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The imbalance and complexity of network traffic data are hot issues in the field of intrusion detection. To improve the
detection rate of minority class attacks in network traffic, this paper presents a method for intrusion detection based on
the recombination generative adversarial network (RGAN). In this study, dual-stage game learning is used to optimize the
discriminator for efficient identification of attack samples. In the first stage, the proposed model trains a deep convolutional
generative adversarial network (DCGAN) integrated with the self-attention (SA) mechanism, and simultaneously trains
an independent convolutional neural network (CNN) classifier integrated with the gated recurrent unit (GRU). This stage
allows the generator to generate minority class attack samples that closely resemble real samples, while the independent
classifier possesses the basic classification ability. In the second stage, the generator and the independent classifier of the
DCGAN together constitute the second layer of the model—the generative adversarial network. Through dual-stage game
learning, the classifier’s discrimination ability for the minority samples is optimized, and it serves as the final output of the
discriminator. In addition, the introduction of reconstruction loss helps prevent the detection rate of false positive samples.
Experimental results on the CSE-IDS-2018 dataset demonstrate that our model performs well compared with various other
intrusion detection techniques in terms of detection accuracy, recall, and F1-score for minority class attacks.
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1. Introduction
With the expansion of the Internet, a growing amount
of sensitive information is being uploaded onto the
network. Alongside this, new and intricate intrusion
behaviors continue to emerge. Consequently, research
on network-based intrusion detection holds significant
importance (Sabahi and Movaghar, 2008). Network-based
intrusion detection systems (NIDSs) play a crucial role in
maintaining network security by distinguishing between
legitimate and malicious network activities. However, in
real-world networks, the proportion of malicious traffic
is relatively small, resulting in a notable class imbalance
within most intrusion detection datasets. This imbalance
creates difficulties in detecting minority class attacks,
thereby posing a threat to network security (Bedi et al.,
2021).

In recent years, there has been observed significant
research and practical implementation of deep learning
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in the field of network intrusion detection (Kumar
et al., 2021; Wang et al., 2018; Kanna and Santhi,
2021; Liu et al., 2022; Thakkar and Lohiya, 2023).
Deep learning-based intrusion detection models construct
classification models that learn from training sets to
identify network attack traffic. However, deep learning
approaches typically require a large amount of training
data, which poses a challenge in effectively detecting
a small number of attack samples (Gupta et al., 2022).
Traditional methods attempt to address this issue by
either undersampling the majority class samples or
oversampling the minority class samples. However, these
methods often result in overfitting or introduce noise into
the dataset (Oksuz et al., 2021).

The application of generative adversarial networks
(GANs) has shown promise in addressing the class
imbalance issue in network intrusion detection, as
recommended by Goodfellow et al. (2014). GANs are
utilized to simulate the distribution of authentic data and
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generate synthetic samples for data augmentation (Bedi
et al., 2021). Through adversarial learning, the generator
within the GAN aims to generate pseudo-samples closely
resembling real samples, while the discriminator develops
a strong ability to distinguish real samples (Jabbar et al.,
2021). Based on this concept, we propose a method for
detecting minority class attacks using a recombination
generative adversarial network. In this approach, the
generative adversarial network utilizes the minority class
samples as the real samples for game training. By doing
this, the discriminator can learn better and identify the
minority class samples. The contributions of this paper
can be summarized as follows.

(i) A new intrusion detection method based on a
two-layer improved generative adversarial network is
proposed to accurately identify minority class attacks
in network traffic.

(ii) For the purpose of improving the generator’s
ability to generate pseudo-samples, a self-attention
mechanism is incorporated, and the classification
capability of the discriminator is enhanced by
integrating GRU.

(iii) By introducing the transfer learning mechanism and
reconstruction loss function, the detection ability of
the detector to abnormal samples is improved.

The rest of the paper is organized as follows.
Section 2 introduces the relevant studies and prior work
related to the proposed method. Section 3 elaborates on
our suggested methodology. We evaluate the performance
and effectiveness of the model through simulations in
Section 4. Section 5 concludes the paper.

2. Related works
In this section, a variety of concerns regarding issues
covered in this paper are discussed, including network
intrusion detection and class imbalance in intrusion
detection.

