
Int. J. Appl. Math. Comput. Sci., 2024, Vol. 34, No. 2, 309–321
DOI: 10.61822/amcs-2024-0022

LEARNING ABSTRACT VISUAL REASONING VIA TASK DECOMPOSITION:
A CASE STUDY IN RAVEN PROGRESSIVE MATRICES

JAKUB KWIATKOWSKI a,* , KRZYSZTOF KRAWIEC a

aInstitute of Computing Science
Poznan University of Technology

Piotrowo 2, 60-965 Poznań, Poland
e-mail: jakub.k.kwiatkowski@doctorate.put.poznan.pl,

krawiec@cs.put.poznan.pl

Learning to perform abstract reasoning often requires decomposing the task in question into intermediate subgoals that
are not specified upfront, but need to be autonomously devised by the learner. In Raven progressive matrices (RPMs), the
task is to choose one of the available answers given a context, where both the context and answers are composite images
featuring multiple objects in various spatial arrangements. As this high-level goal is the only guidance available, learning to
solve RPMs is challenging. In this study, we propose a deep learning architecture based on the transformer blueprint which,
rather than directly making the above choice, addresses the subgoal of predicting the visual properties of individual objects
and their arrangements. The multidimensional predictions obtained in this way are then directly juxtaposed to choose the
answer. We consider a few ways in which the model parses the visual input into tokens and several regimes of masking
parts of the input in self-supervised training. In experimental assessment, the models not only outperform state-of-the-art
methods but also provide interesting insights and partial explanations about the inference. The design of the method also
makes it immune to biases that are known to be present in some RPM benchmarks.

Keywords: abstract visual reasoning, Raven progressive matrices, machine learning, problem decomposition.

1. Introduction

One of the key attributes of general intelligence is abstract
reasoning, which, among others, subsumes the capacity
to reason about and complete sequential patterns. To
quantify such capabilities in humans and diagnose related
deficiencies, John C. Raven devised in the 1930s a visual
test contemporarily known as Raven progressive matrices
(RPMs) (Raven, 1936). An RPM problem (Fig. 1) is a
3×3 grid of eight context panels containing arrangements
of 2D geometric objects. The objects adhere to rules that
govern the relationships between the panels in rows, e.g.,
progression of the number of objects, a logical operation
concerning their presence, etc. The task is to complete
the puzzle by replacing the lower-right query panel with
the correct image from the eight provided answer pan-
els. Solving the task requires ‘disentangling’ the rules
corresponding to rows and columns and capturing the
analogies between the observed patterns.

*Corresponding author

RPMs have been more recently adopted in the AI
community for assessing similar capabilities in artificial
intelligent systems, along with other benchmarks like
Bongard problems (Bongard, 1970) and Hofstadter’s
analogies (Hofstadter, 1995). Recent advances in machine
learning have accelerated this trend, with deep learning
becoming the primary paradigm of choice for designing
such systems (Małkiński and Mańdziuk, 2022a).

The original collection of RPM problems, standard
progressive matrices (Raven, 1936), comprised just 60
tasks, which is not enough to effectively train data-hungry
machine learning models. Therefore, several larger
datasets and task generators have been devised, among
them RAVEN (Zhang et al., 2019a) and I-RAVEN
(Hu et al., 2021). In this process, it became evident
that designing a representative, diverse, and varying in
difficulty collection of RPM tasks is nontrivial. The key
challenge is that one needs to generate seven incorrect
answer panels such that it is impossible to deduce the
correct answer panel from them. Unfortunately, most

mailto:jakub.k.kwiatkowski@doctorate.put.poznan.pl
mailto:krawiec@cs.put.poznan.pl

310 J. Kwiatkowski and K. Krawiec

Query

panel

Context panels Answer panels

Fig. 1. Example of an RPM task.

tasks in RAVEN do not meet this requirement: the correct
answer panel can be selected by identifying the most
frequent attributes across all eight answer panels (shape,
size, etc.) and picking the answer panel with those
properties. This flaw can be easily exploited, which
was epitomized with the so-called context-blind methods
(Wu et al., 2020) that achieve almost perfect scores on
RAVEN by disregarding the context entirely and making
decisions based on answer panels only. This problem
has been termed biased answer set, and we illustrate it
in Section SM9 of Supplementary Material (SM).

In this study, we circumvent the above problem by
decomposing RPM tasks into two stages: (i) prediction
of properties of the query panel, and (ii) identifying the
answer panel with properties that match those predicted
ones the best. To this aim, we use the abstract properties
available in the RAVEN benchmarks and design a bespoke
deep learning architecture based on the transformer
blueprint (Vaswani et al., 2017). The resulting approach,
which we dub the abstract compositional transformer,
is not only more transparent than end-to-end neural
architectures but also immune to biased answer sets and
capable of surpassing the state-of-the-art performance.
More specifically, the property prediction stage is immune
to biases because it does not involve the answer panels,
while the second stage does not entail learning and thus
by definition cannot be biased by the content of a training
set. Also, to the best of our knowledge, this is the
first attempt to predict symbolic descriptors of RPM
puzzles and the first study on self-supervised learning for
RPMs. The two-stage approach and model architecture
(Section 2), a bespoke training procedure (Section 3)
and an extensive empirical analysis concerning property
prediction (Section 5) and problem solving (Section 6)
form our main contributions.

2. Proposed approach
Rather than training models that choose answer panels
in RPMs, we propose to rely on property predic-
tion, in which models generate an abstract, structured
representation of the missing panel (Fig. 2). To this
aim, we rely on the RAVEN dataset (Zhang et al.,

2019a), in which tasks have been generated from symbolic
specifications expressed in an image description grammar
that captures visual concepts such as the position, type of
shape, color, number of objects, inside-outside, etc. The
objective of the model is to predict these properties for the
query panel and for the answer panels. A trained property
prediction model is then subsequently used to choose the
answer panel.

Our model comprises three modules: the image
tokenizer, transformer, and property predictor; we
describe them in subsections that follow (see Section SM1
in Supplementary Material for technical details). Even
though RPM problems have an inherent 2D structure,
we rely on sequence-to-sequence transformers (Vaswani
et al., 2017) and demonstrate, analogously to prior work
on applying such models to 2D images (Dosovitskiy
et al., 2020), that effective RPM solvers can be obtained
without explicitly presenting the spatial structure of the
problem to the model.

