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This study develops a new conjugate gradient (CG) search direction that incorporates a well defined spectral parameter while
the step size is required to satisfy the famous strong Wolfe line search (SWP) strategy. The proposed spectral direction is
derived based on a recent method available in the literature, and satisfies the sufficient descent condition irrespective of the
line search strategy and without imposing any restrictions or conditions. The global convergence results of the new formula
are established using the assumption that the gradient of the defined smooth function is Lipschitz continuous. To illustrate
the computational efficiency of the new direction, the study presents two sets of experiments on a number of benchmark
functions. The first experiment is performed by setting uniform SWP parameter values for all the algorithms considered
for comparison. For the second experiment, the study evaluates the performance of all the algorithms by considering the
exact SWP parameter values used for the numerical experiments as reported in each work. The idea of these experiments
is to study the influence of parameters in the computational efficiency of various CG algorithms. The results obtained
demonstrate the effect of the parameter value on the robustness of the algorithms.

Keywords: optimization models, spectral CG algorithm, global convergence, line search strategy.

1. Introduction

Unconstrained optimization involves minimizing or
maximizing a function f(x) of many variables over
a defined set. These problems are often related
to engineering, economics, and sciences (Xia et al.,
2015). Generally, a numerical method and mathematical
programming software such as Maple or Matlab are often
employed to perform all necessary computations that
would lead to the solution of these complex problems.

One of the widely used and famous numerical
algorithms considered for minimizing a function is the
conjugate gradient (CG) formula, which is applied to
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optimization problems of the form

min f(x), x ∈ R
n.

Here the gradient ∇f(x) = g(x) of the differentiable f :
R

n → R is available. The CG algorithm is characterized
by excellent convergence properties and low memory
requirements, and produces an iterative sequence,

xk+1 = xk + sk, sk = αkdk, k ≥ 0, (1)

with dk denoting the search direction computed along
with the step size αk. To obtain the step size, a line search
scheme, either inexact or exact, is needed. The search
direction is usually calculated as

d0 = −g0, dk = −gk + βkdk−1, k ≥ 1. (2)
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Here, the CG coefficient βk is a scalar that makes the CG
methods differ.

The convergence result and implementation of the
CG formulas are achieved using the line search procedure
(Hager and Zhang, 2006). For inexact line searches, αk

is said to satisfy the following standard (weak) Wolfe
(WWP) conditions:

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (3)

g(xk + αkdk)
T dk ≥ σgTk dk, (4)

or the strong Wolfe (SWP) conditions (3) and
∣
∣g(xk + αkdk)

Tdk
∣
∣ ≤ σ

∣
∣gTk dk

∣
∣ , (5)

with 0 < δ < σ < 1. Notice that αk that satisfies the SWP
conditions also satisfies the standard Wolfe conditions.

Due to their simplicity and strong global convergence
properties, and the ever-evolving nature of optimization
problems, more CG methods have been (and continue to
be) developed in the literature in order to effectively solve
these optimization problems (see Hager and Zhang, 2006;
Hestenes and Stiefel, 1952; Dai et al., 2000; Sabiu et al.,
2024; Collignon and Gijzen, 2010; 2004). Most of these
modifications are in the form of two term CG formulas
(see Hager and Zhang, 2006; Sulaiman et al., 2019), three
term CG formulas (see Zhang et al., 2006; Liu et al., 2018;
Sulaiman et al., 2022), or spectral CG methods and their
variants (see Andrei, 2007a; 2007b; Amini and Faramarzi,
2023; Novkaniza et al., 2022), and are differentiated by
the structure of their search direction dk.