2.1. Network intrusion detection. Xiao et al.
(2019) suggested a network intrusion detection model,
the CNN-IDS, based on convolutional neural networks.
Zhou et al. (2020) introduced a new intrusion detection
framework that combines feature selection, ensemble
learning techniques, and voting technology to augment
the performance of the intrusion detection model. The
framework first selects optimal feature subsets based on
the connection between features. Then, by leveraging
the voting technology and the probability distribution of
basic learners, the framework is able to effectively identify
attacks. Through this approach, the general performance
of the intrusion detection model is improved, offering

better accuracy and reliability in detecting and mitigating
potential intrusions. Liao et al. (2022) preprocess traffic
through filtering and gray level conversion to realize
traffic visualization, as well as analyze and cluster the gray
level of traffic to detect network attacks more accurately.
Laghrissi et al. (2021) adopted mutual information (MI)
and principal component analysis (PCA) as reduction and
feature selection techniques to implement a deep learning
approach based on long short-term memory (LSTM) to
detect attacks.

Brunner et al. (2022) applied the stacked integration
and tree structure Parzen estimator hyperparameter
optimization method composed of a spiking neural
network (SNN) and autoencoder (AE) models to intrusion
detection, and the consequences showed that this way
could enhance the performance of existing models.
Qazi et al. (2023) built a hybrid intrusion detection
system founded on deep learning that uses convolutional
neural networks for convolution to collect local features,
while deep recurrent neural networks extract features,
improving the efficiency and predictability of the intrusion
detection system. Wang et al. (2021) designed a
combined deep intrusion detection framework based
on SDAE-ELM. Their model effectively addresses the
challenges commonly encountered in current deep neural
network models, containing long training times and low
detection accuracy. Additionally, their model enables
a timely response to such behaviors, optimizing the
overall proficiency of the intrusion detection system.
Zou et al. (2023) recommended a network intrusion
detection strategy, HC-DTTWSVM, based on decision
tree double hierarchical clustering and a support vector
machine, which can proficiently detect various categories
of network intrusion and has good efficiency of detection.

2.2. Class imbalance in intrusion detection. We
mainly introduce the recent research on the issue of class
imbalance in intrusion detection. Zhang et al. (2022a)
employed adaptive synthetic sampling (ADASYN) and
random undersampling approaches to tackle the issue
of data imbalance in intrusion detection. They found
that LightGBM, a gradient boosting framework, excelled
the other models in terms of its ability to handle
data imbalance and detect intrusions accurately. Gupta
et al. (2022) presented an intrusion detection method
utilizing cost-sensitive and integrated algorithms, which
assigns weights to different samples to decrease the false
positive rate and enhance the data balance. Sun et al.
(2023) introduced a low-lens intrusion detection approach
with the attention mechanism based on a prototype
capsule network, which is superior to the most advanced
methods on unbalanced data sets. Andresini et al.
(2021) trained generative adversarial networks (GANs)
for data enhancement by representing network traffic
as 2D images, and then trained CNN-based intrusion
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Fig. 1. Architecture of the proposed method.

detection models. The proposed method has better
prediction accuracy on four benchmark data sets. Yuan
et al. (2023) introduced a data balancing technique
named the B-GAN. They utilized LSTM networks in
both the generator and discriminator to enhance the
understanding of data patterns and generate high-quality
anomaly samples. This approach aimed to augment the
capability of intrusion detection models in identifying
intrusions accurately. Fu et al. (2021) introduced
an intrusion detection data generation approach using
generative adversarial networks to address the shortage
of intrusion detection data and the sluggish updating
process of mainstream detection methods. This method
aimed to generate synthetic data samples that can be
used to enhance the training process and optimize the
performance of intrusion detection systems. Cui et al.
(2023) proposed a novel multi-module merged intrusion
detection system (IDS) called the GMM-WGAN-IDS.
The system alleviates the influence of class unbalance
problem through three parts: feature extraction, unbalance
treatment and classification.

3. Proposed method
The main concept of a generative adversarial network
is to train a generator to produce pseudo-samples that
closely resemble real samples, while simultaneously
training a discriminator to differentiate between real
and pseudo-samples. Through an adversarial game
mechanism, the discriminator becomes proficient at
identifying real samples. According to this theory, the
GAN’s discriminator can effectively detect minority class
attack samples by treating the minority class as the real
sample Zhang et al. (2022b).

