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This paper addresses the challenge of managing state constraints in vehicle platoons, including maintaining safe distances
and aligning velocities, which are key factors that contribute to performance degradation in platoon control. Traditional
platoon control strategies, which rely on a constant time-headway policy, often lead to deteriorated performance and even
instability, primarily during dynamic traffic conditions involving vehicle acceleration and deceleration. The underlying
issue is the inadequacy of these methods to adapt to variable time-delays and to accurately modulate the spacing and speed
among vehicles. To address these challenges, we propose a dynamic adjustment neural network (DANN) based cooperative
control scheme. The proposed strategy employs neural networks to continuously learn and adjust to time varying conditions,
thus enabling precise control of each vehicle’s state within the platoon. By integrating a DANN into the platoon control
system, we ensure that both velocity and inter-vehicular spacing adapt in response to real-time traffic dynamics. The
efficacy of our proposed control approach is validated using both Lyapunov stability theory and numeric simulation, which
confirms substantial gains in stability and velocity tracking of the vehicle platoon.
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1. Introduction
The advent of advanced vehicular technology, alongside
the evolution of the transportation infrastructure and the
sophistication of communication networks, has facilitated
the emergence of cooperative vehicle platoon systems.
Foundational research in this area, as highlighted by Li
et al. (2015; 2020b), has been the cornerstone on which
these cutting-edge systems have been conceptualized and
developed.

Central to this contemporary transport scheme is the
concept of vehicle platooning. This technique organizes a
sequence of vehicles into a cohesive convoy, maintaining
minimal yet safe distances, guided by intelligent control
systems dedicated to optimizing navigation efficiency (Hu
et al., 2023; Huang et al., 2019). The implementation
of such systems has been shown to yield multiple
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transport-related benefits including, but not limited to,
the enhancement of road safety (Dutta et al., 2022;
Zhang et al., 2021), reduction in energy and fuel
consumption (Earnhardta et al., 2022; Li et al., 2021), as
well as relieving traffic congestion, thereby improving the
overall comfort for passengers.

The effectiveness of vehicle platooning is
intrinsically tied to the efficacy of its control
algorithms (Chang et al., 2019; Prayitno et al., 2023).
These algorithms are integral for real-time adjustment
of inter-vehicle distances and coordinating the velocities
of individual vehicles within the platoon. Their role
becomes even more pronounced as they tackle and
adapt to dynamic traffic conditions and environmental
changes (Wang et al., 2023). The ingenuity of these
control systems thus directly influences the platooning
system’s overall efficiency, seamlessly blending each
vehicle’s movements into a collective, autonomous
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flow that speaks to a future of smarter, safer, and more
sustainable transportation.

Historically, the quest for maintaining platoon
formation and ensuring stability has led to the exploration
of various cooperative control techniques. These
have included the implementation of a linear quadratic
regulator (LQR) (Liu et al., 2018; Okamoto et al., 2004),
model predictive control (MPC) (Hu et al., 2022; Wang
et al., 2022; Zhou et al., 2012), and adaptive sliding mode
control (SMC) (Gao et al., 2018; Liu et al., 2019). Such
methodologies have been pivotal in addressing specific
platooning challenges. However, they often fall short
in managing the uncertainties and non-linear dynamics
characteristic of real-world driving conditions.

Neural networks have emerged as a beacon of hope
for devising control algorithms that excel in adaptability,
robustness, and high performance for vehicle platooning
systems (Huang et al., 2023; Liang et al., 2020; Liu
et al., 2022; Wu et al., 2022). These neural network-based
strategies have proven effective in preserving platoon
stability and safety amidst intricacies such as complex
topologies (Li et al., 2020a; Feng et al., 2022),
undetermined parameters (Liu et al., 2019; Peng et al.,
2021), disruptions (Zhao et al., 2017; Li et al., 2022),
and communication lags (Li et al., 2019; Gong et al.,
2023). However, they typically overlook the intricacies
of state constraints and the dynamic interplay between
vehicles (Gao et al., 2016), potentially undermining the
fidelity and the safeguarding mechanisms of the platoon
system.

Our investigation presents an innovative neural
network model designed to encapsulate the state
constraints and the vehicular dynamics. We introduce
the dynamic adjustment neural network (DANN), a
sophisticated model characterized by its ability for online
learning and dynamic adjustment of hidden neuron
quantities and weights. The DANN encompasses an
adept skill set for approximating system nonlinearities
accurately while preserving a compact network size. This
unique attribute empowers the DANN to dynamically
tweak its network structure during the control process,
providing a robust, computationally friendly solution
adaptable to a spectrum of uncertain conditions. In the
realm of neural networks, the DANN presents a significant
advantage with its ability to adjust its weights and
structure adaptively through online learning. This renders
the DANN highly efficient for approximating nonlinear
functions with high accuracy, particularly in scenarios
where the model dynamics may change over time or due
to environmental factors. Unlike traditional RBFNNs
and recurrent neural networks, which require extensive
storage and computational resources, DANNs offer a
flexible, resource-conscious alternative that dynamically
alters their neuron parameters and counts to match input
data novelty.

