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We consider an extension of Lagrangian relaxation methods for solving the total weighted tardiness scheduling problem on
a single machine. First, we investigate a straightforward relaxation method and decompose it into upper and lower subprob-
lems. For the upper subproblem we propose an alternative solving method in the form of a local search metaheuristic. We
also introduce a scaling technique by arbitrary numbers to reduce the complexity of the problem and confront it with great-
est common divisor scaling. Next, we propose a novel alternative relaxation approach based on aggregating constraints.
We discuss the properties and implementation of this new approach and a technique to further reduce its computational
complexity. We perform a number of computer experiments on instances based on the OR-Library generation scheme to
illustrate and ascertain the numerical properties of the proposed methods. The results indicate that for larger instances the
proposed alternative relaxation and scaling approaches have a much better convergence rate with little to no decrease in
solution quality. The results also show that the proposed local-search metaheuristic is a viable alternative to the existing
solving methods.
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1. Introduction

Meeting customer due dates is an important issue of
industrial operations. It refers to the manufacturing
sector as well as to the service sector. It remains
a central issue from any perspective within a network
of operations, whether it be an individual company, a
department within a company, or an entire collection of
companies comprising a supply chain. Manufacturing
companies that organize the flow of materials through
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work centers need to decide the sequence in which
orders are to be processed at each work center. The
choice of the sequence is heavily influenced by the desire
to meet customer due dates, making minimization of
tardiness an important goal (Liu et al., 2023). Often the
manufacturer assigns different priorities to orders based
on specific customers. The problem of minimizing the
total tardiness is the most commonly considered case.
With regard to the total weighted tardiness scheduling
problem and its relaxations, the paper contains the
following contributions:
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1. We propose a local-search metaheuristic as
an alternative solving method for the relaxed
problem.

2. We propose a scaling technique with an arbitrary
divisor scaling in order to reduce the computational
complexity of the relaxed problem. We discuss
its theoretical properties and compare it with GCD
(greatest common divisor) scaling.

3. We propose an alternative aggregation-based
relaxation method with adjustable computation
complexity, discuss its properties and provide
an acceleration technique to reduce the computation
time.

4. We test and illustrate the numerical properties of the
proposed methods through computer experiments.

The remainder of this paper is structured as follows.
Section 2 contains the formulation of the primal problem.
Section 3 offers a brief literature overview. Section 4
describes the basic Lagrangian relaxation for the problem
considered and its decomposition. Section 5 discusses
an alternative method for solving the upper problem.
Section 6 proposes two scaling techniques to reduce the
computational complexity of the problem. Similarly,
Section 7 offers an alternative Lagrangian relaxation and
discusses its properties and implementation. Section 8
contains the results of computer experiments. Finally,
Section 9 presents the conclusions.

2. Problem
The problem of minimizing the total weighted tardiness
on a single machine is a classical scheduling problem
and is known to be strongly NP-hard (Lenstra et al.,
1977). The problem is denoted as 1||∑wiTi in Graham’s
notation (Graham et al., 1979) and is formulated as
follows. We are given a set N = {1, 2, . . . , n} of n jobs,
with processing time pi > 0, deadline di > 0 and weight
wi > 0 given for each job i ∈ N , to process on the single
machine. The goal is to determine the sequence of job
starting times S = (S1, S2, . . . , Sn) that minimizes the
total weighted tardiness of all jobs:

min
S

n∑

i=1

wiTi, (1)

where Ti
def
= [Si + pi − di]

+, [x]+ def
= max{x, 0} is the

tardiness of job i.
Despite Ti being a function of Si, we will henceforth

refer to Ti instead of [Si + pi − di]
+. Furthermore,

a machine can only process at most one job at any given
moment. Thus our solution S has to meet the following
constraint:

∀i,j∈N , j �=i : (Si + pi ≤ Sj) ∨ (Sj + pj ≤ Si). (2)

Due to the regularity of the objective function for
such a problem, a schedule S is always left-shifted
on the time axis. Thus, S can be unambiguously
represented by a processing order (permutation) of jobs
π = (π(1), π(2), . . . , π(n)), where π(i) is the job that
will be processed as the i-th. Thus, for a given processing
order π the schedule S is computed recursively in time
O(n) as follows:

Sπ(1) = 0, (3)
Sπ(i) = Sπ(i−1) + pπ(i−1), i = 2, 3, . . . , n. (4)

A more complete survey on the problem of minimizing
the total tardiness on a single machine and its extensions
in presented by Koulamas (2010).