To address the problem of class imbalance in
intrusion detection, the paper proposes a model called the
recombination generative adversarial network (RGAN)
for minority class attack intrusion detection. The
architecture of this method is depicted in Fig. 1. The
data are preprocessed to match the input format required
by the neural network. Subsequently, an optimized deep
convolutional adversarial generation network (DCGAN)
generator is trained, which incorporates a self-attention
(SA) module. An independent initial discriminator is
integrated using the gated recurrent unit (GRU) and a
convolutional neural network (CNN). These structures
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Minority attack sample Normal sample+ Majority attack sample+ 
Minority attack sample

Generator 
GD

Discriminator 
DD

SA-DCGAN

GRU-D

Generator
GR

Discriminator
DR

Minority attack sample RGAN

Detector

Normal sample+ Majority attack sample+ Minority attack sample

Structural parameters of GD and GRU-D

DR

Fig. 2. Specific framework of the RGAN-IDS.

and parameters are reorganized into a new generative
adversarial network called the RGAN using transfer
learning. After another round of adversarial training, the
discriminator of the RGAN serves as an anomaly detector.

In Fig. 2, the minority class samples are used as the
training data for the DCGAN, which results in a generator
with an excellent generation ability. Once the adversarial
learning process is completed, the discriminator DD is
discarded. Secondly, the complete dataset is used to
train the initial classifier GRU-D, allowing it to acquire
a basic classification ability. Then, the architecture
and hyperparameters of the generator GD and GRU-D
are input into the recombination generative adversarial
network, and the minority samples are once again used
for adversarial training to optimize the classifier’s ability
to differentiate between them. Finally, the classifier serves
as an anomaly detector, improving the detection ability of
a few attack samples.

3.1. Data preprocessing. In this paper, we select
to use the relatively new CICIDS2018 dataset Pcap file
with many attack types instead of the processed CSV
file. This dataset is simulated and generated based on
the real network traffic distribution, making it suitable
for conducting research on network intrusion detection.
It includes a substantial amount of original traffic. The
format of the Pcap file is shown in Fig. 3. The packet
header contains captured packets, each of which is divided
into a packet header and packet data. The raw data flow in
the Pcap format undergoes standardization to align with
the input format of a neural network. This processing
procedure consists of anonymization and digital encoding,
ensuring the data conforms to the required format for
neural network input.

Network granularity influences the analysis of data
structures and distributions. Dainotti et al. (2012)
provided a summary of the different levels of traffic



326 H. Luo and L. Wan

Pcap
Header

Pcap1
Header

Pcap1
data

Pcap2
Header

Pcap2
data

Fig. 3. Format of Pcap files.

granularity typically utilized in network data flow
analysis. These include TCP connections, flows, sessions,
services, and hosts. In this paper, we chose to anonymize
the quintuple extracted from Pcap files to create session
samples for detection analysis. These quintuples are
important indicators used for feature extraction and
differentiation in our research. Intrusive and normal data
packets may have different patterns or values in these
features, making them the inputs to our deep neural
network model.

To protect data privacy and avoid providing useful
clues from address information, we decided to anonymize
the addresses. Specifically, we replaced the MAC
addresses with 0:00:00:00:00:00:00 and the IP addresses
with 0.0.0.0. By anonymizing the MAC addresses to a
uniform value and replacing all IP addresses with the same
anonymous value, we eliminated the variability and usage
of these address information in the deep neural network
model. This ensures that the model does not rely on
specific MAC or IP addresses for classification. Through
this anonymization process, we can safeguard the privacy
of the data and remove any potential identification from
the session samples. This allows us to focus on the
analysis of other features and patterns present in the
dataset, without compromising the security and privacy of
the original addresses.

Network traffic can be viewed as a byte stream,
where each byte has a data range from 0 to 255, similar
to the range of grayscale values in an image. Thus, we
can convert each byte into a grayscale pixel ranging from
0 to 255, which serves as input for our deep learning
model. This transformation process effectively preserves
the information embedded in the original data.