This paper makes several contributions to the field:

(i) We unveil the DANN model, which ensures stable
and safe platoon configurations in adherence to
strict state constraints and accommodates on-the-fly
modulation of control parameters in alignment with
prevailing states and objectives.

(ii) We advocate for an advanced, neural network-driven
cooperative control strategy that incorporates
considerations for state constraints and dynamic
inter-vehicle exchanges, overcoming the
shortcomings of traditional frameworks.

The paper is organized as follows. Section 2
delineates the preliminaries relevant to graph theory and
frames the problem. Section 3 details the intricacies
of the DANN model. Section 4 explicates our
neural network-centric cooperative control algorithm,
articulating its foundational principles and rationale.
Section 5 empirically validates our algorithm’s efficiency
through simulation outcomes. Concluding remarks are
presented in Section 6, encapsulating the essence and
implications of our research.

2. Preliminaries and problem formulation
2.1. Graph theory. Consider a directed graph G =
(V,E,A), composed of n nodes indexed by the set V =
{1, 2, . . . , n}. The set E ⊆ V × V represents the edges
of the graph, consisting of the ordered node pairs. The
associated adjacency weight matrix A = [wij ] ∈ R

n×n is
a nonnegative matrix, where the entry wij > 0 signifies
the existence of an edge from node j to node i, indicated
by (j, i) ∈ E; conversely, wij = 0 denotes the absence
of such an edge. It is crucial to distinguish that in an
undirected graph the presence of an edge (j, i) ∈ E
automatically implies the presence of (i, j) ∈ E. This
reciprocity does not necessarily apply in the context of a
directed graph, where the existence of (j, i) ∈ E does not
infer that (i, j) is also in E.

Additionally, each node i has a neighbor set Ni

which comprises the nodes from which node i is able
to receive information, reflecting the directional nature of
communications within the graph.

Define the adjacency Laplacian matrix L = [lij ] ∈
R

n×n as

lii =

{∑
k∈Ni

wik > 0 if i = j,

−wij < 0 if i �= j.
(1)

What should be paid attention to is that for an undirected
graph, L is a symmetric semi-positive matrix.

Definition 1. (Strong and weak connectivity) Consider
a directed graph G. The graph is said to be strongly
connected if, for every pair of distinct nodes vi and vj ,
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there is a bidirectional path such that a path from node vi
to node vj exists, along with a path from node vj to node
vi. Conversely, the graph is termed weakly connected if,
for any pair of distinct nodes vi and vj , there is at least a
unidirectional path—meaning there exists a path from vi
to vj or from vj to vi, but not necessarily both.

For undirected graphs, the definition simplifies: The
graph is considered connected if there is a path linking any
pair of distinct nodes.

Definition 2. (In-degree and out-degree, balance and
Laplacian) Within a directed graph G with the weighted
adjacency matrix A = [aij ], the in-degree and out-degree
for a node vi are quantitatively defined as follows:

din(vi) =

n∑
j=1

aji, dout(vi) =

n∑
j=1

aij . (2)

When the in-degree and out-degree are equivalent, that is,
din(vi) = dout(vi) for each node vi, then the graph G is
described as a balanced graph.

Moreover, by constructing a diagonal matrix D =
diag(dout(v1), . . . , dout(vn)), we define the Laplacian
matrix L for the graph G as

L = D −A. (3)
An important property of the Laplacian matrix is

made evident by the equation LIn = 0, where In
represents the identity matrix of order n.

2.2. Related lemmas.

Lemma 1. (Corets et al., 2002) Suppose there exists a
bounded continuous function V (t) > 0 for ∀t ≥ 0. If
V̇ (t) ≤ −αV (t) + β, where both α and β are positive
constant parameters, then

V (t) ≤
(
V (0)− β

α

)
e−αt +

β

α
. (4)

Lemma 2. (Young’s inequality (Mitrinovic et al., 1993b))
For any x, y ∈ R and ε > 0, the following inequalities
hold:

xy ≤ ε

2
x2 +

1

2ε
y2,

x2 + y2 ≤ (x+ y)2 if xy ≥ 0. (5)

Lemma 3. (Cauchy inequality (Mitrinovic et al., 1993a))
For any x > 0, y > 0 ∈ R

n, the following inequity holds:

(
n∑

i=1

aibi

)2

≤
n∑

i=1

a2i

n∑
i=1

b2i . (6)

Leader Followers

Communication linkC

Fig. 1. Schematic diagram of the vehicle formation, where the
leftmost vehicle is the leader, the vehicles in the dotted
box are the followers, and they all communicate with
each other through the V2V/V2I technology.

