the integration step size, the error
ε is confined inside a small ε-vicinity. Similarly, we
can alternatively substitute the controller (16) into (17),
also introducing the integral action of the controller in the
system (10), obtaining the following optional closed-loop
equation:

..
ε+ kd

.
ε+ kpIε+ kI

∫ T

0

ε = Fn(t)− ̂Fn(t), (19)

where constants {kd, kp, kI} have to be chosen in such a
way that the characteristic polynomial p(s) = s3+kds

2+
kps + kI is Hurtwitz, and its roots are far enough from
the imaginary axis in the open left half complex s-plane.
Once again, because the tracking error Fn(t) − ̂Fn(t) is
very small, it is linearly dominated by the characteristic
polynomial p(s).

To implement the proposed algebraic approach, the
following assumption is required:

A1 The input gain b �= 0 is known, and the
uncertainty Fn(t) is uniformly continuous and
absolutely bounded.

Additionally, to guarantee that Eqn. (9), in
closed-loop with (17), possesses a solution, the unknown
uncertainty has to be uniformly and absolutely bounded
and avoid the finite time of escape (Gliklikh, 2006; Guo
and Zhao, 2011; 2013). As for the time window of width
δ that moves along time T , we must note that it allows
us to evaluate the iterated integrals of both the output and
control, letting us estimate the uncertainties Fn in time T .
When time T increases, that is, the new interval changes to
[T − δ, T ], the integration interval also changes, we need
to estimate once again the uncertainties Fn through ̂Fn.
In short, the change in T implies a continuous estimate of
the uncertainties for a valid T > δ > 0.

Comments regarding the above discussion.
(i) The string of obtained outputs, before T > 2δ,
of the states ε(T − kδ), for k = {0, 1, 2}, [ε(T )]

1
δ ,

and [ε(T − δ)]
1
δ are available or computable. Also,

the quantities [ε(T )]1δ , [ε(T − δ)]1δ and [u(T )]2δ can be
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numerically estimated, with high precision, using either
a digital filter or an implementation of any numerical
integration algorithm.

(ii) According to the integral mean value theorem, it can
be proven that ̂Fn is well defined, that is

̂Fn = Fn(ζ) =
1

δ2
[Fn(T )]

2
δ , ζ ∈ [T − 2δ, T ].

For a detailed explanation of how the above expression
was obtained, please refer to Cheney and Kincaid (2012).
On the other hand, using the Taylor series expansion is
evident that:

∣

∣

∣

̂Fn − Fn(T )
∣

∣

∣ = O(δ). (20)

In fact, the numerical error between Fn(T ) and its
estimate ̂Fn is equal to O(δ) times two. Recall that
g(h) = O(h) means that there exists a finite constant k,
such that |g(t)| ≤ kh.

(iii) Finally, we underscore that ε̇(t) is not fed back or
implemented in the current controller (17). However, we
must use integrators of the outputs ε(T ) and ε(T −δ), and
we do not need to use observers.

We summarize the above discussion in the form of
the following proposition.

Proposition 1. Under Assumption A1, consider the un-
certain system (2), in closed loop with (17), where ̂Fn is
computed via (12). Then, the tracking error ε = y− yr of
the closed-loop system uniformly and asymptotically con-
verges to a δ-vicinity.

Proof. First of all, the control u is active after t > 2δ
(cf. (17)). From Assumption A1, the state ε remains
bounded for t ∈ [0, 2δ]. For simplicity, we only consider
the proportional control action (14) and the controller (17)
in closed loop with (10), and for the case where kd = 2w
and kp = w2, with w > 0; the latter leads us to the
following state-space realization:

ξ̇=

[

ξ̇1
ξ̇2

]

=

[

0 1
−w2 −2w

]

ξ +

[

0
˜Fn(t)

]

,

where ξ1 = ε , ξ2 = ε̇, and ˜Fn(t) = ̂Fn(t) − Fn(t).
Therefore, the error ξ evolution is given by

ξ(t) =eA(t−T0)ξ(T0) +

t
∫

ζ=T0

eA(t−ζ)

[

0
˜Fn(ζ)

]

dζ,

(21)
with T0 ≥ 2δ, and

A =

[

0 1
−w2 −2w

]

.

Notice that, according to the inequalities (20), we have
that

∣

∣

∣

˜Fn(ζ)
∣

∣

∣ = O(δ), for all t > T0 ≥ 2δ > 0.