2.1. Image tokenizer. The tokenizer maps the 2D
raster representation of an RPM problem to a sequence
of abstract tokens using a convolutional neural network
(CNN) that gradually contracts the input image to lower
spatial resolutions in consecutive layers, while increasing
the number of channels. The multi-channel superpixels
produced by the last layer form the tokens, i.e., a token
is the vector of channels produced by the CNN at a given
location. In experiments, our CNN is EfficientNetV2B0
(Tan and Le, 2021) pretrained on the ImageNet database
(Deng et al., 2009). We consider the three following types
of tokenizers that vary in how they perceive the panel
rasters (when necessary, the single-channel monochrome
RPM image is broadcast to RGB input channels of the
CNN).

Panel tokenizer. In this variant, the raster image
representing each panel is tokenized independently. The
CNN is applied to each raster (84×84 pixels in RAVEN)
and produces a 3×3 array of 128-channel superpixels,
which is then flattened row-wise into a sequence of nine
128-dimensional tokens. This is repeated for all nine
panels of the puzzle, and the resulting sequences are
concatenated, producing 81 tokens in total.

Task tokenizer. In this variant, the raster image of the
entire RPM task is tokenized with a single invocation of
the CNN. For RAVEN, this means applying the CNN to
a 252×252 pixel image, which results in an 8×8 array of
128-channel superpixels, then flattened row-wise, leading
to a sequence of 64 128-dimensional tokens.

Row tokenizer. In this variant, the rasters representing
individual panels in each row are first stacked
channel-wise, resulting in three 3-channel 84×84
images corresponding to the top, middle, and bottom

Learning abstract visual reasoning via task decomposition . . . 311

c5 c6

c8 c9

c4

c7

Property

predictor

Property

predictor

Sequence

of input

tokens X

T
ra

n
s
fo

rm
e

r

Sequence

of output

tokens O

C
h

u
n

k
in

g
 a

n
d

a
rr

a
n

g
e

m
e

n
t

Property

predictor

RPM

renderer

RAVEN

RPM generator

Loss

function

c1

...

RPM task

True (actual)

property vectors

c2 c3

Predicted

property vectors

M
a

s
k
in

g

Im
a

g
e

 t
o

k
e

n
iz

e
r

F
la

tt
e

n
in

g

Fig. 2. Architecture of the model and its training process, guided by the loss function that compares the predicted and actual properties
of RPM panels. The model learns from completed RPM tasks, with one of the panels (context or query panel) masked out, and
predicts the properties of all panels.

rows of the puzzle. The CNN is queried on each of
those images independently and produces a 3×3 array
of superpixels in each query, which are then flattened
row-wise, resulting in nine 128-dimensional tokens.
Finally, the subsequences for the top, middle, and bottom
RPM rows are concatenated, resulting in 27 tokens.

By stacking the panel images, we directly juxtapose
them in input channels, thus allowing the CNN to form
low-level features that capture the differences between the
individual images. The RPM images from the left, central,
and right columns end up being interpreted by the CNN
as, respectively, the red, green, and blue channels. The
pretrained CNN is trained alongside the entire model, and
can thus adapt to the characteristics of the RPM.

The relatively small sizes of rasters, combined with
18 convolutional layers of the CNN (cf. Tan and Le, 2019,
Table 1), cause the receptive fields of units in the last
layer to span the entire input image. Therefore, for all
tokenizers, each token may in principle depend on the
entire input raster (a panel raster for Panel and Row
tokenizers, and a task raster for the Task tokenizer). Also,
only the Panel tokenizer is guaranteed to ensure some
degree of selective correspondence between RPM panels
and tokens. In the Task tokenizer, the representation is
more entangled, as the receptive fields of the CNN are
allowed to span multiple neighboring panels. In the Row
tokenizer, the consecutive groups of nine tokens form an
entangled representation of the top, middle and bottom
row of panels. However, the degree of entanglement
depends on the characteristics of features acquired in
training, and the actual effective receptive fields can be
smaller (see, e.g., Luo et al., 2017).

2.2. Sequence-to-sequence transformer. The
transformer processes the one-dimensional sequences
of tokens X produced by an image tokenizer by first
encoding each token independently using the encoder,

Z = map(Encoder θE , X), (1)

which is implemented as a dense linear layer, primarily
meant to match the dimensionality of the tokens to
the input dimensionality of the transformer. Then, the
transformer maps the sequence of encoded tokens Z to
a sequence of output tokens O of the same length:

O = Transformer (Z; θT). (2)

The model is equipped with a learnable positional encod-
ing, applied to the input tokens in Z . As the number
of tokens is constant, we encode the absolute positions
of tokens in Z , which can be achieved with a fixed-size
learnable embedding. There is a single entry in the
embedding for each position in the input sequence, and
thus 81, 64, and 27 entries for respectively the Panel,
Task, and Row tokenizers. The embedding vectors are
added to respective tokens in Z before passing them to
the transformer.

Internally, the transformer is a stack of transformer
blocks, each of them consisting of a multi-head attention
mechanism Attn(θA), normalization layers LayerNorm ,
a feed-forward network f(θf) and skip connections. The
processing for the i-th token can be summarized as

ai = Attn(LayerNorm(zi; θN); θA),

mi = ai + zi,

oi = f(LayerNorm(mi; θN ′); θf) +mi.

(3)

The resulting tokens oi form the output sequence O.
For a detailed description of transformer and multi-head
attention, see the work of Vaswani et al. (2017).

2.3. Property predictor. The property predictor maps
the sequence of tokens O produced by the transformer to
the properties of individual panels as follows:

1. the sequence is sliced into nine chunks of equal
length;

2. the tokens in each chunk are concatenated to form a
single vector;

312 J. Kwiatkowski and K. Krawiec

3. each vector is independently mapped to a property
vector (Sec. 2.4) using a dense subnetwork.

For the Panel tokenizer, which produces 81 tokens, the
chunk length is 9; for the Row tokenizer, which produces
27 tokens, the chunk length is 3; for the Task tokenizer,
producing 64 tokens, each chunk comprises seven tokens,
and the last token is discarded.

The nine property vectors obtained in this way are
assumed to correspond to RPM panels, traversed row-wise
and left-to-right in each row (eight context panels and
the query panel). Associating the chunks with panels
requires the transformer to both combine and disentan-
gle the information carried by the input tokens. The
combining is necessitated by the task, which requires
detecting the patterns adhered to by the context panels.
The disentanglement, on the other hand, is necessary
for the Task and Row tokenizers, which do not derive
tokens from individual context panels independently, but
aggregate information from multiple panels.