3. Literature overview
The use of Lagrangian relaxation (LR) for optimization
problems can be tracked back to 1963, when it was first
applied to the resource allocation problem (Everett, 1963).
Since then, due to its generality, the concept has been
applied to a wide range of optimization problems. In this
section we will focus on several such applications of LR,
including both recent and older approaches.

We will start with papers related to scheduling.
Fisher (1976) used LR for tardiness minimization for
a single-machine scheduling problem. The results applied
to a branch and bound (B&B) algorithm showed that
the approach yields sharp lower bounds. A similar
approach was employed by Potts and Van Wassenhove
(1985). Instead of using a subgradient method, the
authors chose a multiplier adjustment method, leading
to fast calculation of the bounds. Next, LR was used
to solve a hybrid flow-shop problem to minimize the
total tardiness by Nishi et al. (2010). The authors
relaxed the machine capacity constraint, decomposed the
problem and then used dynamic programming (DP) to
solve the resulting subproblems. A similar approach for
the job-shop scheduling problem was considered by Chen
and Luh (2003). However, the authors chose to relax
the operation precedence constraint instead, resulting in
fewer Lagrangian multipliers and reduced computational
complexity.

In another paper, LR was applied to a stochastic
scheduling problem in a hydrothermal system under
uncertainty (Nowak and Römisch, 2000). The authors
decomposed the problem into hydro and thermal
subproblems and solved them using DP and a descent
algorithm. The approach was evaluated on scenarios
based on a real-life German power utility. In another
paper, a heuristic algorithm based on LR and a subgradient
method for joint train scheduling and the maintenance
problem was presented (Zhang et al., 2020). The authors
applied the algorithm to a practical problem in the Chinese
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railway network. A similar approach using a heuristic
LR-based algorithm was shown for the joint problem
of crane assignment and scheduling (Fu and Diabat,
2015). Another paper considered LR for scheduling for
a steelmaking casting process (Cui and Luo, 2017). The
authors showed the convergence proof under reasonable
assumptions and proposed both a subgradient method and
a simple heuristic.

More recently, LR was applied to scheduling for
the problem of charging electric buses by Huang et al.
(2023). The authors discretized decision variables to deal
with nonlinearity of the changing process and performed
a decomposition with respect to individual vehicles.
Finally, LR was used for flexible job-shop scheduling
with machine breakdowns and multiple optimization
criteria ranging from tardiness to CO2 emission and
noise pollution by Hajibabaei and Behnamian (2023).
Following model linearization, the authors showed how
LR helped reduce the problem complexity.

Aside from scheduling, LR is often used to solve
routing problems, such as the vehicle routing problem
(VRP). For example, LR was applied to the VRP in
the context of pickup and delivery of containers in
an inter-modal terminal. The resulting subgradient
method was tested on a variety of problem instances.
As another example, LR was applied to a VRP for
minimizing gas emissions by Zhou and Lee (2017). The
authors considered a realistic set of pollution-affecting
factors and employed LR to reduce the complexity of the
resulting formulation. Recently, LR approach was used
for multi-compartment vehicle routing by relaxing task
allocation constraints (Song et al., 2024). Both DP and
subgradient methods were used to solve the resulting dual
problem. Regarding recent routing problems, LR was
used for quality-of-service multicast routing in vehicular
networks (Araújo et al., 2024) as well as for a capacitated
arc routing problem in the state-space-time network (Song
et al., 2023).

Aside from scheduling and routing, LR was applied
to many other optimization problems. Examples include
general integer programming (Fisher, 2004), resource
allocation (Gocgun and Ghate, 2012), min-flow problems
(Butt and Collins, 2013), classification (Gaudioso et al.,
2017) and supply chains (Ali et al., 2023), among others.

Finally, we also provide a brief overview of
classical (non-LR) approaches to the 1||∑wiTi problem.
Although rare, exact approaches to this problem are still
considered, as shown by Speckenmeyer et al. (2023).
The authors proposed a parallel branch-and-price method
and showed its performance through experiments on
benchmarks.

An example of a local search metaheuristic applied to
1||∑wiTi was shown by Bilge et al. (2007). The authors
proposed a deterministic tabu search method with a hybrid
neighborhood and investigated the influence of several

variants on the effectiveness of the algorithm. An effective
simulated annealing approach was also proposed (Matsuo
et al., 1989). In another paper, an unusual exponential
size local-search neighborhood was considered (Congram
et al., 2002). The authors showed how to search this
exponential-size neighborhood in polynomial time and
applied an iterated variant of the algorithm. For additional
local-search approaches to 1||∑wiTi please refer to
Crauwels et al. (1998).