By adopting this approach, we can convert the
anonymized session samples into input data suitable
for deep learning models while protecting privacy and
accurately preserving the original data’s information.
This conversion enables us to leverage the power of
deep learning techniques in analyzing network traffic
data, ensuring the preservation of useful features while
maintaining data privacy.

3.2. Training the initial generator and classifier.

3.2.1. Generator with the self-attention mecha-
nism. The basic network of the deep convolutional
generative adversarial network (DCGAN) (Radford et al.,
2016), including the generator and discriminator, is
based on a convolutional neural network (CNN). The

Noise
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Discriminator

Fig. 4. Specific structure of the DCGAN.

CNN’s powerful feature extraction ability is utilized
to augment the learning effectiveness of the generative
network. As shown in Fig. 4, Xreal symbolizes the
real sample, and Xfake symbolizes the generated fake
sample. The generator learns the distribution of real
samples and generates a new sample, Xfake, from the input
random noise. The function of the discriminator is to
differentiate genuine samples from artificially generated
ones. Through continuous learning, the generator
improves its ability to generate new samples. The
performance of the DCGAN reaches its peak when the
discriminator cannot precisely identify the genuineness of
the input sample. The objective function of the DCGAN
is

min
G

max
D

V (D,G)

= Ex∼ptrue(x)[logD(x)]

+ Ez∼pz(z)[log (1 −D(G(z)))].

(1)

During the training process of a DCGAN, random
noise (represented by pz) works as input to the generator
to generate fake samples. The objective for the
discriminator is to correctly distinguish between real
(Xreal) and generated fake (Xfake) samples. The objective
function V (D,G) of the DCGAN seeks to optimize both
the generator and discriminator simultaneously. When the
DCGAN reaches the optimal point, known as the Nash
equilibrium, the min-max problem of V (D,G) is solved
optimally. This equilibrium is achieved if and only if
the underlying distributions of the original data (ptrue)
and the input noise (pz) are identical. In this scenario,
the generator can generate Xfake samples that closely
resemble the real ones.

The features generated by the traditional DCGAN
are only derived by the fixed spatial local information in
the image, which can generate high-quality and detailed
texture features, but the effect of capturing specific
geometric features is not good. In this paper, the
self-attention (SA) module is integrated with the DCGAN
so that it can adapt to more related features and select
useful information from that which is redundant. How
this module works is shown in Fig. 5.

Note that xi is the input to the generator, and the
weight matrices to be learned are expressed as Wq , Wk

and Wq . The obtained feature spaces Qi, Ki, Vi result
from the multiplication of the image features with distinct
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weight matrices. We multiply the transpose of Qi byKi to
getCij . Then,Cij is normalized with SoftMax to generate
attention features. The calculation method is as follows:

Qi = Wqxi, (2)

Ki = Wkxi, (3)

Vi = Wνxi, (4)

Cij = QT
i Kj , (5)

mij =
exp(Cij)

∑N
i=1 exp(Cij)

. (6)

Finally, the adaptive attention feature map
h = (h1, h2, . . . , hj , . . . , hN ) is obtained by multiplying
the attention map mij with Vi and hj is calculated with
the following formula:

hj =

N∑

i=1

mijVi, (7)

Sj = roj + xi. (8)

By integrating all spatial information and local
information, Sj is obtained. In order to account
for the correlation between neighborhood information
and long-distance features, a transition parameter r is
introduced. It initially starts with the zero value and
gradually increases. This mechanism is utilized to
assign weights to other long-distance feature details,
allowing a better representation of the relationship
between neighborhood information and distant features.
The calculation formula is expressed by Eqn. (8).

3.2.2. Generator with the self-attention mecha-
nism. GRU-D is a binary classification model that
can be trained and transferred to the discriminator
of the RGAN. Because generators in the RGAN are
transferred from DCGAN generators, GRU-D uses the
same discriminator structure as the DCGAN, making
generators and discriminators compatible. The gate
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recurrent unit (GRU) is a version of the RNN, close to
long short-term memory (LSTM), which is utilized in
overcoming the challenge of gradient disappearance in
RNNs during training (Nosouhian et al., 2021). GRU
is simpler and more efficient than LSTM. Because
the training set data has a certain time dependence,
this paper combines the GRU and CNN to transform
the discriminator model of the DCGAN into a model
composed of the GRU network, so that it can recognize
continuous data better. The improved GRU discriminator
has a basic structure similar to the original discriminator
of the DCGAN. After the convolutional layer, GRU units
are used to replace the original fully connected layer. The
final discriminator structure is shown in Fig. 6.