Because the exponential matrix A is Hurwitz, it can
be upper-bounded as

‖eAt‖ ≤ ρe−wt,

where ρ > 0 is a suitable constant and w = λmax(A).
Therefore, from (21) we can upper bound ξ(t) as

‖ξ(t)‖ ≤ ρe−w(t−T0) ‖ξ0‖

+ ρ max
ζ∈[T0,t]

∣

∣ ˜Fn(ζ)
∣

∣

t
∫

ζ=T0

e−w(t−ζ) dζ.

Therefore, as t → ∞, we have that

‖ξ(t)‖ ≤ ρ

w
O(δ).

Now, selecting w sufficiently large, we can claim that
‖ξ(t)‖ = O(δ/w), for t large enough, holds. That is, the
tracking trajectory error ε is bounded. Following verbatim
the above arguments, we can probe the boundedness of the
proportional-integral action of the closed loop (19). �

To have an intuitive and practical idea of how
the proposed control approach works for the case
when we use PD-control, we sketched an algorithm in
pseudo-code-like notation (Algorithm 1).

Remark 2. Notice that the estimation error ξ relies on the
ratio between the size δ of the sliding time window and
the control gain w. Finally, our proposed solution does
not use an observer or differentiator to achieve the control
objective. This advantage has been previously explored
by Ramı́rez-Neria et al. (2020) and Moreno-Valenzuela
(2019; 2007). Additionally, because our methodology
uses iterative integrals, the disturbance estimation in terms
of noise with zero mean is improved, and the convergence
time of the uncertainties estimator is generally small.
Conversely, if a biased noise exists in the measurements
of the system’s output, the error can be incremented. In
this scenario, our approach is not the most suitable option.

Remark 3. When fixing the sliding window size,
we must consider the signal-to-noise ratio and the
perturbation frequency. Because it is hard to know the
noise level involved in the signal, a trial-and-error process
helps to find a suitable window size. Additionally, if
the perturbation frequency is high, the sliding window
size must also be small, with a smaller integration step
size, and the resulting increase in the computing time.
On the other hand, a large window size yields a lower
computation time but a longer estimation time.
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Algorithm 1. PD-control usage case.
Consider the plant

..
y = F (T )+bu defined in (2). Set

kp, kd, δ > 0.

1. Define the tracking error as in (8) ε = y − yr, which
leads to the dynamic error equation

ε̈+ kdε̇ = Fn + bu

with the new uncertain system

Fn(T ) = kd
.
ε+ F (T )− ..

y.

2. Define the sliding time window wT = [T − δ, T ]
with T > δ. Store y(t) and u(t)∀t ∈ [T − 2δ, T ] for
future computations.

3. If T > 2δ, compute the estimate of Fn(T ) using
(12) and the string of past values saved in Step 2.
Otherwise,

̂Fn(T ) = 0.

4. Control action: If T > 2δ compute u = − 1
b (

̂Fn +
kpε) defined in (13). Otherwise,

u = −1

b
kpε.

3.2. Generalization: A multi-variable second-
order system. We extend the proposed scheme for the
vectorial case. To this end, we consider the following
generalized second-order system:

ẋ1 = x2,

ẋ2 = f0(x,d, t) + b(x,t)u,

y = x1,

(22)

where x1 ∈ R
n and x2 ∈ R

n are the states, f0 is the
unknown dynamics, u∈ R

n and y ∈ R
n are, respectively,

the input and output of the system, b(x, t) ∈ R
n×n is

known and fulfills b(x, t)≥βIn with β > 0. Clearly, the
system (22) can be expressed as

ÿ = F(t) + b(x, t)u, (23)

where F(t) is defined as

F(t) = f0(x,d, t)

and lumps the whole unknown system dynamics, once
again, under the following assumptions:

B1 f0(x,d, t) is a continuous and locally Lipschitz
function with respect to x, in some region of interest
x ∈ D ⊂ R

2n. Besides, F and Ḟ are uniformly
bounded in D.

B2 F can be approximated by a piece-wise continuous
function in the sliding time window [T − δ, T ].

As before, the objective consists in finding a control
law u for the system (23), such that the output y tracks
a given smooth output reference signal yr(t), with its
first and second-time derivatives bounded, in spite of the
presence of uncertainty F. That is, we propose u as

u =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

b−1(x, t)u0 for t ∈ [0, 2δ],

b−1(x, t)
(

−̂Fn + u0

)

for t > 2δ,

(24)
where

̂Fn(T ) =
1

δ2
(ε(T )− 2ε(T − δ) + ε(T − 2δ)

+Kd

(

[ε(T )]
1
δ − [ε(T − δ)]

1
δ

)

− b [u(T )]2δ),

(25)

and Kd = diag{kd, kd, . . . , kd} ∈ R
n×n, where kd > 0,

and u0 can be fixed as

u0 = −Kpε,

with Kp = diag{kp, kp, . . . , kp} ∈ R
n×n, where kp >

0, and the tracking error is defined as ε = y − yr.
Alternatively, u0 can take the following integral form:

u0 = −Kpε−KI

∫ T

τ=0

ε(τ) dτ,

with KI = diag{kI , kI , . . . , kI} ∈ R
n×n, where kI > 0.