Aside from the above, other heuristics, ranging
from priority rules to more sophisticated approaches,
were proposed for this problem as shown, for example,
by Potts and Van Wassenhove (1991). Interestingly,
for a non-weighted variant of the 1||∑wiTi problem,
pseudopolynomial algorithms were proposed, as shown,
for example by Lawler (1977).

Regarding more recent approaches, a hybrid
evolutionary approach was proposed by Zakharova
(2023). The author showed that the optimized
operators used allowed obtaining results with quality
matching existing works. A previously unconsidered
variant of the total weighted tardiness problem with
preemption was considered in another paper (Simanchev
and Urazova, 2023). Finally, several variants of the
problem with unknown complexity were proven to be
pseudopolynomial (Zhao and Yuan, 2023).

4. Lagrangian relaxation
Lagrangian relaxation is based on relaxing some of the
constraints of the primal problem and including them into
the objective function as a penalty instead. In our case we
relax the constraint (2), allowing the machine to process
an arbitrary number of jobs at the same time. From now
on we also assume that processing times pi are integers.
Due to the fact that pi > 0 and the formula (4), this
immediately implies that

pi ∈ N+, (5)

Si ∈ N0, (6)

where N0 and N+ are sets of natural numbers with and
without zero, respectively. Since job completion times
are, by definition, Ci = Si + pi, this further implies that

Ci ∈ N+. (7)

As a result, job starting and completion times are integers
from the set {0, 1, . . . , H}, where H is the upper bound
on the scheduling horizon. In practice, H =

∑n
i=1 pi.

Those assumptions impose a discrete character of time t =
0, 1, 2, . . . , H . Thus we can narrow our analysis of the
violation of machine capacity to unit-length intervals in
the form of (t− 1, t] for t = 1, 2, . . . , H .

Let S be a schedule and (t − 1, t] be the interval
of time for some t. We define the set of jobs which are
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Fig. 1. Illustrative relaxed schedule and the corresponding function gt(S).

processed in (t−1, t] as the ones satisfying simultaneously
conditions Si ≤ t − 1 and Ci ≥ t. Since Si < t and
Ci = Si + pi, by combining these two inequalities we
introduce the set of jobs processed in the interval (t−1, t];

It(S) def
= {i ∈ N : t > Si ≥ t− pi}, (8)

and the number of jobs processed in that interval:

gt(S)
def
= |It(S)|. (9)

An interpretation of function gt(S) for t = 1, . . .H is
shown in Fig. 1. For the relaxed schedule S presented in
the top panel of the figure, functions gt(S) for successive
instances of t are shown in the bottom panel of the figure.

The problem from Section 2 can now be re-stated as
a nonlinear optimization case:

min
S

n∑

i=1

wiTi (10)

subject to the constraints

gt(S) = 1, t = 1, 2, . . . , H, (11)
0 ≤ Si ≤ H − pi, i = 1, 2, . . . , n. (12)

The constraint (11) ensures that exactly one job is
processed in time interval (t − 1, t]. The constraint (12)
can be formulated by introducing the following set:

S
def
= {S = (S1, S2, . . . , Sn) :

0 ≤ Si ≤ H − pi, i = 1, 2, . . . , n}. (13)

We will now perform the actual relaxation by
replacing the constraint (11) with a penalty in the
objective function in the form of dual variables u

def
=

(u1, u2, . . . , uH) ∈ R
H , where ut is assigned for a fixed

t. R
H is the real coordinate space of dimension H . We

can perceive ut as the cost of using the machine in time
interval (t − 1, t]. As a result, we obtain the following
Lagrangian function:

L(S, u)
def
=

n∑

i=1

wiTi +

H∑

t=1

ut(gt(S)− 1). (14)

The relaxed problem is formally stated as follows:

W (u)
def
= min

S
L(S, u) (15)

subject to the constraints

0 ≤ Si ≤ H − pi, i = 1, 2, . . . , n. (16)

Next, we transform (14) into a more convenient form:

L(S, u) =

n∑

i=1

(
wiTi +

Si+pi∑

t=Si+1

ut

)
−

H∑

t=1

ut

def
=

n∑

i=1

Li(Si, u)− UH , (17)

where

Li(Si, u)
def
= wiTi +

Si+pi∑

t=Si+1

ut

= wiTi + USi+pi − USi (18)

and

Ut
def
=

t∑

s=1

us, t = 1, 2, . . . , H. (19)