The GRU determines the degree of neuron
information retention and forgetting by controlling
the update gate and reset gate, and can learn the long and
short time series features. The diagram provided in Fig. 6
illustrates the network structure, and the formula of the
update gate is as follows:

rt = σ(wrxxt + wrhht−1 + br), (9)

zt = σ(wzxxt + wzhht−1 + bz), (10)

where h(t−1) and xt are respectively the hidden layer
output of the previous time and the input of the current
time, σ is the sigmoid activation function, wrx and wrh

are the weights of input and hidden states, respectively,
wzx and wzh are the weights of the input and hidden
states, and br and bz are the offset of the reset door and
the update door.

The candidate hidden state is utilized to support the
generation of the final hidden state output; the reset gate
determines whether the hidden state from the preceding
time step influences the candidate hidden state at the
current time step, while the update gate is responsible
for updating the candidate hidden state. According to
Eqn. (12), if the numerical value assigned to the update
gate is close to 1 in t2 and t2 (t1 < t2), the hidden
state hardly flows into the current hidden state during
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this period, and the hidden state information before t1
to t2 is updated, which solves the difficulty of gradient
attenuation of the recurrent neural network. As a result,
the GRUs are better able to capture dependencies for
features with larger time step distances,

h̃t = tanh(w
̂hx
xt + w

̂hh
(rt � ht−1) + b

̂h), (11)

ht = (1 − zt)� ht−1 + zt � h̃t. (12)

In the formula, w
̂hx

and w
̂hh

are the weight matrices
of candidate vectors in the input and hidden layers,
respectively, h̃t is the output of the candidate hidden state,
ht is the output of the current hidden layer, and � is the
Hadamard product, which refers to the multiplication of
the corresponding elements.

3.3. Recombination generate adversarial net-
works. The recombination generative adversarial
network (RGAN) is composed of the generator from the
pre-trained DCGAN and GRU-D. The structure details of
the RGAN architecture are shown in Fig. 7.

We choose ReLU normalization in the RGAN
because the ReLU activation function has the following
advantages; ReLU is a nonlinear activation function
that introduces nonlinearity and enhances the expressive
power of the model. This is crucial for GANs since their
goal is to learn complex data distributions. Furthermore,
the derivative of the ReLU function in the positive range is
1, which means the gradients are not affected by extremely
small gradient values, thus alleviating the problem of
gradient vanishing. In comparison with ReLU, tanh
normalization has some differences. For example, the
output range of the tanh function is [−1, 1], while the
output range of the ReLU function is [0,+∞]. This leads
to differences in the range of the mean and variance used
in batch normalization. Additionally, the derivative of the
tanh function tends to approach zero for inputs larger than
2 or smaller than −2, causing the problem of gradient
vanishing. On the other hand, the derivative of ReLU in
the positive range is always 1, which helps to address the
issue of gradient vanishing. In summary, we choose ReLU
normalization to introduce nonlinearity and simplify the
problem of gradient vanishing. The tanh normalization
may face the problem of gradient vanishing and needs to
consider the difference in the output range.

When RGANs undergo adversarial training, the
generated pseudo-samples become closer to the real
sample, and this could potentially result in an increase in
false positive rates. Hence, this research paper suggests
incorporating a reconstruction loss component into the
objective function of the RGAN. This addition aims to
enhance the discriminator’s capacity to differentiate real
samples (normal samples) and subsequently decrease the
occurrence of false positives.