2.4. Property vectors. Following the RAVEN family
of benchmarks (Zhang et al., 2019a; Hu et al., 2021;
Benny et al., 2021), we assume the panels to be composed
of objects that can appear in one of seven spatial ar-
rangements, each containing at least one object, with the
maximum number of objects as follows: center-single
(1), distribute-four (4), distribute-nine (9), in-center-
single-out-center-single (2), in-distribute-four-out-center-
single (5), left-center-single-right-center-single (2), up-
center-single-down-center-single (2). An RPM panel is
represented as a property vector of a fixed dimensionality
comprising ‘slots’ for all objects in every arrangement;
there are thus 25 slots in total. Each object is
characterized by three appearance properties with the
following admissible values:

• color: 255, 224, 196, 168, 140, 112, 84, 56, 28, 0 (10
values, rendered as colors in this paper),

• size: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 (6 values),

• type: triangle, square, pentagon, hexagon, circle (5
values).

Another appearance property used by Zhang et al. (2019a)
is the object’s rotation angle. However, the angle is
drawn at random when generating a panel, i.e., it does not
influence the reasoning rules. A successful solver should
disregard this characteristic, hence we do not include it in
our representation.

In total, a property vector comprises thus 101
variables:

• the identifier of the arrangement (1 variable),

• presenti: a group of 25 binary variables, each
indicating the presence/absence in the i-th object
slot;

• 75 appearance properties for the objects in all slots.

Relevance of properties. An element of a property vector
may deem some other elements relevant or irrelevant. For
instance, if arrangement = distribute-four, only presenti
for four indices i matter; if then only two of them are set to
1, only the corresponding 2×3 = 6 appearance properties
describing the two indicated objects are relevant. The
number of relevant properties varies from 5 for center-
single (1 arrangement + presenti for a single object +
3 appearance properties) to 37 for distribute-nine (1 ar-
rangement + 9 presenti properties + 9 × 3 appearance
properties).

The distinction between relevant and irrelevant panel
properties is essential; in particular, the loss function
and the metrics are calculated from relevant properties
only. When confronting two property vectors, one of them
serves as the source of relevance; this depends on the use
case (more details in Section SM2 and in the experimental
part).

Encoding of property vectors. To make properties
amenable to differentiable loss functions, we represent
all variables with one-hot-encoding, which results in
the low-level representation of a panel being a binary
vector of 7 + 25 + 25 × (10 + 6 + 5) = 557
dimensions. Respectively, models produce for each panel
a 557-dimensional vector with values in [0, 1], which
is assured by forcing the dimensions representing a
given categorical variable through the softmax activation
function; for instance, the first seven dimensions represent
the probability distribution over arrangements. To
calculate the loss, the distribution predicted by the
model is confronted with the corresponding one-hot target
distribution using categorical entropy. The entropies so
obtained for particular variables are multiplied by weights
tuned and fixed in the early stages of this project (see
Section SM3 of Supplementary Material). The loss is
calculated only for the distributions of relevant properties,
with the target property vector acting as the source of
relevance. The overall loss on a given RPM task is a
weighted sum of the losses for individual panels, where
weights depend on the type of masking applied in training
(Section 3).

3. Model training
As in natural language processing, our models are trained
via self-supervision, i.e., they are tasked to predict a
masked-out element of the input sequence, given the
context of the visible elements. While masking usually
concerns tokens, RPMs require making decisions about
panels; therefore, in each training step, the tokenizer is
applied to the task with a single context panel masked out.

In an RPM, one can make predictions in both the
directions of the sequence of context panels, due to the

Learning abstract visual reasoning via task decomposition . . . 313

nature of the underlying patterns (e.g., the progression
of the number of objects). Thus it seems desirable to
mask randomly chosen panels to facilitate the learning of
patterns across the entire RPM puzzle, and prospectively
use that knowledge for making decisions about the query
panel. The query panel is empty by definition, so
it seems natural to treat it as a masked-out one, too.
However, masking out more than one panel at once would
be inconsistent with test-time querying (when only the
query panel is masked) and could lead to ambiguity,
i.e., multiple answer panels being correct. Therefore, we
split training into two phases as follows:

1. Random masking phase. Each puzzle is completed
with the correct answer from the answer panels, and
a randomly chosen panel (one of nine) is masked out.
This is realized ‘on the fly’, so the same task has
different panels masked out in different epochs.

2. Query masking phase. The RPM tasks are
presented as-is, with the query panel masked out,
and no additional masking is applied. The weight
of the loss related to the query panel is multiplied
by 0.01, in order for this phase to act as fine-tuning
after Phase 1. The loss function is not applied to the
non-masked panels, i.e., the model is not penalized
for making predictions there.

By staging training into these phases, we allow the model
to first learn the patterns across the entire RPM board, and
only then require it to focus on the query panel.

Masking requires replacing a panel with a ‘neutral’
image; initially, we considered empty (zeroed) panels and
random noise images. Ultimately, the trainable masks
performed best. The masking image is initialized with
random noise and considered a parameter of the model,
i.e., it is continuously updated in training, ultimately
expressing the cumulative input that the model ‘expects’
at masked panels

4. Related work
RPMs have been long considered an interesting
benchmark for abstract reasoning systems, along
with Bongard problems (Bongard, 1970), Hofstadter’s
analogies (Hofstadter, 1995), Numbo (Defays, 1995), or
Sudoku, to name a few. The advent of deep learning has
only intensified this interest, with an outpour of studies
proposing various architectures and learning approaches.
A recent survey (Małkiński and Mańdziuk, 2022a) cites
at least 34 papers, most of them published within the
last five years; Tables 8 and 9 cite those of them that
achieved the best performances on the RAVEN (Zhang
et al., 2019a) and I-RAVEN (Hu et al., 2021) benchmarks.
Of those, the model that bears the most architectural
similarity to the approach proposed in this paper is the

attention relation network (ARNe) (Hahne et al., 2019),
which engages a transformer to facilitate spatial abstract
reasoning. However, like almost all other studies that we
are aware of, ARNe is trained to choose answer panels,
rather than to predict panel properties, and thus uses the
transformer blueprint in a very different way.

In terms of the taxonomy proposed by Małkiński and
Mańdziuk (2022a), our approach could be classified as
a relational reasoning network, as a part of the model is
delegated to learn relations between context panels. A
notable representative of this class is the wild relation
network (WReN) (Barrett et al., 2018), in which a relation
network is used to score the answer panels. By contrast,
our approach does not model the relations between
panels explicitly, but delegates relational learning to the
transformer, while encoding the spatial characteristics of
the task as a sequence of tokens.