In this study we are interested in the spectral CG
algorithm whose direction is given as

d0 = −g0, dk = −θkgk + βkdk−1, k ≥ 1,

where θk is the spectral coefficient. Two important
components of any spectral method are the spectral
coefficient θk and the CG coefficient βk. These
components influence the numerical performance and
convergence analysis of the spectral formula (Awwal et
al., 2021). The first class of spectral CG formulas were
presented by Birgin and Martinez (2001) as

β1
k =

(θkyk−1 − sk−1)
T gk

sTk−1yk−1
,

β2
k =

θk
αk−1θk−1

βPRP
k ,

where yk−1 = gk − gk−1 and sk−1 = xk − xk−1.
If θk = 1, ∀k, then β1

k becomes the Perry formula
(Perry, 1978). Moreover, if θk = θk−1 = 1, ∀k, and
exact minimization criteria are applied, then β2

k becomes
the classical PRP formula defined as (Polyak, 1969; Hager
and Zhang, 2006)

βPRP
k =

gTk yk−1

‖gk−1‖2 .

The PRP method is among the earliest and widely
studied CG algorithms for unconstrained optimization
models. This method is characterized by robust
and efficient numerical performance. However, the
convergence of this formula is not guaranteed using
some line search methods (Hager and Zhang, 2006).
To overcome this drawback, various variants of the
PRP method have been developed; see the works
of Babaie-Kafaki and Ghanbari (2017) or Hu et al. (2022)
and the references therein.

Recently, another conjugate gradient type coefficient
was presented by Rivaie et al. (2012) with the formula

βRMIL
k =

gTk yk−1

‖dk−1‖2 , (6)

where the denominator in βPRP
k is replaced by ‖dk−1‖2.

This method was shown to satisfy the sufficient descent
condition

gTk dk ≤ −λ‖gk‖2, λ > 0,

under the exact line search condition, and numerical
results on benchmark functions were presented to
demonstrate the efficacy of the scheme. Lately, several
researchers have developed different variants of the RMIL
method. One of the latest modification was presented by
Salihu et al. (2023) who extended the idea to define a new
spectral CG method that incorporates the RMIL formula
(6) and a defined spectral parameter as

dk = −θkgk + βRMIL
k dk−1, k ≥ 1,

θk = η +
‖yk−1‖
‖dk−1‖ ,

where η > 0. The convergence result of the formula
was discussed using the Wolfe conditions, and numerical
results show that the method is promising.

Dai (2016) observed an inequality wrongly used in
the convergence result of (6) and defined a modification
to suit the convergence results as

βRMIL+
k =

⎧

⎨

⎩

gTk yk−1

‖dk−1‖2 if 0 ≤ gTk gk−1 ≤ ‖gk‖2,
0 otherwise,

(7)

and showed that, with βk defined as (7), the convergence
results of Rivaie et al. (2012) hold. An important
condition for the convergence of (7) is

0 ≤ gTk gk−1 ≤ ‖gk‖2.
However, with this condition, the convergence of (7) will
not hold for general functions. This drawback has led to
numerous studies aimed at tackling this problem.

In this work, we present a new spectral direction
for a CG method that incorporates a well defined
spectral parameter (Section 2). This direction requires
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αk to satisfy the famous SWP strategy. In Section 3,
we show that the defined dk possesses the sufficient
descent property irrespective of the line search procedure,
and without imposing any restrictions or conditions.
We further discuss the convergence results under
suitable assumptions. Section 4 presents the numerical
performance findings of the new scheme to support
the excellent theoretical properties. The last section
summaries the achieved results and contains concluding
remarks.

2. New method and its algorithm
Recently, Awwal et al. (2023) proposed a modification
of the RMIL+ CG formula to ensure that the condition
0 ≤ gTk gk−1 ≤ ‖gk‖2 holds for general functions. Their
modification is presented as

βARMIL+
k =

min{|gTk yk−1|, ‖gk‖2}
‖dk−1‖2 . (8)

This new modification takes the classical RMIL+ (7) as
a special case because, for gTk gk−1 < 0, the method will
compute βARMIL+

k = ‖gk‖2

‖dk−1‖2 . However, for gTk gk−1 ≥ 0,

the method will compute (8) as either βARMIL+
k =

|gT
k yk−1|

‖dk−1‖2

or βARMIL+
k = ‖gk‖2

‖dk−1‖2 . Another special feature of
this formula is that the following property, which is very
instrumental in the convergence analysis of RMIL+ (7),
also holds for (8):

0 ≤ βARMIL+
k ≤ ‖gk‖2

‖dk−1‖2 . (9)

Computational findings on some unconstrained
optimization and real-life application problems show that
ARMIL+ is efficient and superior compared with other
variants of RMIL+.