2.3. Problem formulation. For the above formation
control problem, we can set one of the vehicles as the
leader and the rest as the followers, as shown in Fig. 1.
To achieve a specific graphical formation, a virtual leader
state can be set for each follower by means of an offset as
follows:

(i) given the position xo(t) and the velocity vo(t) of the
leader, where

xo(t) = [xo,1(t), xo,2(t)]
T
,

vo(t) = [vo,1(t), vo,2(t)]
T

are both expressed as vectors in a two-dimensional
space,

(ii) set the virtual leader state for each follower:{
x̄
(i)
o (t) = xo(t) + o

(i)
x (t),

v̄
(i)
o (t) = vo(t),

(7)

where o(i)x (t) represents the offset of follower vehicle
i relative to the leader in a two-dimensional space,
and it also represents that it is desirable that all the
vehicles have the same velocity.

The state space modeling of the above system, due to
the structure, attitude, wind resistance, system disturbance
and other physical factors, involves a large number of
unknown nonlinear items in mathematical dynamics:{

ẋi(t) = vi(t),

v̇i(t) = fi
(
xi(t), vi(t)

)
+ gi

(
xi(t), vi(t)

)
ui(t),

(8)

where xi(t), vi(t), and ui(t) are the position, velocity
state, and control input of the follower vehicles,
respectively, while fi and gi are nonlinear functions that
conform to a certain type of constraint.
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Additionally, the dynamics formulation of the leader
vehicle is described as follows:{

ẋo(t) = vo(t),

v̇o(t) = fo
(
xo(t), vo(t)

)
,

(9)

where xo(t) and vo(t) denote the position and velocity of
the leader, respectively, while fo is an unknown smooth
function. Each vehicle has two degrees of freedom in
its state, which means that the vehicle can move in the
directions of the X and Y axes.

Assumption 1. The nonlinear function fo of the leader
vehicle is bounded by a positive constant, that is, ∀t ∈
R

+, ‖ fo ‖≤ α.

Assumption 2. The nonlinear function gi of follower i is
either a negative-definite or a positive-definite symmetric
matrix, and its eigenvalues λ1 (gi) , . . . , λm(gi) satisfy

0 < g
i
≤‖ λ1 (gi) ‖, . . . , ‖ λm (gi) ‖<∞, (10)

with g
i

being a positive constant.

Let xi = [xi1, xi2]
T and vi = [vi1, vi2]

T be the
position and velocity state in the X and Y directions,
respectively. The position and velocity states of the leader
vehicle are

xo = [xo1, xo2]
T
,

vo = [vo1, vo2]
T
. (11)

Further, define the tracking error as

ζxi (t) = xi(t)− xo(t)− o(i)x (t),

ζvi (t) = vi(t)− vo(t). (12)

Note that, in a formation period, the position offset
between the leader and the followers is kept constant.
Thus, taking the derivative of Eqn. (12) during a formation
period, we have

ζ̇xi (t) =ẋo(t) + ȯ(i)x (t)− ẋi(t)

=ẋo(t)− ẋi(t) = ζvi (t),

ζ̇vi (t) =v̇o(t)− v̇i(t)

=− fo (xo(t), vo(t)) + fi (xi(t), vi(t))

+ gi (xi(t), vi(t)) ui(t), i = 1, 2, . . . , n.
(13)

Rewrite Eqn. (13) in a compact form as

Ż(t) =

((
0 −In
0 0

)
⊗ Im

)
Z(t)

+

(
0nm
Ff

)
−
(
0nm
Fo

)
+

(
0nm
U

)
, (14)

where the tracking error compact vector

Z =
[
ζx1

T , ζx2
T , . . . , ζxn

T , ζv1
T , ζv2

T , . . . , ζvn
T
]T

,

Ff =
{
fT
1 , fT

2 , . . . , fT
n

}T
,

Fo =
{
fT
o , . . . , fT

o

}T
,

U =
{
(g1u1)

T , (g2u2)
T , . . . , (gnun)

T
}T

,

and ⊗ denotes the Kronecker product.
Similarly, Eqn. (12) can also be represented by the

tracking error defined in Eqn. (12),

exi (t) =
∑
j∈Ni

(
ζxi (t)− ζxj (t)

)
+ ζxi (t)

−
∑
j∈Ni

(
o(i)x (t)− o(j)x (t)

)
,

evi (t) =
∑
j∈Ni

(
ζvi (t)− ζvj (t)

)
+ ζvi (t). (15)

DANNs are used to approximate the unknown
nonlinearity fi(·),

fi (xi(t), vi(t)) = W ∗T
i (t)S (zi(t)) + εi (zi(t)) , (16)

where zi(t) = [xi(t), vi(t)]
T , W ∗

i (t) is the ideal DANN
weight matrix at time step t and εi(t) is the associated
approximation error.