The generator loss and the discriminator function can
respectively be expressed as

Ez∼Pz(z)[log (1−D(G(Z)))], (13)

Ex∼pdata(x)[logD(x)]

+ Ex∼pz(z)[log (1−D(G(Z)))]. (14)

The representation of the new loss function,
incorporating reconstruction loss, can be as follows:

generator:
Lu
G + θ × Lu

X , (15)

discriminator:

Lv
D + θ × Lv

X . (16)

where Lu
G and Lu

X represent respectively, the loss
function of the initial generator and discriminator. The
reconstruction loss is controlled by parameter θ. Upon
training the discriminator, the generator’s parameter θ
is fixed and does not participate in training, and the
same is true for the discriminator’s parameter v upon
training the generator. Equation (15) indicates that the
generator receives two source inputs of discriminator
classification results and real data L1 reconstruction
losses. By introducing reconstruction losses, the generator
is capable of producing samples by utilizing the features
or information provided by the discriminator, thus
furnishing extra details to the discriminator. Therefore,
the discriminator’s capacity to differentiate genuine
samples will be enhanced further.

4. Experiments
In this section, we first describe the dataset and evaluation
indicators of our simulations, and then the experimental
results are evaluated and compared.

4.1. Dataset and evaluation indicators. The dataset
utilized in this paper is comparatively new in the domain
of intrusion detection and is called CSE-CIC-IDS2018. It
is produced through the simulation of an actual network
traffic distribution and has obvious imbalance, which is
very consistent with our research problem. By sampling
the majority class and minority class samples in the
original dataset, the dataset used in this paper is shown
in Table 1.

To assess the effectiveness of the suggested
approach, we used the following evaluation indicators:
accuracy, precision and F1-score. Each index can be
represented by four quantities, that is true positive (TP),
false positive (FP), true negative (TN), false negative
(FN). TP represents the number of positive samples
accurately detected as positive; FP signifies the count
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of positive samples wrongly recognized as negative; TN
indicates the amount of negative samples rightly detected;
FN symbolizes the count of negative samples mistakenly
detected as positive.

Accuracy indicates the proportion of samples that are
accurately identified, and its calculation formula is

accuracy =
TP + TN

TP + FP + FN + TN
. (17)

Precision is the percentage of the count of predicted
samples belonging to a category to the overall amount of
such samples:

precision =
TP

TP + FP
. (18)

Recall is the ratio of the total of samples rightly
detected as a category to the overall number of samples
in that category. In intrusion detection, the recall rate of
the calculated attack class can also be called the attack
detection rate. In this study, the detection rates of normal
samples and attack samples are calculated as follows:

DRnormal = recall =
TP

TP + FN
(19)

Table 1. Dataset of experiments.
Attack types Number of samples Proportion
Benign 71799 44.16%
DDoS attacks-
LOIC-HTTP 42000 25.83%

DoS-Goldeneye 29550 18.17%
Bot 13980 8.59%
Brute-Force-Web 3159 1.94%
Brute-Force-XSS 1367 0.84%
Infiltration 452 0.27%
Sql-Injection 276 0.16%

DRattack =
TN

TN + FP
. (20)

F1-score can be expressed as the harmonic average
of the precision and recall values, which assigns equal
weights to the precision and the recall scores, and is an
evaluation index. It can be calculated according to

F1-score =
2

1

recall
+

1

precision

. (21)

We also use two evaluation indexes macro-mean and
weighted-mean, to measure the macroscopic classification
effect of the intrusion detection model. The formula for
calculating macro-means (macro-mean) is as follows:

macro-mean-R =
1

m

1∑

i=1

Ri. (22)

Since the weighted-mean is a percentage of the
sample size, it can only reflect the detection effect of
most types of samples. To represent the weights of
a few class samples, we use the improved weights to
calculate the parameter weighted mean. The following
Equation (23) is shown for taking precision as an example,
where m represents the number of samples, βi stands
for the proportion between the amount of samples of
a specific category and the overall count of samples in
a classification task, and Ri refers to the recall, which
signifies the capacity of a model to correctly identify
positive instances of that particular class out of all actual
positive instances:

weighted-mean-R =

m∑

i=1

1− βi∑m
j=1(1− βj)

Ri. (23)

4.2. Determining the size of session samples. In
order to confirm the effect of the reconstruction loss
function on the detection of normal samples by the
discriminator of the reconstructed adversarial network,
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we set the values of parameter θ as 0, 0.25, 0.5, 0.75,
1, 5, 10. By comparing accuracy, macro-mean-F1 and
weighted-mean-F1, θ values with high scores are selected.
The results are shown in Fig. 8. The horizontal axis is
θ value, and the vertical axis exhibits the three appeal
values, which are typically color-coded as squares, circles
and triangles.