The constants kd, kp, kI are tunable, which implies that
the characteristic polynomial

p(s) = s3 + kds
2 + kps+ kI

is Hurwitz.
Now, we are able to summarize the previous

discussion related to the multi-variable second-order
system (22), in the following proposition.

Proposition 2. Under Assumptions B1 and B2, consider
the uncertain system (22) in closed loop with (24). Then,
the tracking error of the closed loop system, ε = y − yr,
converges uniformly and asymptotically to a δ-vicinity of
the origin. Besides, the trajectory tracking error‖ε‖ =
O(δ/w) is ultimately bounded.

We can prove Proposition 2 following verbatim the
arguments in the proof of Proposition 1.
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4. Numerical simulations
We assess the effectiveness of our control approach
through three numerical experiments in which the 2-DOF
robot, presented by Reyes and Kelly (1997) and shown
in Fig. 2, performs three control tasks. We programmed
and ran the simulations in the numerical simulator for
nonlinear systems Simnon 3.0, instantiated to use the
fifth-order Runge–Kutta method. The motion equations
of this robot in the joint space are defined as follows:

q̈ = M−1(q) (−C(q, q̇)q̇−G(q) + τ + d) , (26)

where q = (q1, q2) is the measurable state vector, τ =
(τ1, τ2) is the input vector, and d is a bounded and
low-frequency perturbation.

Figure 2 shows that q1 and q2 are the angular
positions of Joints 1 and 2, respectively. The inertia matrix
of this system, which is positive definite, is defined as1

M(q) =

[

θ1 + 2θ2c2 θ3 + θ2c2
θ3 + θ2c2 θ3

]

, (27)

while the centripetal and Coriolis forces matrix is defined
as

C(q, q̇) =

[ −2θ2s2q̇2 −θ2s2q̇2,
−θ2s2q̇2 0

]

. (28)

The gravitational torque is given by

G(q) =

[

θ4s1 + θ5s12
θ5s12

]

, (29)

with the parameters

θ1 = 2.35Nm-s2, θ2 = 0.1Nm,
θ3 = .12Nm-s2, θ4 = 38.4Nm,
θ5 = 1.82Nm.

(30)

The previous setup was taken from the
above-mentioned references (Moreno-Valenzuela
et al., 2008; Reyes and Kelly, 1997).

First control maneuver task. The control task consists
of a rest-to-rest maneuver tracking a hyperbolic tangent
reference signal, that is, from the initial position qi =
(0, 0) to the final rest position qf = (q1f =
1.5 [rad], q2f = 2 [rad]). To this end, we choose a smooth
step-like trajectory defined as

qr = qi +
qf − qi

2
(1 + tanh (t− T )) , (31)

where we fix the settling time as T = 10 s.
The closed-loop system with its corresponding

estimators was simulated in the Matlab environment,
using a Runge-Kutta integration option with an integration

1For simplicity, the following notation is used: s1 = sin q2 s2 =
sin q2, c2 = cos q2 s12 = sin(q1 + q2).

y1

x

q1

y

y2

x2

q2

qt

x1

Fig. 2. 2-DOF manipulator.

step of 10−3, and the size of the sliding time window was
fixed at δ = 0.05. We set the initial conditions as follows:

q1(0) = 0.1 rad, q2(0) = 0.05 rad, (32)

and we define the system perturbation as

dT = [sin(t) + 1, cos(t)− 1]. (33)

To accomplish this control maneuver task, we first
define the tracking error as ε = q− qr. According to
(26), the dynamic equation is given by

ε̈ = F0(t) +M−1τ − ..
qr, (34)

where

F0(t) = M−1(q) (−C(q, q̇)q̇−G(q) + d) . (35)

Note that the system position and velocity are bounded in
actual applications. For instance, a robot manipulator has
a fixed maximal velocity, and its range of movement is
restricted. Therefore, the system can be approximately
expressed as a perturbed flat one. Consequently, our
approach can be used in reality. Therefore, after using
Proposition 2, we have that the stabilizing controller can
be written as

τ =

⎧

⎪

⎨

⎪

⎩

M(q)u0 for t ∈ [0, 2δ],

M(q)
(− ̂Fn + u0

)

for t > 2δ,

(36)

where

̂Fn(T ) =
1

δ2
ε(T )− 2ε(T − δ) + ε(T − 2δ)