Remark 1. In the problem (10)–(12), for each left-shifted
feasible schedule S and all t = 1, 2, . . . , H , there must be
gt(S) = 1. In such a case, the expression (14) is equal to
the objective function

∑n
i=1 wiTi for any u, namely,

n∑

i=1

wiTi =
n∑

i=1

wiTi +
H∑

t=1

ut(gt(S)− 1). (20)
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Using this remark, we can show that the solution of
the relaxed problem (15)–(16) is a lower bound (LB) for
the solution of the primal problem (10)–(12), i.e., for all u
we have

n∑

i=1

wiT
∗
i ≥ min

S∈S

L(S, u), (21)

where T ∗ = (T ∗
1 , T

∗
2 , . . . , T

∗
n) is the tardiness vector

calculated from the optimal solution S∗.
Inequality (21) is true, because S∗ can be applied to

the relaxed problem as S∗ ∈ S. Moreover, S∗ is feasible.
Therefore, based on Remark 1, we get

n∑

i=1

wiT
∗
i =

n∑

i=1

wiT
∗
i +

H∑

t=1

ut(gt(S
∗)− 1)

def
= L(S∗, u).

(22)

Thus minS∈S L(S, u) is less than or equal to L(S∗, u).
Since we are interested in the highest possible LB,

we would like to maximize W (u):

max
u∈X⊆RH

W (u) ≤ max
u∈RH

W (u) ≤ L(S∗, u) (23)

either over u ∈ R
H or over u ∈ X , where X ⊆ R

H .
The latter case is more attractive since it allows potential
application of metaheuristics.

In general, the above model can be used to solve
the primal problem (10)–(12) due to the duality principle.
Let S∗ be the optimal solution to the relaxed problem for
some u, i.e., minS L(S, u) = L(S∗, u). If gt(S

∗) =
1, t = 1, 2, . . . , H , then S∗ is the optimal solution
to the primal problem. Secondly, even if the resulting
schedule S is not optimal, it can be used to construct
(i.e., heuristically) a feasible schedule that might provide
a satisfactory solution to the primal problem. Finally,
W (u) itself can be used to provide an LB to evaluate
the quality of solutions provided by other methods, e.g.,
beam search or as a lower bound employed in the potential
algorithm of the B&B type. Because in recent years B&B
has been treated as an ineffective optimization technology,
we do not develop this research direction further.

While the problem (23) can be considered as-is, it is
more convenient to decompose it into two subproblems
which can be tackled separately: maxu∈X⊆RH W (u),
henceforth called the upper (level) problem, and
minS L(S, u), henceforth called the lower (level)
problem.

The upper problem is a continuous optimization
problem with a nonlinear (piecewise linear, in fact)
weakly convex function that is not differentiable at
“interval junction” points. Moreover, the upper problem
has a large size due to the fact that the vector u has H
elements, which is usually much larger than n. Formally,
it can be reformulated as linear programming, but the

resulting size makes such a reformulation too complex
and impractical. For example, for H = 1000 and
n = 100, the expected formulation has 103 variables
and 10300 constraints. Due to function W (u) being
nondifferentiable, we will discuss several alternative
approaches in the sequel to solve the upper problem.

As for the lower problem, due to (17), function
L(S, u) is separable with respect to S. Each sum
component in L(S, u) depends on single Si and the
components are independent. Thus, minimization can
be decomposed. Therefore, by applying (13)–(14) and
(17)–(19) for fixed u, we obtain

min
S∈S

L(S, u) = min
S∈S

n∑

i=1

Li(Si, u)− UH

=

n∑

i=1

min
0≤Si≤H−pi

Li(Si, u)− UH

=

n∑

i=1

Vi(u)− UH , (24)

where

Vi(u)
def
= min

0≤Si≤H−pi

Li(Si, u)

= min
Si=0,1,...,H−pi

Li(Si, u). (25)

For fixed u, each problem (25) can be solved by
directly evaluating all possible starting times Si. Since
the formula (19) can be stated in a recursive form Ut =
Ut−1 + ut, t = 1, 2, . . . , H , U0 = 0, evaluation of Ut

can be done in time O(H). Thus, determining (18) with
the use of (25) requires time O(H), while determining
W (u) through the formula (24) for fixed u requires time
O(nH). The lower problem is usually solved multiple
times for different values of u. It is important to note
that, unlike the upper problem, the lower problem has to
be solved optimally to ensure that the resulting value is
a valid LB, as per (21). Due to the decomposition, the
inexact approach to the upper problem, if applied, will not
affect the requirements of the lower one.