Design the DANN approximation-based adaptive
control protocol

ui(t) = −
(
ki +

βi

g
i

ŴT
i (t) ‖Si (zi(t))‖2

)

× (exi (t) + evi (t)) , i = 1, 2, . . . , n, (17)

where ki and βi are positive design constant parameters
to be given later, while Ŵi(t) is the estimation of ideal
weight W ∗

i (t).

3. Dynamic adjustment neural network
The conventional radial basis function neural network
(RBFNN) is recognized for its high computational
precision in learning and fitting time series data, while
recurrent neural networks (RNNs) are not only capable
of achieving high-accuracy data fitting, but also exhibit
compatibility with new patterns in time series data.
However, these models necessitate the use of an extensive
reservoir to capture the characteristics of time series data,
requiring substantial storage and computational resources.
As a result, these models may not be suitable for situations
with dynamic or environmentally-induced variations.
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Fig. 2. Fundamental network structure for dynamic adjustment.

To remedy this limitation, we propose a streamlined
efficacious neural network architecture termed the DANN.
This architecture permits adaptive adjustments to both
the connection weights and the network structure via
online learning to maintain a high level of precision
in approximating nonlinear functions. Rooted in the
principles of the RBFNN, the DANN is equipped to
introduce new hidden neurons as needed or to utilize
the gradient descent method for fine-tuning the output
weights and the centers of hidden neurons.

During the learning process, the DANN consistently
evaluates the “novelty” of each new data sample. Should
the novelty criterion of the sample be met, the network
proceeds to integrate a fresh neuron into the hidden layer.
The centre of this new neuron is set to match the value
of the recently received sample. Furthermore, the output
weights of the new neuron are determined based on the
current network output error, and the center width is
established as the minimum distance between the input
value and the existing neuron centers. The DANN is
also designed to dynamically prune superfluous hidden
neurons to optimize its structure.

As delineated in Fig. 2, the DANN framework is
composed of an input layer, an output layer, and an
intermediary dynamic adjustment layer. The dynamic
adjustment layer is particularly versatile, with the
capability to update both the quantity and parameters of
its neurons in real-time, adhering to the rule set elucidated
in Fig. 3.

3.1. Neuron distance. Given two probability
distribution functions (PDFs), namely, fp(τ) and fq(τ), as
shown in Fig. 4, the Kullback–Leibler information (KLI)
IKL (fp ‖ fq) between them is calculated as

IKL (fp ‖ fq) =
∫
τ

fp(τ) ln
fp(τ)

fq(τ)
dτ (18)

Further, the Kullback–Leibler divergence (KLD)
DKL (fp, fq) can be seen as a measurement to quantify

Fig. 3. Schematic diagram of structural changes before and after
DANN dynamic adjustment.

the distance of fp(τ) and fq(τ) by

DKL (fp, fq) = IKL (fp ‖ fq) + IKL (fq ‖ fp) . (19)

Let

θi(z) =
∥∥∥z − ci

σi

∥∥∥ =
(x− ci)

T
(x− ci)

σT
i σi

, (20)

where ci, σi are the unit center and spread constant of
neuron i, and the i-th kernel of the hidden neurons is

φi(z) = exp

⎛
⎜⎝− 2m∑

j=1

(
z(j) − c

(j)
i

)2
(
σ
(j)
i

)2
⎞
⎟⎠

= exp (−θi(z)) . (21)

We design the “difference” between two hidden
neurons

dif =DKL (fp, fq)

=

∫
τ

fp(τ) ln
fp(τ)

fq(τ)
dτ +

∫
τ

fq(τ) ln
fq(τ)

fp(τ)
dτ

=

∫
τ

fp(τ) (θi − θj) dτ +

∫
τ

fq(τ)(θj − θi) dτ

=

(
cTi 12m

2
+

σT
i σi

(
cTi − 2cTj

)
12m

2σT
j σj

)

× exp

(
− cTi ci

σT
i σi

)

+

(
cTj 12m

2
+

σT
j σj

(
cTj − 2cTi

)
12m

2σT
i σi

)

× exp

(
− cTj cj

σT
j σj

)
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Fig. 4. Distance between Gaussian functions fq (τ ) and fp(τ )
with the same kernel center c.

+m
√
πσT

i 12m

(
2
(
1T
2m − cTj

)
ci

σT
j σj

+
2
(
1T
2m − cTi

)
cj

σT
i σi

− 1

)
. (22)

3.2. Growing of hidden neurons. Calculate the
“distance” dist between the neural network input z and
a hidden neuron as

dist = 1− exp

(
−
∥∥∥z − c

σ

∥∥∥) , (23)

where c, σ are respectively the unit center and spread
constant of the hidden neuron.