+Kd

(

[ε(T )]
1
δ − [ε(T − δ)]

1
δ

)

(37)

−M−1 [u(T )]2δ
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and

u0 = −Kpε−KI

∫ T

τ=0

ε(τ) dτ, (38)

with the controller gains chosen as

Kd = 3wI2, Kp = 3w2I2, KI = w3I2, (39)

and w = 10.
We present the outcome of this simulation in Fig. 3,

where we show the system trajectories q = [q1, q2],
q̇ = [q̇1, q̇2], and τ = [τ1, τ2]. We can see that
the position states q1 and q2 reach their corresponding
reference signals, respectively after 2 s and 1 s, while both
velocity states q̇1 and q̇2 do it after 1 s. Finally, we can see
that the corresponding control actions never reach their
steady state. This is because both controllers constantly
counteract the undesirable effect of perturbation d.
Figure 3 shows that our control approach performance is
satisfactory, even when we never feed back the velocity
q̇, and the first and second-time derivatives of qr. To
complement Fig. 3, we show in Fig. 4 the position and
velocity tracking errors. It can be observed that the
position and velocity errors are small enough; they are
of orders of 10−3 and 10−2, respectively. From Figs. 3
and 4, we must note that, after around 10 s, there is an
inflection point because the reference signal reaches its
maximum velocity. Consequently, the tracking error in
both coordinates, q1 and q2, exhibits an abrupt increment.
However, the controller can almost immediately render
the system very close to a steady state.

Second control maneuver task. The control task consists
in tracking a smooth trajectory defined by

qr1 = sin(0.8t), qr2 = 2 cos(0.8t). (40)

That is, we force the system to track an elliptically shaped
trajectory in the phase space portrait of q1 and q2. The
system’s initial condition was set at q(0) = (0.25, 1).
To make the task more challenging, we assume that the
inertial matrix M is partially known and given by

̂M =

[

2.5 0.2
0.2 0.2

]

, (41)

and the system is perturbed by

d =

(

2 +
1

2
sin(t), 2 +

1

2
sin

( t

4

)

cos
( t

4

)

)

. (42)

To run the experiment, we used the same setup as
before, except for matrix M = ̂M . In other words, we
considerM to be a constant matrix. We show the outcome
of this numerical experiment in Fig. 5. In Fig. 5(a), we
can see that the 2-DOF robot effectively tracks the smooth
elliptic-shaped trajectory. In Figs. 5(b)–(e), we can see
that the position and velocity errors converge close to zero

in less than 2 s, and they are of orders of 10−2 and 10−3,
respectively. Finally, Fig. 6 shows the corresponding
control responses, τ1 and τ2. We can claim that our control
approach’s performance is satisfactory.

Remark 4. To avoid the significant initial peaking
phenomena found in the response corresponding to the
estimation of Fn, we use a clutch function to smooth these
transient peaking responses in the controller. We defined
the clutch as a time function smoothly increasing from 0
to 1 during a short time interval [0, α), where we fixed
α = 0.25 for this particular case. That is, we introduce
the function (Sira-Ramı́rez et al., 2014)

s(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, t > α,

sin2k
(

tπ

2α

)

, t ≤ α,

(43)

where k is a sufficiently large integer. Thus, the observer
variables may be adjusted as

̂Fa = s(t)̂Fn. (44)

Third control maneuver task and comparison with the
classic ADRC approach. We propose a third experiment
to draw a comparison between our control approach and
the classical ADRC. In this experiment, we consider the
following smooth circular reference trajectory:

qr = [2 sin(t), 2 cos(t)]
T
. (45)

We use the same initial conditions, q(0) = (0.25, 1), and
the same partially known constant inertial matrix, ̂M (41).
To make the experiment more challenging and evaluate
our controller’s performance, we compare it with the
classical ADRC approach (see, e.g., Gao et al., 2001), and
as the disturbance generator we use the chaotic Duffing
mechanical oscillator defined by (Kapitaniak, 2000):

ẋ = v, v̇ = −p1v − p3x
3 + p2x+A cos(1.8t). (46)

It is known that this system exhibits a chaotic
behavior (Parker and Chua, 2012) for the fixed values of
parameters in a neighborhood of p1 = 0.4, p2 = −1.1,
p3 = 1, and A = 2.1. The perturbation signal is defined
as

d = (1 + x,−1 + v)T , (47)

where x and v are respectively, the Duffing oscillator
position and velocity. Finally, we use the traditional
ADRC proposed as