Motivated by the excellent theoretical features of the
above discussion and the fact that the condition 0 ≤
gTk gk−1 ≤ ‖gk‖2 now holds for general functions, we
propose a spectral modification of ARMIL+ (Awwal et al.,
2023) as follows. By multiplying the spectral direction dk
(15) by gTk , we have

gTk dk = −θk‖gk‖2 + βkg
T
k dk−1

=
gTk−1dk−1

‖dk−1‖2 ‖gk‖2ψk,
(10)

where

ψk = βk
‖dk−1‖2
gTk−1dk−1

gTk dk−1

‖gk‖2 − ‖dk−1‖2
gTk−1dk−1

θk.

From (10), we have that

gTk dk
‖gk‖2 =

gTk−1dk−1

‖dk−1‖2 ψk. (11)

Algorithm 1. SGR algorithm with the strong Wolfe
strategy.
Step 1. Initialization: x0 ∈ R

n, termination tolerance
ε > 0.

Step 2. Evaluate gk. If ‖gk‖ = 0, terminate the iteration
process.
Step 3. If k = 0, set d0 := −g0, otherwise,

dk = −θkgk + βkdk−1, k ≥ 1, (15)

with θk and βk following from (14) and (8), respectively.
Step 4. Determine αk such that (3) and (5) are satisfied.
Step 5. Calculate the new point via (1).
Step 5. Return to Step 2 with k := k + 1.

Choosing ψk = 1, for every k ≥ 1, will imply that (10)
and (11) give

gTk dk
‖gk‖2 =

gTk−1dk−1

‖dk−1‖2 = · · · = gT0 d0
‖d0‖2 = −1, (12)

and this reduces to

gTk dk = −‖gk‖2, ∀k ≥ 0. (13)

This result shows that the choice of θk is crucial
in determining the descent property of dk for every
spectral method. It is further concluded that the spectral
direction dk will always satisfy the descent property if the
parameter θk is chosen to satisfy ψk ≡ 1. It is interesting
to note that this condition will hold irrespective of the line
search method employed. From the above formulation,
we derive the following spectral formula:

θk = −g
T
k−1dk−1

‖dk−1‖2 + βk
gTk dk−1

‖gk‖2 , (14)

where k ≥ 1 and ψ ≡ 1.
The execution process of the new formula, denoted

as SGR, is described as Algorithm 1.

3. Convergence analysis
This section discusses the theoretical findings of the
proposed SGR method. To achieve these results, we
need the following important assumptions that are very
crucial in establishing the convergence results of most CG
formulas.

Assumption A.

1. The level set Ω0 = {x ∈ R
n|f(x) ≤ f(x0)} of f(x)

is bounded.
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2. For the smooth function f , the gradient g(x) is
Lipschitz continuous in some neighborhood N of
Ω0. That is, N is an open convex set containing Ω0,
such that for some constant L > 0,

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ N. (16)

From Assumption A, we have that, there exist
positive constants b and γ satisfying

‖x− y‖ ≤ b, ∀x, y ∈ Ω0,

and
‖g(xk)‖ ≤ γ, ∀xk ∈ Ω0. (17)

Lemma 1. Suppose that {xk} is computed via Algorithm
1, where the direction dk is a descent one and Assumption
A holds. If αk satisfies either the WWP conditions (3) and
(4), or the SWP conditions (3) and (5), then we have

αk ≥ (1− σ)|gTk dk|
L‖dk‖2 . (18)

Proof. Subtracting gTk dk from both the sides of (4) and
applying the condition of Lipschitz continuity (16) will
produce

(σ − 1)gTk dk ≤ (gk+1 − gk)
Tdk

≤ ‖gk+1 − gk‖‖dk‖
≤ L‖xk+1 − xk‖‖dk‖
= Lαk‖dk‖2.