5. Upper problem
We will now discuss several possible solving methods for
the upper problem maxu∈X⊆RH W (u) for various X’s.

5.1. Subgradient method. The subgradient (SUB)
method is often applied to Lagrangian relaxation
problems (Held et al., 1974). It is recommended chiefly
to find maxu W (u), where W (u) is a nondifferentiable
function with a limited scope of singularities. Briefly
speaking, SUB can be perceived as an iterative method
that produces a sequence of vectors u0, u1, u2, . . . through
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the following formula:

uk+1
t = uk

t + αk(gt(S
k)− 1), t = 1, 2, . . . , H, (26)

where αk is the step length in the k-th iteration while Sk

is an optimal solution to the lower problem in the k-th
iteration, i.e., minS L(S, uk) = L(Sk, uk). The choice of
sequence αk heavily affects the stability, convergence and
convergence speed of the method.

In theory, the convergence of LB to the value
of the UB is guaranteed for any sequence such that
limk→∞ αk = 0,

∑∞
k=1 α

k = ∞ (e.g., harmonic
sequence αk = c/k for constant c). The choice of
c

def
= α1 remains an open question, as this value depends

heavily on specific problem instances and their size. The
method thus requires tedious parameter tuning. The lack
of growth of W (uk) for k = 1, 2, . . . might be caused
by the “zig-zagging” phenomenon accompanied by αk

quickly approaching zero. Similar results were obtained
for a slower converging sequence αk = c/kγ, γ 	 1.
Another convergence-guaranteed sequence is

αk = γk W
∗ −W (uk)

||g(Sk)− 1||2 , (27)

where W ∗ is an optimal value for the objective function.
The denominator contains the norm of constraint violation
for Sk, for example, an Euclidian norm:

||g(Sk)− 1||2 =

H∑

t=1

(gt(S
k)− 1)2. (28)

For αk given by the formula (27), the convergence
was proven. In practice, due to W ∗ being unknown,
some upper bound UBk is used, even though it does
not guarantee convergence. It is advised to update
UBk in each iteration k by using an auxiliary heuristic.
One of the simplest approaches it computing the value
of the objective function based on (3) and (4) for a
permutation π obtained by ordering all jobs according to
a nondecreasing value of Sk

i . It is possible to use more
complex methods (i.e., metaheuristics) instead, resulting
in a better approximation of UBk but a slower total
algorithm running time. The topic of convergence for
variants of the dual method remains an active field of
research (Bragin et al., 2015).

Due to the inequality (21), the best lower bound
after performing k first SUB iterations equals LBk =
max{W (u0),W (u1), . . . ,W (uk)}. Similarly, the best
upper bound is UB = min{UB1,UB2, . . . ,UBk}.

5.2. Local-search metaheuristic. The aim is to find
maxu W (u) using a metaheuristic. Generally speaking,
any metaheuristic can be used, and no assumptions about
function W (u) are important. In this paper, we propose

a method created by modifying the well-known simulated
annealing (SA) local-search metaheuristic. The resulting
method will be called modified SA, or m-SA for short.

The method is iterative, producing a vector sequence
u0, u1, . . . in much the same way as in the conventional
SA, but with a different method of generating the next
random solution. Vector uk is our current solution,
with W (uk) = minS L(S, uk) = L(Sk, uk) being
its objective function. By N(uk) we denote the
neighborhood of uk defined by us as follows:

N(uk) = {u = (u1, . . . uH) :

ut ∈ [uk
t −A, uk

t + (n− 1)A],

t = 1, . . . , H}, (29)

where A is some number called elementary penalty
growth and the domain for values ut is defined by
continuous intervals. The next solution, uk+1 ∈ N(uk), is
selected from the neighborhood of the current solution uk

as follows. First, we randomly generate a single perturbed
solution ũ

ũt = uk
t + Zt · (gt(Sk)− 1), t = 1, 2, . . . , H, (30)

where Zt, t = 1, . . . , H are random numbers with
the uniform distribution on the interval [0, A]. This
perturbed solution choice is unlike the typical SA, as
the neighborhood is not uniform but also dynamic due
to the term gt(S

k). Next, we proceed as in the regular
SA: we compute Δ = W (ũ) − W (uk). If Δ ≤ 0,
then solution ũ is accepted, i.e., uk+1 := ũ. Otherwise,
solution ũ is accepted with probability e−Δ/T , where T
is the parameter called temperature. If solution ũ has not
been accepted by either the first or second condition, then
we set uk+1 := uk.