Denote by distmin = min(dist) the minimum value
of dist among z and all the hidden neurons, by difmin =
min(dif) the minimum value of ‘dif’ among all the pairs
of two hidden neurons. If distmin ≥ Da

th and difmin ≥
Dn

th, with Da
th and Dn

th being an online adaptive thresholds
for generating new neurons in the hidden layer of neural
network, then a new hidden neuron will be initialized and
added, while the connection weights of the neural network
will also be updated. This procedure works under the
following rules:

(i) Update the number of hidden neurons:

N ← N + 1. (24)

(ii) Set the central and central width of the newly added
hidden neuron:

cN = z, (25)

σN = λ · distmin. (26)

(iii) Initialize the connection weights from the new
neuron to output layer:

WN
out =

ae

b1m + e
. (27)

Here, WN
out ∈ R

m, e ∈ R
m is the network output

error-related residual vector, a and b are constant scalars,
and 1m ∈ R

m denotes the m-dimensional vector of ones.

3.3. Pruning of hidden neurons. Suppose that a
DANN with h hidden neurons is capable to approximate
the target function under the accuracy requirement; then,
if the number of hidden layer nodes exceeds h, how
to prune the redundant hidden neurons? Without loss
of generality, we consider the case of a DANN with
h + 1 hidden neurons where only one can be pruned as
redundant.

We consider deleting the hidden layer node h+1 that
contributes less to the network output for a long time, and
calculate the output of each hidden layer node as

oi,k = wi exp

(
−‖ zk − ci ‖2

σ2
i

)
,

i = 1, 2, . . . ,m. (28)

Subsequently, we identify the maximal absolute
value, denoted as ‖omax,k‖, across the outputs of the
hidden layer nodes. We then define the normalized
contribution, ri,k, of each hidden layer node’s output to
the overall network output by calculating the ratio of
‖oi,k‖ to ‖omax,k‖ as follows:

ri,k =

∥∥∥∥ oi,k
omax,k

∥∥∥∥ . (29)

If the consecutive P steps of ri,k are less than the
set threshold δ, the corresponding hidden layer node is
deleted, and then the learning of the next sample data pair
will be carried out.

3.4. Updating network weights. If it is unnecessary
to add or prune any hidden neuron, then what needs to be
done is update the output weights according to network
output related error and the hidden activation along the
following rules:

W i
out ←W i

out + λ · Proj
(
W i

out, θ(z)ePB
)
, (30)

where λ is a positive constant, B is the gradient vector
of the network output with respect to W i

out, P is the
covariance matrix, and Proj(·) is a projection function
defined as

Proj(a, b) =
b · a
|a| . (31)

Further, e denotes the system error which represents
a specific term in a task. We design the update law of
output weights as

WN
out ←WN

out + λ · ae

b1m + e
θ(z),

ci ← ci + λ ·Δci, i = 1, 2, . . . , N, (32)
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Fig. 5. Connection weights variation of the output layer over
time.

where

Δci =
2 (z − ci)S(z)W

i
out

T
e

σ2
i

.

In Fig. 5, we illustrate the variations in the
connection weights of the output layer over time. Figure 6
depicts the fitting error between the actual outputs and
the desired targets. It is evident that the DANN actively
fine-tunes both the quantity of neurons and the synaptic
weights within the dynamic adjustment layer in response
to changing conditions. As time progresses, the fitting
error consistently diminishes, reflective of the ongoing
adjustment in the number of nodes within the dynamic
adjustment layer, conforming to the previously outlined
updating protocols.

Furthermore, Fig. 6 underscores that, by
incrementally increasing the number of nodes to
an optimal count, the network achieves enhanced
expansiveness and significantly improved fitting
capabilities. This expansion is a strategic maneuver,
governed by the network’s intrinsic mechanisms, to refine
its predictive accuracy and adaptability.

4. Main results

Consider the Lyapunov candidate function as

V (t) =
1

2
ZT (t)

((
2L̃ L̃

L̃ L̃

)
⊗ Im

)
ZT (t) (33)

+
1

2

n∑
i=1

γ−1
i W̃ 2

i (t),

where L̃ = L + B,B = diag {b1, b2, . . . , bn}, W̃ i(t) =

Ŵi(t)−W ∗
i (t).

Taking the derivative of V (t) with respect to time t,

-2
0
2
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Desired vs. Practical Output
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4

Output Error
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0

50
Number of Hidden Neurons

Fig. 6. Comparison between the practical output and desired
values (top), the fitting error (center), and the number
of hidden neurons over time (bottom).

we have

V̇ (t) = −1

2
ZT (t)

(((0 −In
0 0

)T
(
2L̃ L̃

L̃ L̃

)

+

(
2L̃ L̃

L̃ L̃

)(
0 −In
0 0

))
⊗ Im

)
Z(t)

+ ZT (t)

((
2L̃ L̃

L̃ L̃

)
⊗ Im

)(
0nm
Ff

)

− ZT (t)

((
2L̃ L̃

L̃ L̃

)
⊗ Im

)(
0nm
Fo

)

+ ZT (t)

((
2L̃ L̃

L̃ L̃

)
⊗ Im

)(
0nm
U

)

+

n∑
i=1

γ−1
i W̃i(t)

˙̂
W i(t) (34)

= −ZT (t)

((
0 −L̃
−L̃ −L̃

)
⊗ Im

)
Z(t)

+

n∑
i

(exi (t) + evi (t))
T
fi (xi(t), vi(t))

−
n∑
i

(exi (t) + evi (t))
T
fo (xi(t), vi(t))

+

n∑
i

(exi (t) + evi (t))
T
gi (xi(t), vi(t)) ui(t)

+

n∑
i=1

γ−1
i W̃i(t)

˙̂
W i(t).