Since dk is a descent direction and σ < 1, we have that
(18) holds. �

We now state the Zoutendijk lemma (Zoutendijk,
1970), which is often needed for the global convergence
of most line search formulas.

Lemma 2. Let Assumption A hold, and dk be a descent
direction. If αk satisfies the Wolfe conditions (3) and (4),
or (3) and (5), then

∞∑

k=0

(gTk dk)
2

‖dk‖2 < +∞. (19)

Proof. From the Wolfe line search condition (3) and (18),
we obtain

f(xk)− f(xk + αkdk) ≥ −δαkg
T
k dk

≥ δ
(1− σ)(gTk dk)

2

L‖dk‖2 .

Adding up the above for k ≥ 0 and using Assumption A,
we have that

δ
(1 − σ)

L

∞∑

k=0

(gTk dk)
2

L‖dk‖2 ≤ f(x0)− f∗,

where f∗ = limk→∞ f(xk). Thus, the Zoutendijk
condition (19) is achieved and, therefore, this completes
the proof. �

Notice that, from (13) and Lemma 2, the Zoutendijk
condition can also be given as

∞∑

k=0

‖gk‖4
‖dk‖2 ≤ +∞. (20)

From the descent condition (13), we conclude that, for all
k ≥ 0,

‖dk‖ ≥ ‖gk‖. (21)

We now present the global convergence result of
the new spectral SGR CG formula using the SWP
conditions (3) and (5).

Theorem 1. Let {xk} denote the sequence obtained via
Algorithm 1. Then

lim inf
k→∞

‖gk‖ = 0. (22)

Proof. We show this by contradiction, that is, we suppose
that (22) is not true. Then it follows that there is a positive
constant c such that

‖gk‖ ≥ c, ∀ k ≥ 0. (23)

From (15), we have that

dk = −θkgk + βkdk−1,

where βk = βARMIL+
k and θk is given by (14). Note here

that, using (12), (14) can also be expressed as

θk = 1 + βk
gTk dk−1

‖gk‖2 . (24)

Therefore, from the above, (9), (15), (17), (21), (23),
(24), and by using the Cauchy–Schwarz inequality, the
following holds:

‖dk‖ = ‖ − θkgk + βkdk−1‖

=

∥
∥
∥
∥
−
(

1 + βk
gTk dk−1

‖gk‖2
)

gk + βkdk−1

∥
∥
∥
∥

≤
(

1 +
‖gk‖

‖dk−1‖
)

‖gk‖+ ‖gk‖2
‖dk−1‖

≤
(

1 + 2
‖gk‖

‖gk−1‖
)

‖gk‖

≤
(

1 +
2γ

c

)

γ

=M. (25)

The above inequality (25) implies that

1

‖dk‖2 ≥ 1

M2
,
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which gives

∞∑

k=0

1

‖dk‖2 = +∞. (26)

But, from the Zoutendijk condition (20) and from (23), we
obtain

c4
∞∑

k=0

1

‖dk‖2 ≤
∞∑

k=0

‖gk‖4
‖dk‖2 < +∞,

which contradicts (26). Hence, (22) holds. �

4. Numerical experiments
To support the excellent theoretical features possessed
by the proposed method, this section reports two sets
of numerical experiments on a number of unconstrained
benchmark functions which can be accessed through the
hyperlink https://acrobat.adobe.com/id/ur
n:aaid:sc:AP:586acd2b-c42c-4b76-8e9b-c
b1a6da57aa2. Most of these unconstrained benchmark
problems used for these experiments are adopted from
Andrei (2008) with the dimension (DIM) chosen between
2 and 100,000. The efficiency of the new formula is
established by comparing it with the results of other
existing algorithms with similar characteristics, and this
is done based on some comparison metrics, including the
CPU time, the number of function evaluations (NOF)
and number of iterations (NOI). For the comparison, we
consider the following methods:

• a spectral PRP CG direction (SPRP) by Wan et al.
(2011) with the following direction and spectral
parameter:

dk = −θkgk + βkdk−1,

where βk = βPRP
k (Polyak, 1969; Polak and Ribiere,

1969) and

θk =
dTk−1yk−1

‖gk−1‖2 − dTk−1gkg
T
k gk−1

‖gk‖2

• a two-term CG method (ARMIL) by Awwal et al.
(2023) with the direction

dk = −gk + βkdk−1, k ≥ 1,

with βk following from (8);

• a sufficiently descent spectral CG method (NSRMIL)
by Salihu et al. (2023) whose direction follows from
(2), with βk defined as (6), and

θk = τ +
yTk−1yk−1

‖dk−1‖2

• the classical spectral method (SCG) by Birgin and
Martinez (2001).

• an efficient spectral method (sRMILp) by Awwal et
al. (2021) whose direction follows from (2) with βk
defined as (7).

All algorithms for this experiment are written in
MATLAB R2019a, and the computations were performed
on an Intel Core i7 PC with 16 GB RAM under SWP
conditions. For the stopping condition, we command the
program to terminate if ‖gk‖ ≤ 10−6 or if the iteration
exceeds 2000, and record this as a failure, which we
denote with (∗ ∗ ∗).

For the first experiment, the computation was
conducted under the strong Wolfe line search (3) and
(5), with the parameter values defined as δ = 10−4 and
σ = 0.16. These same values were used in computing the
results of all the other methods, which are based on the
NOI, NOF and CPU time. A detailed description of this
performance is given in Table 2 which can be accessed
through the hyperlink https://acrobat.adobe.c
om/id/urn:aaid:sc:AP:91c03434-0b50-4cd
6-a74f-b3a6f8e1c3db. These results demonstrate
the performance of the new and existing algorithms. By
examining these results, it is easy to see that there was a
strong competition between the proposed SGR, ARMIL,
and sRMILp algorithms. This might be due to the fact
that the three algorithms have similar structures and are in
the same category. On the other hand, the classical SCG
and SPRP methods recorded the least performance on the
discussed set of unconstrained optimization problems.
Despite the competition from the other algorithms, the
proposed SGR method was still able to outperform all the
methods on all the metrics.

For the second experiment, the computations were
also performed under the SWP conditions (3) and (5).
For the proposed approach, we maintained δ = 10−4

and σ = 0.16. However, for the other methods, we
considered the exact values used for the methods as
reported in the respective papers. That is, for ARMIL,
we used δ = σ = 10−4; for NSRMIL, we set the values
to δ = σ = 10−4; for sRMILp, the values from the
study were given as δ = σ = 10−4; for SPRP, we used
δ = 0.45 and σ = 0.75; lastly, for SCG, δ = 0.45 and
σ = 0.75. For a detailed description of the obtained
results, we refer the reader to Table 3 that is available
through the hyperlink https://acrobat.adobe.c
om/id/urn:aaid:sc:AP:9f19ebf7-c01d-4ae
b-9c89-0c1c1b2804cc. From the above results, it
is obvious that the exact parameter values do not so much
influence the numerical performance of the methods.
Also, it can be noted, that in the early iteration process,
all methods maintained uniformed performance, however,
as the iterations progressed, the proposed method slightly
outperformed the other algorithms. On the other hand,