As can be seen from Fig. 8, when θ is 1, the three
evaluation indexes of the model attain their maxima,
i.e., 0.9977, 0.9430 and 0.9330, respectively. This
means that, when θ = 1, the model has the best
detection performance. Therefore, we choose 1 as the
reconstruction parameter.

4.3. Evaluating the proposed method. As introduced
earlier, our experimental dataset is a partial category of
CSE-CIC-IDS2018. Figure 9 displays the detection result
as a heat map.

Figure 9 shows the F1-score, recall, precision and
accuracy of various samples. Also shown below are whole
accuracy, macro-mean and weighted-mean of recall,
precision and F1-score. The color in the heat map changes
according to the value, as indicated by the vertical bar
on the right side of Fig. 9. We show the values of each
sample of the test set in parentheses. As can be seen from
Fig. 9, the suggested method exhibits good performance.
This approach ensures not only efficient detection for the
majority samples, but also enhances the detection rate for
minority samples. Therefore, this method is efficient for
the class imbalance problem in intrusion detection.

In addition, we also evaluated the effect of adding
SA and GRU modules to verify their validity. Figure 10
shows the results of ablation experiments using accuracy,
weighted-mean of precision, recall and F1-score as
evaluation indexes. It can be seen that the generator of the
original DCGAN and the basic CNN classifier have the
lowest scores out of the four evaluation indicators. After
the integration of the SA mechanism and GRU module,
the four values are increased by about 4.56%, 5.93%,
6.86% and 6.40%, respectively to attain optimal detection
performance.

4.4. Comparison. In this section, we execute a
comparative analysis between the suggested methods
and various conventional intrusion detection techniques.
Figures 11–13 shows the comparison of the proposed
framework with five common machine learning
algorithms including a dynamic neural network (DNN),
a convolutional neural network (CNN), XGBoost, a
support vector machine (SVM) and random forest (RF) in
terms of weighted mean parameters. It can be seen that,
compared with the conventional method, the suggested
framework is improved in each index and shows better
detection performance.
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Fig. 8. Accuracy, macro-mean-F1 and weighted-mean-F1 of θ.
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Fig. 9. Classification result of the proposed method.
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Fig. 10. Ablation evaluation of the proposed method.

Additionally, since this paper is motivated by the
work of Zhang et al. (2022b) and builds upon the method,
our model is compared with the method proposed by
Zhang et al. (2022b) to confirm the performance of our
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Fig. 11. Comparison of weighted-mean-precision with tradi-
tional machine learning.
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Fig. 12. Comparison of weighted-mean-recall with traditional
machine learning.

upgrade. As can be seen in Fig. 14, our method has more
effective performance on a macrolevel, and accuracy,
macro-mean and weighted-mean are all improved, so that
the comprehensive detection effect of our model is better.

In order to prove that our model can boost the
detection rate of the minority sample, we also compare
the detection indexes of the two methods for a few
classes, Brute-Force-Web, Brute-Force-XSS, Infiltration
and Sql-Injection, on the same data set. Figures 15–17
show the results. Figures demonstrate that our approach
exhibits favorable detection results for several sample
types present in the dataset. Our method outperformed
the TGAN-IDS in all three evaluation metrics, indicating
a significant and noticeable difference.

We also compare our approach with several class
imbalanced intrusion detection models (Bedi et al., 2021;

������ ������

������

���	��
���
��

�����	

��� ��� ������	 
� �� 
�������

���

���

���

���

���

���

�
�
�
�
�
�
�
�
�
	
�


�
�
�


Fig. 13. Comparison of weighted-mean-F1-score with tradi-
tional machine learning.
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Fig. 14. Comparison of macro-index with the TGAN-IDS.

Cui et al., 2023; Gelenbe and Nakip, 2023) on the same
dataset. Weighted-mean of precision, recall and F1-score
are used as evaluation metrics, and the results obtained
from the experiment are presented in Table 2.