Our approach bears resemblance to some past works
in the hierarchical networks category delineated by
Małkiński and Mańdziuk (2022a). More specifically,
the way in which our Row tokenizer stacks panels
channel-wise is analogous to the design of ‘perceptual
backbones’ in, e.g., the stratified rule-aware network
(SRAN) (Hu et al., 2021; Małkiński and Mańdziuk,
2022a, Fig. 8). Notice, however, that the panel stacking
used in the Row tokenizer is the only way in which we
explicitly reveal the relationships between panels to the
model. All remaining logic about the correspondence,
succession, progression, etc. of patterns in the panels
needs to be autonomously learned by juxtaposing input
tokens. This mitigates manual modeling of relationships
and, consequently, human biases.

Last but not least, there were several works in which
the models, apart from choosing the right answer panel,
were required to make predictions about the rules that
govern the generation of RPM tasks. This has been
attempted via auxiliary terms in the loss function by
Zhang et al. (2019a), but the models were not benefitting
from this extension, or even underperforming when
compared with the reference architecture (Section 6.4
therein). Similar negative results have been reported by,
among others, Hu et al. (2021), Zhang et al. (2019b) and
several follow-up studies (see Małkiński and Mańdziuk,
2022, Section 3.2). Preliminary encouraging results in
addressing these challenges were presented by Małkiński
and Mańdziuk (2022b).

5. Results: Property prediction

In this section, we cover the experimental results for the
property prediction tasks; in Section 6, we use the trained
models to solve the choice tasks. Implementation details
are available in Supplementary Material.

Following Zhang et al. (2019a), we use the original

314 J. Kwiatkowski and K. Krawiec

division of the 70,000 tasks from the RAVEN database1

(7 spatial arrangements ×10,000 tasks) into training,
validation and test sets of, respectively, 42,000, 14,000,
and 14,000 tasks. We train nine models in total, using the
three types of image tokenizers and three masking regimes
in training (Section 3): Combined, comprising 200
epochs of random masking and up to 30 epochs of query
masking, and two ablative regimes: Query-only (query
masking for 200 epochs) and Random-only (random
masking for 200 epochs). In the first phase of masking
(whether followed by a second phase or not), the weight
of the loss for the masked panel is multiplied by 2, to
emphasize its importance (this multiplier value was found
beneficial in preliminary experiments). Validation takes
place after each epoch, and the model with the lowest
validation error is selected.

To assess the models’ capacity to predict panel
properties, we devise a range of test-set metrics that are
calculated on the relevant properties only, with the target
property vector acting as the source of relevance, i.e.,
determining the properties that are deemed relevant for a
given task (Sections 2.4 and SM2):

• Correct: The primary metric in the further
discussion. Amounts to 1 if all relevant properties
of the query panel have been correctly predicted;
otherwise 0. Averaged across all tasks in the testing
set.

• PropRate: The fraction of correctly predicted
relevant properties, across all test tasks.

• AvgProp: The fraction of relevant properties
correctly predicted, averaged over tasks. For a given
task, it amounts to 1 if all relevant properties have
been predicted correctly, and 0 if none. Because
the number of relevant properties varies by task and
panel, AvgProp is not equivalent to PropRate.

• AvgH: The Hamming distance between the
predictions and the target on the relevant properties,
averaged over tasks. For a given task, the best
attainable value of this metric is obviously 0, while
the worst one corresponds to the scenario with
nine objects (distribute-nine arrangement) and
amounts to 37 (1 for the incorrect identifier of the
arrangement, plus 9 for the incorrect setting of the
nine corresponding presence/absence variables, plus
9 × 3 = 27 incorrect values of the color, size and
type of an object).

Results. In the Property prediction part of Table 1, we
report the performance of particular models. Both the
type of tokenizer and the masking scheme are strong
determinants of model capabilities. The models that

1https://github.com/WellyZhang/RAVEN.

tokenize each panel separately (Panel) fare the worst on all
metrics. Tokenizing the entire task at once (Task) leads to
much better predictive accuracy. Nevertheless, the model
that involves the Row tokenizer systematically fares
best when juxtaposed with the others, which suggests
that superimposing panels as separate image channels
facilitates inferring relevant patterns.

The observed differences might be partly due to the
number of tokens used in particular architectures (81, 64,
and 27 for Panel, Task and Row). However, the Row
tokenizer uses the fewest tokens, so it is in principle
most likely to suffer from the ‘information bottleneck’;
nevertheless, it outperforms the other two types of models.
This suggests that the way a sequence of input tokens
‘folds’ the task image is more important than its length.

Concerning the masking schemes, masking only
the query panel (Query) throughout the entire training
process turns out to be very ineffective. By contrast,
Random masking performs much better. This may seem
paradoxical, as making predictions about the query panel
is less demanding for the learner: as it is located at the
end of the third row and the third column of the RPM grid,
predicting its properties requires only extrapolation of the
properties observed in the other rows and columns. On the
other hand, masking random panels involves also making
predictions about the middle panels (requiring interpola-
tion) and about the first panels (requiring extrapolation in
the opposite direction). A model trained in the Random
mode has to master all these skills, yet it proves better
when tested only at the query panel. This shows that
forcing the transformer to detect and reason about patterns
observed across the entire puzzle helps it generalize better.

While training in the Random mode outperforms the
query masking mode by a large margin, Table 1 suggests
that even better predictive accuracy can be attained when
the former is followed by the latter in training (Combined
mode). Focusing on the query panel in the later stages of
training is thus beneficial. The learning curves presented
in Section SM8 of Supplementary Material align with this
conclusion: the metrics tend to saturate towards the end of
the Random phase and experience increase once training
switches to the Query phase.

To corroborate these observations, in the Classifica-
tion part of Table 1 we report the values of selected metrics
calculated for the context panels. As these panels are
not masked out, the model can directly observe them,
and predicting their properties is much easier as they
do not need to be inferred from the logical rules that
govern the puzzle. The metrics are thus much better,
with some models attaining almost perfect values. The
tokenizer type has an opposite impact on classification
compared to prediction: the Panel models perform the
best, presumably because separate tokenization reduces
the ‘cross-talk’ between panels. The complete set of
metrics for classification are given in Table SM2.

https://github.com/WellyZhang/RAVEN

Learning abstract visual reasoning via task decomposition . . . 315

Table 1. Comparison of configurations on the property prediction task.

Tokenizer Masking Property prediction Classification

Correct PropRate AvgProp AvgH Correct AvgProp

Panel Query 1.53 62.23 58.08 4.55 97.54 99.50
Random 20.82 82.52 80.34 2.23 98.38 99.44
Combined 22.17 83.33 81.29 2.14 98.28 99.49

Task Query 18.91 81.23 79.25 2.41 89.69 98.35
Random 72.63 95.80 95.25 0.65 88.44 98.00
Combined 75.63 96.15 95.64 0.61 88.33 97.98

Row Query 20.56 79.96 78.15 2.66 84.03 97.68
Random 75.44 96.17 95.69 0.60 87.64 98.22
Combined 77.58 96.47 95.99 0.56 87.85 98.25

Table 2. Sizes and querying costs for particular models.