https://acrobat.adobe.com/id/urn:aaid:sc:AP:586acd2b-c42c-4b76-8e9b-cb1a6da57aa2
https://acrobat.adobe.com/id/urn:aaid:sc:AP:586acd2b-c42c-4b76-8e9b-cb1a6da57aa2
https://acrobat.adobe.com/id/urn:aaid:sc:AP:586acd2b-c42c-4b76-8e9b-cb1a6da57aa2
https://acrobat.adobe.com/id/urn:aaid:sc:AP:91c03434-0b50-4cd6-a74f-b3a6f8e1c3db
https://acrobat.adobe.com/id/urn:aaid:sc:AP:91c03434-0b50-4cd6-a74f-b3a6f8e1c3db
https://acrobat.adobe.com/id/urn:aaid:sc:AP:91c03434-0b50-4cd6-a74f-b3a6f8e1c3db
https://acrobat.adobe.com/id/urn:aaid:sc:AP:9f19ebf7-c01d-4aeb-9c89-0c1c1b2804cc
https://acrobat.adobe.com/id/urn:aaid:sc:AP:9f19ebf7-c01d-4aeb-9c89-0c1c1b2804cc
https://acrobat.adobe.com/id/urn:aaid:sc:AP:9f19ebf7-c01d-4aeb-9c89-0c1c1b2804cc
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the classical SCG and SPRP algorithms are also the least
performers in this result category. This poor performance
might be associated with the complexity of the search
direction or high parameter values used in the study.

Next, we analyze the numerical performance from
Tables 2 and 3, presented in the above hyperlinks using
a tool introduced by Dolan and Moré (2002). The
authors defined a process that can be used to evaluate
and compare the efficiency of a solver (s) on a set of
problems (p). For every solver s and problem p, the
scheme derives the computational cost (t) by considering
ns solvers and np problems as follows: tp,s = the cost of
solving problem p by solvers s.

Dolan and Moré (2002) further defined a measure
that would be used to compare the efficiency of all the
solvers based on the cost of computing tp,s. This baseline
is called the performance ratio and is evaluated as

rp,s =
tp,s

min{tp,s : s ∈ S} .

Additionally, it defines the distribution function as

ρs(τ) =
1

np
size{p ∈ P : log2(rp,s) ≤ τ}.

The above process generates graphs for all solvers
s ∈ S based on the data used. These graphs, known as
the performance profile graphs, can be used to analyze the
fraction ρs(τ) of the problems considered for all solvers
within the factor of τ ≥ 0. Any algorithm that records
a higher ρs(τ) value is considered more efficient for the
given τ value. This implies that an algorithm whose
curve dominates the top spot can be regarded as the most
efficient algorithm.

For this study, the performance profile plot for the
NOI, NOF and CPU time is based on two experiments.
The first set of plots, which includes Figs. 1(a), 2(a) and
3(a), are generated from the numerical results obtained
using uniform parameter values, while the second set of
figures, including Figs. 1(b), 2(b) and 3(b), are plotted
from the outcome obtained using the exact parameter
values as reported in the respective study.

These graphs can be further used to analyze the
numerical performance discussed above. It is obvious
that the figures depict the results earlier discussed. An
important point to observe in these figures is that all the
algorithms were competing at the initial stage; however, as
the factor τ increases, the new method outperformed the
other methods on all the metrics. This shows that the new
formula is very competitive and robust for the problems
considered.

5. Conclusion
In this work, we introduced a spectral conjugate gradient
method based on the generalized RMIL conjugate

gradient parameter. This presented method satisfies the
decent condition independently of any line search used.
We established its global convergence under the strong
Wolfe (SWP) line search conditions and tested its efficacy
on a set of benchmark problems from the literature. The
results show that the method is very competitive compared
with some other methods from the literature with a
similar structure. Considering the ever-evolving nature of
optimization problems, further work is needed to come up
with more sophisticated conjugate gradient methods that
can be applied to solve these kinds of problems.
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Fig. 1. Performance based on the number of iterations: using uniform parameter values (a), using exact parameter values reported in
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