Substituting the follower’s unknown nonlinearity by
the DANN approximation, Eqn. (34) becomes

V̇ (t) =− ZT (t)

((
0 −L̃
−L̃ −L̃

)
⊗ Im

)
Z(t)
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+

n∑
i

(exi (t) + evi (t))
T
(
ŴT

i (t)Si (zi(t))

+ εi (zi(t)))

−
n∑
i

(exi (t) + evi (t))
T
fo (xi(t), vi(t))

+

n∑
i

(exi (t) + evi (t))
T
gi (xi(t), vi(t)) ui(t)

+

n∑
i=1

γ−1
i W̃i(t)

˙̂
W i(t). (35)

By Lemmas 2 (Young’s inequality) and 3 (Cauchy
inequality), we can obtain

(
exi (t) + evi (t)

)T
ŴT

i (t)Si (zi(t))

≤ βi

(
(exi (t) + evi (t))

T ŴT
i (t)Si (zi(t))

)2
+

1

4βi

≤ βiŴ
T
i (t) ‖Si (zi(t))‖2 ‖exi (t) + evi (t)‖2

+
1

4βi

− (exi (t) + evi (t))
T
fo (xi(t), vi(t))

≤ λi ‖exi (t) + evi (t)‖2

+
fo

2

4λi
(exi (t) + evi (t))

T
εi (zi(t))

≤ δi ‖exi (t) + evi (t)‖2 +
ε2i
4δi

, (36)

where βi, λi and δi are positive constants.
By using Eqn. (36), we have

V̇ (t)

≤ −ZT (t)

((
0 −L̃
−L̃ −L̃

)
⊗ Im

)
Z(t)

+
n∑
i

βiŴ
T
i (t) ‖Si (zi(t))‖2 ‖exi (t) + evi (t)‖2

+

n∑
i

(λi + δi) ‖exi (t) + evi (t)‖2

+

n∑
i

(exi (t) + evi (t))
T
gi (xi(t), vi(t)) ui(t)

−
n∑

i=1

γ−1
i W̃i(t)Ŵi(t)

+

n∑
i

(
1

4βi
+

fo

2

4λi
+

ε2i
4δi

)
. (37)

By substituting the control protocol (13) and the

adaptive weight tuning method into Eqn. (37), we obtain

V̇ (t) ≤− ZT (t)

((
0 −L̃
−L̃ −L̃

)
⊗ Im

)
Z(t)

+

n∑
i

βiŴ
T
i (t) ‖Si (zi(t))‖2 ‖exi (t) + evi (t)‖2

+

n∑
i

(λi + δi) ‖exi (t) + evi (t)‖2

−
n∑
i

(exi (t) + evi (t))
T
gi (xi(t), vi(t)) (ki

− βi

g
i

ŴT
i (t) ‖ Si (zi(t)) ‖2

)
(exi (t) + evi (t))

−
n∑

i=1

γ−1
i W̃T

i (t)Ŵi(t)

+
n∑
i

(
1

4βi
+

fo

2

4λi
+

ε2i
4δi

)
. (38)

Based on Assumption 2, the above inequality can be
rewritten as

V̇ (t) ≤− ZT (t)

((
0 −L̃
−L̃ −L̃

)
⊗ Im

)
Z(t)

+

n∑
i

βiŴ
T
i (t) ‖Si (zi)‖2 ‖exi (t) + evi (t)‖2

+
n∑
i

(λi + δi) ‖exi (t) + evi (t)‖2

−
n∑
i

(
g
i
ki − βi Ŵ

T
i (t) ‖ Si (zi(t)) ‖2

)
× ‖exi (t) + evi (t)‖2

−
n∑

i=1

γ−1
i W̃T

i (t)Ŵi(t) +

n∑
i

(
1

4βi
+

fo

2

4λi
+

ε2i
4δi

)

=− ZT (t)

((
0 −L̃
−L̃ −L̃

)
⊗ Im

)
Z(t)

+

n∑
i

(λi + δi) ‖exi (t) + evi (t)‖2

−
n∑
i

g
i
ki ‖exi (t) + evi (t)‖2

−
n∑

i=1

γ−1
i W̃T

i (t)Ŵi(t)