The temperature in SA is reduced systematically
according to the so-called cooling scheme, usually by
iterations. In our case, we employ a geometric cooling
scheme T k+1 = λT k, k = 0, 1, . . ., with a constant
λ < 1. Too small λ causes premature convergence to
a local extreme of poor quality, too large one implies long
computational time. The resulting m-SA algorithm has
several tuning parameters, such as u0, T 0, λ or the stop
condition, which have to be set experimentally.

Since the values of W (uk) change “randomly” for
subsequent k, the final answer of m-SA is determined as
LB = max{W (u0),W (u1), . . .}. Additionally, in each
iteration k, we can employ an auxiliary heuristic to order
jobs according to nondecreasing values Sk

i (just as with
the SUB method). In this way, we can obtain a sequence
of UBs and compute UB = min{UB0,UB1, . . . ,UBk}.

5.3. Hybrid approaches. Here we will discuss a few
modifications of SUB and m-SA in order to improve
their computation complexity and convergence. We will
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start with modifications to the model (27) which can
include: (i) initializing u0 with random values, (ii) guided
control of sequence γk, (iii) random control of sequence
γk. Option (i) is obvious, as zero values in u result
in unfavorable behavior of W (u) in the initial phase for
both SUB and m-SA. This is caused by minL(S,U)
overlapping all jobs at time 0, which results in W (u)
failing to increase at first. We will now consider options
(ii) and (iii) to increase the speed of convergence of W (u)
to the UB.

Guided control is aimed at automatically adjusting
values γk to a given instance to shorten the initial phase
with unfavorable values W (u). This can be achieved
in various ways. One often employed method is to set
γ0 ≈ 2.0 and then reduce γk by some factor if there
was no improvement of W (uk) in the last 5 iterations.
Another method uses a lower-raise principle as follows. If
W (uk) decreases, then we set γk+1 = σ · γk, σ < 1; if it
increases, then we set γk+1 = τ · γk, τ > 1. Values σ and
τ should be close to 1.

Random changes of γk can be seen as another variant
of SA or a hybrid between variable neighborhood search
and random search. The approach is based on introducing
a small random perturbation to γk in the formula (27).
The resulting random variable γk has the average value
change complying with (27). Practice shows that such
randomness prevents the “zig-zag” pattern specific to
SUB from occurring.

6. Scaling

Computational complexity O(nH) of the lower problem
W (u) = minS L(S, u) is considered unacceptably
high if H is large. In this section we discuss
some time-scaling approaches, meant to reduce the
computational complexity of this problem.

6.1. GCD scaling. We start by discussing GCD
(greatest common divisor) scaling. It should be noted,
however, that this approach is not meant as a viable
practical technique. We introduce it only as a foundation
and reference for the arbitrary scaling that will be
presented in the next subsection.

Using the GCD notion, we define

a
def
= GCD(p1, . . . , pn, d1, . . . , dn). (31)

Then, we introduce the new problem with the reduced size
in the scale 1 : a by the one-to-one transformation given
below:

p′i =
pi
a
, d′i =

di
a
. (32)

Note that p′i and d′i are integers. By the assumption (32)

and the fundamentals of scaling, we conclude that

S′
i =

Si

a
, H ′ =

n∑

i=1

p′i =
H

a
. (33)

For this reduced problem, we mark the appropriate values
with prime, i.e., u′, L′(S′, u′), and W ′(u′). The scaled
problem analogous to (23) can now be written as

max
u′

W ′(u′) = max
u′

min
S′

L′(S′, u′). (34)

One can ask about the relation between L′(S′, u′)
and L(S, u) from (17). First, note that finding
minS′ L′(S′, u′) for a given u′ requires O(nH/a) time,
compared with O(nH) for the previously defined L(S, u)
in (17). Next, using a known property for [xc ]

+ = 1
c [x]

+

for c > 0 and then applying (32), we can obtain

L′(S′, u′) =
1

a
L(S, û), (35)

where û is an extension of u′ defined as follows:

ût = u′
r, t = (r − 1)a+ 1, . . . , ra, (36)

r = 1, . . .H ′. Note that ût is constant in intervals of
length a. The correctness of (35) is shown in Appendix.