τn = ̂M (−ẑ+ u0) , (48)

where u0 is fixed as

u0 = −Kd(v̂ − q̇r)−Kpε−KI

∫ T

τ=0

ε(τ) dτ, (49)
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Fig. 3. Closed-loop responses of the proposed algebraic ADRC control for the uncertain 2-DOF manipulator when carrying out a rest-
to-rest maneuver tracking a hyperbolic tangent reference signal.
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Fig. 4. Position and velocity tracking errors when the 2-DOF manipulator is carrying out a rest-to-rest maneuver tracking a hyperbolic
tangent reference signal.

and q̂ and ẑ evolve according to the following equations:

˙̂q = v̂ −K2 (q̂− q) ,

˙̂v = ̂M−1u0 + ẑ−K1 (q̂− q) ,

˙̂z = −K0 (q̂− q) ,

(50)

where

K2 = 3wiI2, K1 = 3w2
i I2, K0 = w3

i I2 (51)

for some wi > 1. To counteract the peaking phenomena
exhibited by the traditional ADRC, we use the same clutch
function as in the second experiment, that is,

τ = s(t)τn. (52)

To make a fair comparison, we used, for both
controllers, the same control gains and the same

characteristic polynomial for the ideal closed loops.
For fast and efficient recovery of variables v̂ and ẑ,
we fixed the observer’s constants as wi = 20. We
show the obtained results in Fig. 7, where we can
see how our controller and the ADRC one accomplish
the trajectory tracking task. This figure shows the
corresponding tracking errors and the control effort of
both the approaches. Related to the tracking errors,
it is evident that they remain bounded and very close
to zero, with our controller having a slightly better
performance. However, if we use a cascaded GPI observer
with the ADRC proposed by Ramı́rez-Neria et al. (2014),
the performance may improve considerably, having the
inconvenience of finding empirically the number of
integrators added to the observer. Finally, notice that both
the control signals have a similar magnitude.
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Fig. 5. Closed-loop responses of the proposed algebraic ADRC control for the uncertain 2-DOF manipulator when tracking a smooth
elliptic-shaped trajectory in the q1-q2-phase space; the inertia matrix M is partially known.
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5. Conclusions

This study proposes an algebraic ADRC-based controller
for solving the trajectory tracking problem of an uncertain
flat second-order system. The idea behind the method
was inspired by the works of Fliess, Sira-Ramirez, and
their colleagues (Fliess and Join, 2009; 2013; Fliess
and Sira-Ramirez, 2008; Cortés-Romero et al., 2017;
Aguilar-Ibanez et al., 2019).

Our controller works as follows: first, the system’s
unknown dynamics, together with external disturbances,
are algebraically identified using a linear set of
time-varying integral expressions for the output and
the control signal. Then, this information is used
in a control law to linearize the perturbed system.
We designed the controller to efficiently achieve the

disturbance’s cancellation by using the algebraically
estimated perturbation value and simultaneously solving
the tracking control problem for a flat system. We first
solve the uncertain flat second-order system case to obtain
the above-mentioned solution. Then, we extended it to the
case of a second-order multivariable system.

In both the cases, we avoid the necessity of
computing the time derivative of the system position.
Instead, we compute time-delayed functions. Another
essential characteristic of our controller is that it is
explicitly computed. That is, we expressed it as an
algebraic formula. We use the linear systems theory to
carry out the proof of stability. To assess our control
solution’s effectiveness, we tested it with three numerical
experiments, where a 2-DOF manipulator accomplished
a number of control tasks. The first one involved
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Fig. 7. Comparative results between our control strategy and the traditional ADRC approach; when tracking a circular-shaped trajec-
tory, the inertia matrix M is partially known.

a rest-to-rest maneuver tracking a hyperbolic tangent
reference signal while the second involved tracking a
smooth, elliptically shaped trajectory. We compared our
control solution and the classical ADRC approach in the
third experiment. In the three experiments, we obtained
satisfactory results.

The paper’s main contribution is using the algebraic
estimator and avoiding the necessity of using extended
state observers to estimate the uncertainties and the
system velocity. Additionally, not using extended state
observer helps us circumvent the presence of undesired
“peaking” and noise amplification associated with the
observer needing high gains. Finally, our approach can
be further improved for future developments to deal with
noise-corrupted measurable output, even considering that
the noise is not zero mean.
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Suarez-Castanon, M.S. (2021). An algebraic version of the
active disturbance rejection control for second-order flat
systems, International Journal of Control 94(1): 215–222.

Astolfi, A., Karagiannis, D. and Ortega, R. (2007). Non-
linear and Adaptive Control with Applications, Springer,
Luxembourg.
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