Tokenizer #Parameters [M] MFLOPS

Transformer Total Transformer Total

Panel 2.65 11.45 87.77 2326.16
Task 2.65 11.19 52.84 2002.38
Row 2.64 10.68 29.02 793.97

In Table 2, we characterize the sizes and
computational requirements of particular models.
The Row model that excels at predictive accuracy is
also the smallest and cheapest at querying. The slight
differences in the number of parameters of transformers
result from the number of tokens, which determines
the that of entries in the learnable embedding used for
positional encoding. Relative differences in the total
number of parameters are somewhat larger, and stem
from the combined dimensionalities of the chunks of
output tokens; a chunk is mapped to a property vector
using a dense layer and thus its size impacts the number
of parameters. Despite these differences in the number
of parameters being moderate, the computational cost
of querying the Row model is several times lower than
for Panel and Task tokenizers. This is due to the larger
number of tokens processed by transformers in those
models, which leads to quadratically more query-key
interactions.

Does transformer matter? One of the research
questions of this study concerns the importance of the
transformer blueprint, i.e., whether learning to model
direct interactions between tokens representing parts
of the input brings any advantage compared to more
straightforward approaches. To verify this hypothesis,
we consider baseline denseformers architectures in which
the transformer is replaced with a dense subnetwork: the
tokens produced by the tokenizer are concatenated into a

Table 3. Sizes and querying costs for dense models.

Dense #Parameters [M] MFLOPS

layer size Transformer Total Transformer Total

336 2.67 10.70 5.34 770.23
512 4.33 12.37 8.67 773.57

vector and fed into a subnetwork comprising five dense
layers of the same size. The output of the last dense layer
is then passed to the property predictor and undergoes
further processing as in our model, i.e., it is sliced into
nine chunks used to predict the properties of individual
panels (Section 2.3). There are no other differences
between denseformers and our models.

Given that the Row tokenizer proved most capable
(Table 1), we design two comparable denseformer
variants, with dense layer size 336 and 512, so that
the total number of parameters and cost of querying are
similar (Tables 3 and 2). Each variant is trained in the
Random masking mode, once with and once without
regularization consisting of layer normalization (Lei Ba
et al., 2016) and dropout.

Table 4 summarizes the performance of
denseformers in terms of metrics from Table 1. The
densformers are clearly inferior to the transformers:
except for the AvgH metric, none of them attains
even the worst value of the corresponding metric for
the transformers. While layer normalization (Lei Ba
et al., 2016) has a positive impact on predictive accuracy,
increasing the layer size from 336 to 512 improves the
accuracy only slightly, which suggests that boosting
it further, beyond 512 units, is unlikely to lead to
significant improvements. We thus conclude that the
‘cross-talk’ between tokens representing parts of the RPM
task, facilitated by the transformer architecture, brings
significant added value, and perhaps is even essential for
this kind of tasks.

316 J. Kwiatkowski and K. Krawiec

Table 4. Comparison of densformer models.

Dense Layer CorrRate PropRate AvgProp AvgH
size normal.

336 No 0.24 48.41 43.08 6.03
Yes 0.45 55.19 51.24 5.43

512 No 0.28 49.76 44.76 5.88
Yes 0.88 55.92 52.03 5.36

Structure of errors. We encode the appearance
properties as unordered categorical variables, but in fact
they are ordinal. In Section SM7, we show that
models are much more likely to commit small errors
on these properties than large ones, which implies that
they correctly discovered the ordinal nature of attributes,
even though it was not engraved in their architectures nor
conveyed to them explicitly in training. Such insights are
not available in approaches that directly learn to choose
answer panels.

6. Results: Choice tasks
In this section, we use the models trained for property
prediction in Section 5 for solving RPM tasks. To this
aim, we devise the direct choice maker (DCM) algorithm
that makes decisions by comparing the prediction for the
masked query panel (given context panels) with the clas-
sification of individual answer panels in the same context.
Given a trained model P and a task T , the DCM proceeds
as follows:

1. P is queried on T as in property prediction, i.e., on
the context panels of T , with the query panel masked
out. The 9th property vector p produced in response,
corresponding to the query panel, is the model’s pre-
diction of the answer to the task.

2. For each of the eight answer panels, i = 1, . . . , 8,
P is queried on T with the query panel replaced
with the i-th answer panel. In each of those queries,
the 9th property vector is stored as pi. This will be
referred to as classification of a panel (in terms of its
properties).

3. A distance function d is applied to the pairs (p, pi),
and the answer panel with the minimal d(p, pi) is
returned as the solution to T . The distance functions
(explained in the following) take into account only
the relevant properties, where their relevance is
determined by pi (see Section SM2).

We use pi as the source of relevance when calculating
d(p, pi), because classification is in general easier
than prediction (cf. Table 1), so pi’s are less likely

to make mistakes in determining the relevance of
properties.

We devise three performance metrics, each
calculating the percentage of tasks for which the DCM
selects the correct answer panel. The metrics vary in the
type of property vectors (categorical or encoded) and in
d. AccUnique uses the DCM with categorical property
vectors and the Hamming distance as d. A tie (d(p, pi)
being minimized by two or more answer panels) counts
as a failure. AccTop operates like AccUnique, except
that a tie on the closest matches counts as a success if one
of them points to the correct answer. Finally, AccProb
applies the DCM to the encoded property vectors, i.e.,
probability distributions produced by the model, and uses
binary cross-entropy for vector elements corresponding
to binary properties (e.g., object presence) and categorical
cross-entropy for multi-valued properties (e.g., object
size), summing them in d over all relevant properties.
Similarly to loss functions and metrics used in Section 5,
all metrics are calculated on the test set.

Optimistic bounds. We first estimate the informal
optimistic performance bounds, i.e., the test-set metrics
that the DCM would attain if the true property vectors
(classifications) were known for answer panels. These
vectors are provided in the RAVEN database, so we use
them as pis in Step 2 of the DCM (and let them determine
the relevance of properties), rather than querying the
model. For AccProb, this implies comparing the
continuously-valued probabilities produced by the model
with one-hot vectors representing the categorical values
of true properties. Table 5 presents the resulting estimates.
As expected, AccUnique is the most demanding metric,
as it requires the predicted property vector to be strictly
closest to the property vector for exactly one of the answer
panels. By contrast, AccTop treats ties as successes and
thus reports significantly better scores. However, this
metric does not reflect the model’s capability of pointing
to a unique solution among the answer panels. AccProb
is the most pragmatic metric, due to the low likelihood
of ties between answer panels and sensitivity to nuanced,
continuously-valued responses of the model, so we focus
on this metric in the following.