By analogy to (17)–(19), the formula (35) can be
calculated in a faster way, which speeds up the process
of finding minS′ L′(S′, u′):

L′(S′, u′) =
n∑

i=1

(wiT
′
i +

S′
i+p′

i∑

r=S′
i+1

u′
r)−

H′
∑

r=1

u′
r

=
n∑

i=1

L′
i(S

′
i, u

′)− U ′
H′ , (37)

where

L′
i(S

′
i, u

′) def
= wiT

′
i +

S′
i+p′

i∑

t=S′
i+1

u′
t

= wiT
′
i + U ′

S′
i+p′

i
− U ′

S′
i

(38)

and

T ′
i = [S′

i + p′i − d′i]
+, i = 1, 2, . . . , n, (39)

U ′
r =

r∑

s=1

u′
s, r = 1, 2, . . . , H ′. (40)

In practice, this means that the calculations are performed
completely on the scaled data, namely, these with prime
superscripts.

Next, we will set the relation between W (u′) and
W (u) from (21). From (35), it follows that

W ′(u′) =
1

a
W (û). (41)
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Lastly, we are interested in the relation between
maxu′ W (u′) and maxu W (u) from (23). From the
relation between û and u, we obtain

max
u′

W (u′) =
1

a
max
û

W (û) ≤ 1

a
max
u

W (u). (42)

One can hope that a · maxu′ W (u′) approximates
maxu W (u) with sufficiently high accuracy under slightly
smaller computational complexity. The drawback of this
scaling technique is the risk that a = 1 for the majority of
instances. Also, due to the inequality (42), GCD scaling
should be considered a relaxation.

6.2. Arbitrary scaling. In this section we propose
alternative relaxation to avoid the pessimistic case of
GCD = 1. In order to distinguish cases considered in
the paper, we mark this relaxed/scaled problem with the
double prime. Let b be an integer. Having in mind the
definition of relaxation, we introduce the scaled data as
follows:

p′′i =
⌊pi
b

⌋
, d′′i =

⌈di
b

⌉
. (43)

Operators �·� and ·� mean ceil and floor roundings,
respectively. Note that p′′i b, d′′i b, i = 1, . . . , n have
GCD = b, so the results from the previous subsection can
be applied in full; however, this simultaneously introduces
an additional relaxation. There still remains the question
of relaxation depth. As the consequence of (43), we have

S′′
i =

⌊Si

b

⌋
, H ′′ =

n∑

i=1

p′′i ≤ H

b
. (44)

Let us analyze the relation between scaled and
non-scaled problems. By analogy to (17), we obtain

L′′(S′′, u′′) =
n∑

i=1

(
wiT

′′
i +

S′′
i +p′′

i∑

r=S′′
i +1

u′′
r

)
−

H′′
∑

r=1

u′′
r . (45)

Using obvious inequalities x� ≤ x and �x� ≥ x, we
have T ′′

i ≤ Ti/b, which establishes the relation between
the first term in (45) and (21). In order to show successive
dependencies, we refer to the extension of u′′ to ũ defined
as follows:

ũt = u′′
r , t = (r − 1) b, . . . , r b,

r = 1, . . .H ′′. (46)

From (46), we can deduce that

rb∑

t=(r−1)b+1

ũt = bu′′
r , r = 1, 2, . . . , H ′′. (47)

Let us analyze the formal relation of components
appearing in (45). Using (47), we can find that

H′′
∑

r=1

u′′
r =

1

b

H′′
∑

r=1

bu′′
r

=
1

b

H′′
∑

r=1

rb∑

t=(r−1)b+1

bũt

=
1

b

( b∑

t=1

ũt +

2b∑

t=b+1

ũt +

3b∑

t=2b+1

ũt

+ . . .+
bH′′
∑

t=(H′′−1)b+1

ũt

)
=

1

b

bH′′
∑

t=1

ũt. (48)

Since bH ′′ ≤ H , the component (48) formally has to be
modified as follows:

H′′
∑

r=1

u′′
r =

1

b

H′′
∑

r=1

bu′′
r

=
1

b

bH′′
∑

t=1

ũt

=
1

b

H∑

t=1

ũt − 1

b

H∑

t=bH′′+1

ũt. (49)

The first equality in (49) is a technical adjustment,
the second employs the definition of ũ, and the third
decomposes the sum in index intervals [0, bH ′′] and
[bH ′′, H ], such that [bH ′′, H ] ⊆ [0, H ]. Due to the
fact that bH ′′ ≈ H , the correction provided in the last
term in (49) can be considered relatively small; however,
an error potentially exists. This ends the evaluation of
the last component in (45). To evaluate the penultimate
component in (45), we deduce that from (47):

S′′
i +p′′

i∑

r=S′′
i +1

u′′
r =

1

b

(
bu′′

r |r=S′′
i +1 + bu′′

r |r=S′′
i +2

+ bu′′
r |r=S′′

i +3 + . . .+ bu′′
r |r=S′′

i +p′′
i

)