+

n∑
i

(
1

4βi
+

fo

2

4λi
+

ε2i
4δi

)
. (39)
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Let g
i
ki ≥ λi + δi + k0. Then Eqn. (39) becomes

V̇ (t) ≤ −ZT (t)

((
0 −L̃
−L̃ −L̃

)
⊗ Im

)
Z(t)

−
n∑
i

k0 ‖exi (t) + evi (t)‖2

−
n∑

i=1

γ−1
i W̃T

i (t)Ŵi(t)

+
n∑
i

(
1

4βi
+

fo

2

4λi
+

ε2i
4δi

)

≤ −ZT (t) (k0)

(
L̃ 0

0 L̃

)T (
L̃ 0

0 L̃

)

−
(
0 L̃

L̃ L̃

)
⊗Im)Z(t)

−
n∑

i=1

γ−1
i W̃T

i (t)
˙̂
W i(t)

+

n∑
i

(
1

4βi
+

fo

2

4λi
+

ε2i
4δi

)
. (40)

Due to the fact that we designed W̃T
i (t)Ŵi(t) =

1
2

(
W̃ 2

i (t) + Ŵ 2
i (t)−W ∗

i
2(t)

)
, we have

−
n∑

i=1

γ−1
i W̃T

i (t)Ŵi(t)

≤ 1

2
γ−1
i

n∑
i=1

(
−W̃ 2

i (t) +W ∗
i
2(t)

)
. (41)

Substituting Eqn. (41) into (40), it becomes

V̇ (t)

≤ −ZT (t)

⎛
⎝k0

(
L̃ 0

0 L̃

)T (
L̃ 0

0 L̃

)

−
(
0 L̃

L̃ L̃

))
⊗ ImZ(t)− 1

2

n∑
i=1

γ−1
i W̃ 2

i (t)

+
n∑
i

(
1

4βi
+

fo

2

4λi
+

ε2i
4δi

+
1

2
γ−1
i W ∗

i
2(t)

)
. (42)

Define

Λ =

(
L̃ 0

0 L̃

)T (
L̃ 0

0 L̃

)
,

Δ =

(
0 L̃

L̃ L̃

)
, Ω =

(
2̃L L̃

L̃ L̃

)
.

Leader Followers

Communication link

③
①

②
⑤④

⑥

C

Fig. 7. Vehicle platoon in a simulation setting; the dotted arrow
shows the communication direction between vehicles.

Taking

k0 > λ−1
min(Λ) (λmax(Δ) + ω/2 · λmax(Ω)) ,

where λmin (Λ), λmax(Δ) and λmax(Ω) denote the
smallest eigenvalue of matrix Λ, the largest eigenvalue
of matrix Δ and the largest eigenvalue of matrix Ω,
respectively, ω = min {σ1γ1, σ2γ2, . . . , σnγn}; thus, we
can rewrite Eqn. (42) as

V̇ (t) ≤− ω

2
ZT (t) (Ω⊗ Im)Z(t)

− 1

2

n∑
i=1

γ−1
i W̃ 2

i (t)

+

n∑
i

(
1

4βi
+

fo

2

4λi
+

ε2i
4δi

+
1

2
γ−1
i W ∗

i
2(t)

)

=− ωV (t)

+
n∑
i

(
1

4βi
+

fo

2

4λi
+

ε2i
4δi

+
1

2
γ−1
i W ∗

i
2(t)

)
.

(43)

Then we have

V (t) ≤ V (0)e−ωt +
ρ

ω

(
1− e−ωt

)
, (44)

where

ρ =

n∑
i

(
1

4βi
+

fo

2

4λi
+

ε2i
4δi

+
1

2
γ−1
i W ∗

i
2(t)

)
. (45)

It should be noted that if we chose appropriate values
of parameters βi, λi and δi, we could obtain the positive
constant ρ. By Lemma 1, the tracking error of each
follower agent can be decreased to a small neighborhood
of zero, which implies that the leader-following vehicle
platoon consensus can be achieved.

5. Simulation results
Design the leader-following vehicle platoon topology as
shown in Fig. 7. Set

vo =
[
6 sin(t), 1 + sin(2t+ 1), 2 cos

(
0.5t2 + 1

)]T
,
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xo(0) = [10, 15, 10]T .

The initial position of follower vehicle i is a random
vector in the range of [−10, 10].

The connection matrix of followers can be
constructed by

Cf =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
1 0 0 0 0 0
1 0 0 1 1 0
0 0 1 0 0 0
0 1 1 0 0 1
0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and the corresponding Laplacian matrix is

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0 0 0
1 −1 0 0 0 0
1 0 −3 1 1 0
0 0 1 −1 0 0
0 1 1 0 −3 1
0 0 1 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

On the other hand, the connection vector from the
leader to the followers is

Cl =
[
1 0 0 0 0 0

]T
.