The relations between the models in Table 5
correlate with the quality of property prediction (Table
1), with the Row tokenizer being on average better than
Task and Panel, the Combined masking mode slightly
outperforming the Random mode, and the latter one
in turn being much better than the Query-only mode.
Expectedly, high accuracy of property prediction implies
better choice making.

Accuracy. Table 6 presents the actual metrics
summarizing models’ capability of solving RPM choice
tasks, i.e., with pi’s resulting from the classification of

Learning abstract visual reasoning via task decomposition . . . 317

Table 5. Optimistic bounds, with the DCM relying on target
property vectors.

Tokenizer Masking AccProb AccTop AccUnique

Panel Query 19.00 39.48 6.16
Random 55.66 70.87 37.47
Combined 57.57 72.34 39.27

Task Query 65.09 74.18 38.18
Random 94.84 96.89 90.70
Combined 95.39 97.23 92.69

Row Query 66.45 72.04 36.10
Random 95.49 96.99 92.62
Combined 95.90 97.48 94.04

answer panels. Except for two models, AccProb is
noticeably worse than in Table 5, which was expected
because the classifications pi of answer panels can now
diverge from the true vectors. Indeed, we calculated
also the Correct metric (used in Section 5 for assessing
the accuracy of property prediction) on classification
alone in this setting, and it amounted to 75.95% and
58.77% respectively for Task and Row. This difference
is likely the main factor that makes the former model
fare much better in Table 6. We hypothesize that the
root cause for this difference is that querying the Row
models in classification means replacing an entire input
channel of the input image (corresponding to the query
panel) with an answer panel, while in training that panel
was continuously providing the ‘neutral’ values from a
learnable mask. For the Task tokenizer, this affects only
1/9 of the input raster of the entire task (recall that
tokens’ receptive fields capture the entire input image in
all tokenizers).

The models trained in the Query masking mode fare
the worst again; clearly, the low capacity of predicting
properties (Table 1) prevents them from choosing the
right panels with the DCM. For the Panel and Task
tokenizers, the pattern is consistent with previous tables:
the Combined mode performs better than Random.

Due to the high computational cost of training, a
single model was trained per configuration. To establish
statistical significance, we conducted additional runs
for the best-performing configurations and report the
resulting averages as well as .95-confidence intervals for
sample size 3 obtained in this way in the AccProb(n=3)

column of Table 6. The figures largely confirm our earlier
observations.

In testing, the models are queried on ‘completed’
tasks, with all nine panels present and no panel masked
out. In training, they perform classification for the eight
unmasked panels and prediction for the single masked
panel, but they are never asked to perform classification
for all panels. This may be particularly relevant for

the Task tokenizer, which in training observes a single
panel being masked in each invocation (in contrast to
Panel and Row); in particular, in the Query-only mode,
it is always the lower-right panel. This may explain the
particularly bad performance of that model, with AccProb
below the 12.5% achievable with choosing answer panels
at random.2

Table 7 summarizes the performance of the same
models on the testing part of the I-RAVEN benchmark
(Hu et al., 2021),3 which features the same tasks
as RAVEN, although with answer panels generated in
an unbiased way. Apart from the Task+Query and
Task+Combined models that fared best on RAVEN and
observe slight deterioration, all remaining models perform
better on I-RAVEN. Because the context panels and the
correct answer panels are identical in both benchmarks, so
must be the predictions of properties made by the models
for them. Therefore, the differences between Tables 6 and
7 can be only due to the classifications of the incorrect
answer panels. Apparently, the unbiased answer panels
from I-RAVEN are less likely to result in property vectors
that distort the assessment of relative similarities of the
answer panels to the predicted answer.

Comparison with state-of-the-art. Following a recent
survey (Małkiński and Mańdziuk, 2022a), in Table 8
we reproduce the test-set accuracy of five RPM solvers
reported in past literature on the topic, which attain the
best performance on the test part of the RAVEN collection.
Table 9 presents analogous top results for the I-RAVEN
benchmark (see the survey for the performance of other,
less capable methods). The reported figures should be
juxtaposed with the AccProb metric from previous tables.
For reference, we quote also the estimated accuracy of the
human performance.

Compared with these approaches, the performance
of several variants of our models is very good, with two
of them equipped with the Task tokenizer outperforming
not only the reported human accuracy on RAVEN (Zhang
et al., 2019a), but also all previously reported methods on
this benchmark, the best of which attained 94.1% (column
AccProb in Table 6 vs. Table 8). For I-RAVEN, our
method beats all-but-one of the SotA methods (Table 7
vs. Table 9).

Examples. Figure 3 compares visually the behavior of the
Task and the Row model for two tasks from the RAVEN
test set (rotation angle is fixed when rendering models’
predictions and classifications). In the first example
(Fig. 3(a)), both models produce perfect predictions and
similar, though imperfect, classifications of answer panels.
However, the Row model fails to choose the correct

2Notice, however, that this explanation ignores the cross-talk be-
tween tokens that takes place in further processing by the transformer.

3Earlier published under the name Balanced-RAVEN (Hu et al.,
2020).

318 J. Kwiatkowski and K. Krawiec

Table 6. Accuracy on choice tasks, based on predicted property vectors.

Tokenizer Masking AccProb AccProb(n=3) AccTop AccUnique

Panel Query 17.79 — 39.13 6.33
Random 41.39 — 59.75 25.65
Combined 46.85 — 63.82 30.74

Task Query 5.44 — 42.72 0.96
Random 96.33 95.81±1.47 96.22 83.00
Combined 96.97 96.45±1.13 96.57 86.30

Row Query 30.97 — 63.27 5.32
Random 79.23 80.58±5.67 94.68 25.47
Combined 82.84 84.66±6.28 95.43 33.53

Table 7. Accuracy on the test set of the I-RAVEN benchmark.

Tokenizer Masking AccProb AccTop AccUnique

Panel Query 45.44 64.89 27.81
Random 53.59 70.22 34.61
Combined 60.16 74.08 41.24

Task Query 12.34 51.68 2.50
Random 94.90 95.42 86.43
Combined 95.39 95.61 88.95

Row Query 51.35 76.74 14.30
Random 86.35 95.10 42.41
Combined 88.52 95.55 52.09

Table 8. State-of-the-art results on the RAVEN test set (source:
Małkiński and Mańdziuk, 2022a).