From the data presented in the table, it is evident that
the three indexes of the RGAN-IDS outperform both the
I-Siam-IDS and GMM-WGAN-IDS. Specifically, when
compared with the I-Siam-IDS, the weighted-mean of
precision, recall, and F1-score exceed 9.57%, 7.22%,
and 8.4%, respectively. Similarly, when compared
with the GMM-WGAN-IDS, the three indexes exceed
3.9%, 2.3%, and 3.1%. In comparison with the recent
successful research on the ARNN, although the precision
is lower, the F1 score is higher. These findings
indicate that our method effectively addresses the class
imbalance difficulty in intrusion detection, resulting in
better detection performance for minority attack samples.

In order to validate the versatility of our method,
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Fig. 15. Comparison of recall with the TGAN-IDS.
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Fig. 16. Comparison of precision with the TGAN-IDS.
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Fig. 17. Comparison of F1-score with the TGAN-IDS.

we performed tests on the UNSW-NB15 dataset. It
is a widely used network intrusion detection dataset
that contains network traffic data from real-world
environments. By testing on this dataset, we were

able to evaluate the performance of our method in
real-world scenarios. According to the obtained results,
the RGAN-IDS exhibits excellent performance in terms
of precision, recall, and F1 score, with values of 98.11%,
98.95%, and 98.52% respectively. In comparison with
these results, the I-Siam-IDS, GMM-WGAN-IDS, and
ARNN have lower precision, recall, and F1 scores (Table
3).

Based on this testing, we were able to conclude
that our method is not only effective on specific datasets,
but also exhibits universality when applied to widely
used datasets like UNSW-NB15. This demonstrates the
effectiveness of our method and its ability to adapt to
various network intrusion detection tasks.

To assess the efficiency of different models, we
measured the training times of each model during our
experiments. We trained multiple models using the same
dataset and recorded the time taken for each model to
complete the training process. According to Table 4, it
can be observed that this method takes longer testing time
compared with the other three methods. This could be
due to the fact that this method involves the extraction
of time features, while the other three methods may be
more focused on other types of features or processing
techniques. This may indicate that this method pays
more attention to time-related data during processing,
which may involve more calculations and processing
steps, resulting in longer testing times. Although this
method may require more time to complete testing, it
may also have more advantages. Extracting time features
may enable the model to better capture temporal changes
and trends, thereby enhancing the model’s predictive
ability on time-series data. This method may be more
suitable for problems where time is an important factor
and time-related features have a significant impact on the
data.

In conclusion, although this method may have longer
testing time, its ability to extract time features may
provide an advantage in solving time-related problems.
The specific application needs to be evaluated based on
the actual requirements.

5. Conclusions
The method proposed in this paper aims to optimize
the detection rate of intrusion detection systems against
minority attacks. It introduces an RGAN-IDS detection
approach that utilizes a recombination generative
adversarial network. The method combines a
deep convolutional generative adversarial network
(DCGAN) and self-attention (SA) mechanisms to
optimize the generator. This optimization process
enhances the generator’s ability to generate strong
pseudo-samples. Additionally, the RGAN is used to
optimize discriminators that can efficiently distinguish
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Table 2. Comparison with well-known ML models on CICIIDS2018.
Precision [%] Recall [%] F1-score [%]

I-Siam-IDS 84.21 86.08 85.14
GMM-WGAN-IDS 89.88 91.00 90.44
ARNN 94.21 93.01 93.36
RGAN-IDS 93.78 93.30 93.54

Table 3. Comparison with well-known ML models on UNSW-NB15.
Precision [%] Recall [%] F1-score [%]

I-Siam-IDS 89.32 83.51 86.31
GMM-WGAN-IDS 87.40 90.12 88.73
ARNN 97.33 98.53 97.94
RGAN-IDS 98.11 98.95 98.52

Table 4. Comparison of time complexity.
Training time [s] testing time [s]

I-Siam-IDS 1633 9.31
GMM-WGAN-IDS 1888 9.52
ARNN 857 8.13
RGAN-IDS 1790 9.15

between pseudo and real samples. Transfer learning
techniques are applied to improve the performance of the
RGAN. After adversarial training, the discriminator of
the RGAN is used as the ultimate anomaly detector. To
prevent a decline in the identification accuracy of normal
instances during RGAN training, the loss function is
reconstructed. Experimental results demonstrate that the
RGAN-IDS effectively improves the anomaly detection
capabilities for minority attacks. In the future, a further
refinement of the model’s structure is planned to enable
the detection of unknown attacks as well.
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