The leader’s dynamics is given by

ẋo(t) = vo(t)

and

v̇o(t)

=

(− sin (xo1(t)) + 0.1
(
1− x2

o1(t)
)
cos (vo1(t))

− cos (xo2(t))− 0.3
(
1 + x2

o2(t)
)
sin (vo2(t))

)
,

while the followers’ dynamics are given by

ẋi(t) =vi(t),

v̇i(t) =

(−ai1 sin (xi1) + bi1 (1− xi1) cos (ci1vl1)
ai2 cos (xi2) + bi2 (1 + ci2xi2) sin (vi2)

)

+

⎛
⎝βi1 cos (xi1) vi1 0

0 sin2 (xi2vi2) + βi2

0 0

⎞
⎠

×
(
ui1

ui2

)
, i = 1, . . . , 6,

where

a =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2
0.1 0.5
0.5 1
−1 0.4
0.9 −0.1
1.2 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, b =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.2 1.2
1.1 −0.5
0.5 0.1
0.9 2.4
−0.2 1.1
0.2 1.6

⎤
⎥⎥⎥⎥⎥⎥⎦

Table 1. Performance comparison with other classical models.
Model Convergence time Steady-state error
RBFNN 632 4.2× 10−2

BPNN 603 2.5× 10−2

Fuzzy Set 744 5.8× 10−2

DANN 428 7.8 ×10−3

c =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.3 0.1
1.2 0.2
−0.9 1.8
2.1 2.2
1.1 0.5
1.2 2

⎤
⎥⎥⎥⎥⎥⎥⎦
, β =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0.8
−0.2 1.6
1.3 1
2.0 2.9
−0.1 0.8
1.8 1.1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Additionally, we also constructed nonlinear term
fitting methods based on the radial basis function neural
network (RBFNN), the backpropagation neural network
(BPNN), and a fuzzy set model. Both the RBFNN and
BPNN have a three-layer structure with 30 nodes in the
hidden layer, and the dimension of the fuzzy set is 20.
We primarily compared the number of convergence time
steps and the steady-state error of the system. The results,
as shown in Table 1, indicate that the proposed DANN
achieves the best control performance.

It can be seen from the change diagram of the system
state that, for both the position (see Fig. 8) and velocity
(see Fig. 9), the changes are relatively intense at the
middle time moment, and the output fluctuation of the
corresponding DANN is also relative large (see Fig. 10),
while the system output error is large compared with other
time instants. Figures 11 to 14 show the internal variation
and structure values of the DANN during system running.
As observed while by combining Figs. 11 and 12, there is
a notable increase in the number of hidden layer neurons
within the DANN structure when significant fluctuations
arise in the fitting error. This increment is designed to
enhance the network’s fitting capabilities. In Figs. 13
and 14, prior to approximately 300 time steps, the DANN
primarily adjusts the output weights and the centers of
hidden layer neurons to approximate the desired output.
After about the 300-time-step threshold, the network
begins to expand the number of hidden layer neurons,
mainly improving the performance by augmenting the
scale of the network. Thus, the DANN begins to
significantly increase the number of hidden neurons at this
point in order to better fit the characteristics of the new
input samples. In addition, the spread constants of the
hidden layer neurons are all at a relatively small level, so
that the hidden neurons are more sensitive to the input and
can respond significantly to changes in the input. On the
other hand, the unit center distribution of hidden neurons
is also relatively scattered (see Fig. 15), which helps the
neural network to better respond to different inputs.
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Fig. 8. Tracking consensus performance of position states xi1

and xi2, i = 1, 2, . . . , 6, where xi1 and xi2 denote the
velocities along the directions of the X and Y axes, re-
spectively.

6. Conclusion

In this paper, we introduced a mathematical model
addressing the vehicle cooperative control issue and
subsequently derived an adaptive control protocol that
leverages the DANN. Our approach commenced with
a meticulous mathematical analysis and verification of
system control stability, leading to the identification of
specific conditions required for certain system parameters.
Numerical simulations not only depicted the evolution
of the state consensus among the agents, but also
delved into the internal dynamics of the DANN. It
was observed that the DANN is not merely capable
of dynamically altering its architecture in response to
operational demands, but it also possesses the flexibility
to refine its parameters for precise fitting of nonlinear
expressions, effectively enhancing the network’s inherent
adaptability and precision in dynamic settings.

Looking ahead, future work could expand upon
this foundation by exploring the integration of the
DANN with more complex control systems, assessing
the network’s performance in real-world scenarios with
varying degrees of unpredictability, and further refining
the network’s architecture for optimized adaptability and
computational efficiency. The exploration of distributed
DANN structures to emphasize enhanced scalability
and reduced computational loads in multi-agent systems
indicates a promising direction for future research.

0 200 400 600 800 1000
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Fig. 9. Tracking consensus performance of velocity states vi1
and vi2, i = 1, 2, . . . , 6, where vi1, vi2 denote the ve-
locities along the directions of the X and Y axes, respec-
tively.
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