Method Accuracy

Rel-Base (Spratley et al., 2020) 91.7
CoPINet + AL (Kim et al., 2020) 93.5
DCNet (Zhuo and Kankanhalli, 2021) 93.6
CoPINet + ACL (Kim et al., 2020) 93.7
Rel-AIR (Spratley et al., 2020) 94.1
Ours 97.0

Human (Zhang et al., 2019a) 84.4

Table 9. State-of-the-art results on the I-RAVEN test set (source:
Małkiński and Mańdziuk, 2022a).

Method Accuracy

SRAN (Hu et al., 2021) 60.8
SRAN MLCL+DA

(Małkiński and Mańdziuk, 2022b) 73.3
MRNet (Benny et al., 2021) 86.8
SCL (Wu et al., 2020) 95.0
SCL MLCL+DA

(Małkiński and Mańdziuk, 2022b) 96.8
Ours 95.4

answer, as it classifies the square in the answer panel
as a triangle. As a consequence, p8 is more similar to
prediction p than p7 (although p7 and p8 look identical
when rendered as images, the raw outputs of models
varied when assessed with cross-entropy that the DCM
uses as the distance function d). The Task model produces
a more faithful classification p8 of the last answer panel
and thus correctly points to p7.

The second task (Fig. 3(b)) is harder by involving
more objects and more complex rules. As a result,
not only the classifications, but also the predictions are
far from perfect, with imprecise predictions for sizes,
colors, and occasionally even shapes of objects (object
presence is always correctly predicted and reproduced).
Nevertheless, the Task model is more consistent when
predicting and classifying and thus chooses the correct
answer.

More examples are provided in Section SM10 of
Supplementary Material.

Discussion. The ultimate superiority of the Task models
(Tables 6 and 7) suggests that it is desirable to tokenize
tasks as they appear so that the transformer can detect and
learn the RPM patterns on its own. Manual engineering
of representation, attempted here by the Row tokenizer,
which directly juxtaposes panels as image channels, does
not necessarily help—even though Row models ranked
top at predicting properties of masked panels, they
underperformed at classifying answer panels.

This study demonstrated that rephrasing a learning
task in a multi-dimensional, multi-label fashion can be
beneficial for generalization. RPM tasks are in a sense
‘closed’, as the space of responses expected from the
model is narrowed down to eight provided answer panels.
Compared to this, learning to classify the properties of
visible panels and to predict the properties of masked-out
panels is more open-ended, and in a sense generative. It
forces the model to derive more detailed patterns from
the data and, consequently, leads to better generalization.
Moreover, by predicting properties, one may mitigate the

Learning abstract visual reasoning via task decomposition . . . 319

Fig. 3. Solving two RPM tasks (a) and (b) with the Task and Row models (both trained in the Combined masking mode). Left: the task.
Middle: the correct answer and rendering of models’ predictions p (Step 1 of the DCM) for the Row and Task models. Right:
answer panels and the renderings of classifications pi generated by the Row and Task models (Step 2 of the DCM). The panels
corresponding to the most similar property vectors marked with thicker borders. Predictions and classifications are rendered
from property vectors produced by the model while fixing rotation angles, as the angle was irrelevant in these tasks. To facilitate
analysis, we render the color property using pseudocoloring (it is conventionally rendered in grayscale). See Figs. SM5–SM7
in Supplementary Material for more examples.

biases inadvertently introduced in benchmarks (Table 7).
Last but not least, tracing the process of classifying and
predicting properties provides interesting insights (Fig. 3).

In mapping an image to a sequence of tokens, the
models considered here form an interesting middle ground
between purely symbolic approaches and conventional
deep learning, in a spirit similar to the vision transformer
architecture proposed by Dosovitskiy et al. (2020)
and neuro-symbolic systems. It is interesting to see
that the transformer blueprint is helpful also when
approaching a problem that is more abstract than
conventional image classification. As evidenced in the
presented results (in particular by the failure of the
denseformer models; Section 5), explicit ‘perceptual
chunking’ of representation provided by tokenization
and the subsequent contextual reasoning realized with
query-key interactions in the transformer allow learning
the abstract patterns necessary to predict the missing panel
and determine the right answer panel.

7. Conclusion and future work

We have shown that the proposed approach of solving
RPM tasks by learning to predict the properties of
panels outperforms state-of-the-art models trained to
choose answer panels and avoids the biases present in
training data. The models fare well despite flattening

the 2D structure of the puzzle and can be inspected
to a greater extent than end-to-end neural models. In
future research, we will consider making the choice
makers trainable alongside the model, to allow them to
adapt to the deficiencies of classification (identified in
Section 6 and exemplified in Fig. 3) and so enable further
improvements.

The explicit partitioning of the inference process
into property prediction and choice of an answer panel
with the DCM can be seen as a special case of task de-
composition, with the properties predicted and classified
in the first stage acting as subgoals. In this study,
we exploited the subgoals available in the RAVEN
benchmark. Prospectively, it would be interesting to
synthesize subgoals automatically.

Acknowledgment
The authors acknowledge support by TAILOR, a project
funded by the EU Horizon 2020 research and innovation
program under the GA no. 952215 and by the Polish
Ministry of Science and Higher Education under the grant
no. 0311/SBAD/0740.

References
Barrett, D., Hill, F., Santoro, A., Morcos, A. and Lillicrap, T.

(2018). Measuring abstract reasoning in neural networks,

320 J. Kwiatkowski and K. Krawiec

in J. Dy and A. Krause (Eds), Proceedings of the 35th Inter-
national Conference on Machine Learning, Proceedings of
Machine Learning Research, Vol. 80, PMLR, Cambridge,
pp. 511–520.

Benny, Y., Pekar, N. and Wolf, L. (2021). Scale-localized
abstract reasoning, Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
Nashville, USA, pp. 12557–12565.

Bongard, M. (1970). Pattern Recognition, Spartan Books,
Baltimore.

Defays, D. (1995). Numbo: A study in cognition and
recognition, https://www.researchgate.net/p
ublication/262363566_Numbo_a_study_in_
cognition_and_recognition.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database, 2009 IEEE Conference on Computer Vision and
Pattern Recognition, Miami, USA, pp. 248–255.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D.,
Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby, N.
(2020). An image is worth 16x16 words: Transformers
for image recognition at scale, arXiv: 2010.11929.

Hahne, L., Lüddecke, T., Wörgötter, F. and Kappel, D.
(2019). Attention on abstract visual reasoning, CoRR:
abs/1911.05990.

Hofstadter, D.R. (1995). Fluid Concepts & Creative Analo-
gies: Computer Models of the Fundamental Mechanisms
of Thought, Basic Books, New York.

Hu, S., Ma, Y., Liu, X., Wei, Y. and Bai, S. (2020). Hierarchical
rule induction network for abstract visual reasoning, htt
ps://www.researchgate.net/publication/
339324056_Hierarchical_Rule_Induction_
Network_for_Abstract_Visual_Reasoning.

Hu, S., Ma, Y., Liu, X., Wei, Y. and Bai, S. (2021). Stratified
rule-aware network for abstract visual reasoning, Proceed-
ings of the AAAI Conference on Artificial Intelligence,
pp. 1567–1574, (virtual).

Kim, Y., Shin, J., Yang, E. and Hwang, S.J. (2020). Few-shot
visual reasoning with meta-analogical contrastive learning,
in H. Larochelle et al. (Eds), Advances in Neural Informa-
tion Processing Systems, Vol. 33, Curran Associates, Inc.,
Red Hook, pp. 16846–16856.

Lei Ba, J., Kiros, J.R. and Hinton, G.E. (2016). Layer
normalization, arXiv: 1607.06450.

Luo, W., Li, Y., Urtasun, R. and Zemel, R. (2017).
Understanding the effective receptive field in deep
convolutional neural networks, arXiv: 1701.04128.

Małkiński, M. and Mańdziuk, J. (2022a). Deep learning
methods for abstract visual reasoning: A survey on Raven’s
progressive matrices, arXiv: 2201.12382.

Małkiński, M. and Mańdziuk, J. (2022b). Multi-label contrastive
learning for abstract visual reasoning, IEEE Transac-
tions on Neural Networks and Learning Systems 35(2):
1941–1953, DOI: 10.1109/TNNLS.2022.3185949.

Raven, J.C. (1936). Mental Tests Used in Genetic, the Per-
formance of Related Individuals on Tests Mainly Educa-
tive and Mainly Reproductive, MSc thesis, University of
London, London.

Spratley, S., Ehinger, K. and Miller, T. (2020). A closer look
at generalisation in Raven, Computer Vision, ECCV 2020:
16th European Conference, Glasgow, UK, pp. 601–616,
DOI: 10.1007/978-3-030-58583-9_36.

Tan, M. and Le, Q. (2019). EfficientNet: Rethinking model
scaling for convolutional neural networks, in K. Chaudhuri
and R. Salakhutdinov (Eds), Proceedings of the 36th Inter-
national Conference on Machine Learning, Proceedings of
Machine Learning Research, Vol. 97, PMLR, Cambridge,
pp. 6105–6114.

Tan, M. and Le, Q.V. (2021). EfficientNetV2: Smaller models
and faster training, in M. Meila and T. Zhang (Eds), Pro-
ceedings of the 38th International Conference on Machine
Learning, ICML 2021, Proceedings of Machine Learning
Research, Vol. 139, PMLR, Cambrige, pp. 10096–10106.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A.N., Kaiser, L. and Polosukhin, I. (2017).
Attention is all you need, in I. Guyon et al. (Eds), Advances
in Neural Information Processing Systems, Vol. 30, Curran
Associates, Inc., Red Hook.

Wu, Y., Dong, H., Grosse, R.B. and Ba, J. (2020). The
scattering compositional learner: Discovering objects,
attributes, relationships in analogical reasoning, CoRR:
abs/2007.04212.

Zhang, C., Gao, F., Jia, B., Zhu, Y. and Zhu, S.-C. (2019a).
Raven: A dataset for relational and analogical visual
reasoning, Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Long Beach,
USA, pp. 5312–5322.

Zhang, C., Jia, B., Gao, F., Zhu, Y., Lu, H. and Zhu, S.-C.
(2019b). Learning perceptual inference by contrasting, in
H. Wallach et al. (Eds), Advances in Neural Information
Processing Systems, Vol. 32, Curran Associates, Inc., Red
Hook.

Zhuo, T. and Kankanhalli, M.S. (2021). Effective abstract
reasoning with dual-contrast network, 9th International
Conference on Learning Representations, ICLR 2021,
(virtual).

Jakub Kwiatkowski is a PhD student of computer science at the Poznan
University of Technology. He works in the ICT Security Department at
the Poznan Supercomputing and Networking Center, where he explores
the applicability of machine learning in cybersecurity. His research inter-
est is focused on deep learning, computer vision, representation learning,
abstract visual reasoning and explainable AI.

Krzysztof Krawiec holds PhD and habilitation degrees from the Poznan
University of Technology, Poland. His main research areas are evolution-
ary and coevolutionary computation, genetic programming, neurosym-
bolic systems, and applications in medical imaging. He is an associate
editor of Genetic Programming and Evolvable Machines and the author
of Behavioral Program Synthesis with Genetic Programming (Springer,
2016). More details are available at www.cs.put.poznan.pl/kkr
awiec.

https://www.researchgate.net/publication/262363566_Numbo_a_study_in_cognition_and_recognition
https://www.researchgate.net/publication/262363566_Numbo_a_study_in_cognition_and_recognition
https://www.researchgate.net/publication/262363566_Numbo_a_study_in_cognition_and_recognition
https://www.researchgate.net/publication/339324056_Hierarchical_Rule_Induction_Network_for_Abstract_Visual_Reasoning
https://www.researchgate.net/publication/339324056_Hierarchical_Rule_Induction_Network_for_Abstract_Visual_Reasoning
https://www.researchgate.net/publication/339324056_Hierarchical_Rule_Induction_Network_for_Abstract_Visual_Reasoning
https://www.researchgate.net/publication/339324056_Hierarchical_Rule_Induction_Network_for_Abstract_Visual_Reasoning
www.cs.put.poznan.pl/kkrawiec
www.cs.put.poznan.pl/kkrawiec

Learning abstract visual reasoning via task decomposition . . . 321

Supplementary material

The supplementary material is available online at ht
tps://arxiv.org/abs/2308.06528. It covers
the technical details of the method and its software
implementation, a discussion of the loss function, the
analysis of variance and stability of the results, the
analysis of the structure of errors, learning curves, and
more visualizations of models’ responses and choices. It
also includes a color version of Fig. 3.

Received: 11 August 2023
Revised: 7 December 2023
Accepted: 5 February 2024

https://arxiv.org/abs/2308.06528
https://arxiv.org/abs/2308.06528

	Introduction
	Proposed approach
	Image tokenizer
	Sequence-to-sequence transformer
	Property predictor
	Property vectors

	Model training
	Related work
	Results: Property prediction
	Results: Choice tasks
	Conclusion and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