=
1

b

( (S′′
i +1)b∑

t=S′′
i b+1

ũt +

(S′′
i +2)b∑

t=(S′′
i +1)b+1

ũt

+

(S′′
i +3b∑

t=S′′
i b+2

ũt + . . .+

(S′′
i +p′′

i )b∑

t=(S′′
i +pi−1′′)b+1

ũt

)

=
1

b

(S′′
i +p′′

i )b∑

t=S′′
i b+1

ũt ≈ 1

b

Si+pi∑

t=Si+1

ũt. (50)



New ideas in Lagrangian relaxation for a scheduling problem . . . 243

The last approximation is valid only if S′′
i ≈ Si/b and

p′′i ≈ pi/b. Since minimization min′′S L′′(S′′, u′′) does
not depend on

∑H′′

r=1 u
′′
r , we have

W (u′′) ≤ 1

b
W (ũ), (51)

max
u′′

W (u′′) ≤ 1

b
max
ũ

W (ũ) ≤ 1

b
max
u

W (u). (52)

The computational complexity of the lower problem
is O(nH/b) and it depends on b. Assuming that
b = H/m for some m, we can obtain computational
complexity O(nm), which does not depend on H . It
is attractive from the theoretical point of view; however,
the approach suffers from the relaxation of the original
problem. The quality of approximation maxu W (u) by
b · maxu′′ W (u′′) depends on b and should be tested
experimentally. Actually, the solution to the problem
minS′′ L(S′′, u′′) is the lower bound to minS L(S, u)
with a small error, which has been already shown.
Therefore, we propose the following procedure: (i)
find maxu′′ minS′′ L

′′
(S′′, u′′), using SUB with the UB

calculated for the relaxed data problem, (ii) find the
solution to the problem minS L(S, u) for u calculated
in the previous step and the UB for the original data
set. There still remains an open problem, how to
find minS′′ L(S′′, u′′) efficiently to avoid computational
complexity O(nH). This subject will be discussed in
detail below.

7. Aggregation of constraints
In this section we provide an alternative form of relaxation
through aggregation, leading to reduced computational
complexity of the lower level problem.

7.1. Formulation. Let us define a sequence of integer
time moments: 0 = t0 < t1 < t2 < . . . tm−1 < tm = H .
Summing several conditions (11) as follows:

tk∑

t=tk−1+1

gt(S) = tk − tk−1, k = 1, 2, . . . ,m, (53)

we can introduce a new optimization problem,

min
S

n∑

i=1

wiTi, (54)

subject to the constraints

1

tk − tk−1

tk∑

t=tk−1+1

gt(S) = 1, k = 1, 2, . . . ,m, (55)

0 ≤ Si ≤ H − pi, i = 1, 2, . . . , n. (56)

Analyzing differences between (10)–(12) and
(54)–(56), one can find that the condition (11) limits
the number of jobs in each interval (t − 1, t), whereas
the condition (55) limits the average length of jobs
processed in the interval (tk−1, tk). It is clear that (55) is
a relaxation of (11).

Since the definition of expression
∑tk

t=tk−1+1 gt(S)
does not offer any reduction of computational complexity,
we will convert it to a more convenient form. To this end
we define

hk(S)
def
=

1

tk − tk−1

tk∑

t=tk−1+1

gt(S),

k = 1, 2, . . . ,m. (57)

Function hk(S) represents the average length of all jobs
which are processed in the interval (tk−1, tk). Note that
this interval is composed of unit-time intervals of the
form (tk−1, tk−1 + 1), (tk−1 + 1, tk−1 + 2), . . ., (tk −
1, tk), which in turn define constraints gtk−1+1(S) = 1,
gtk−1+2(S) = 1, . . ., gtk(S) = 1. We can calculate
hk(S) by considering suitable pieces of jobs i = 1, . . . , n
processed in (Si, Si+ pi) and having a common part with
the interval (tk−1, tk). Thus, with the provided definition,
we can introduce another expression on hk(S), namely,

hk(S) =
n∑

i=1

hki(Si), k = 1, 2, . . . ,m, (58)

where

hki(Si) =

[
min{Si + pi, tk} −max{Si, tk−1}

tk − tk−1

]+

(59)
and [x]+ = max{0, x}. The numerator in (59) represents
the part of job i processed in the interval (tk−1, tk]. From
(59) we conclude that 0 ≤ hki(Si) ≤ 1. Using (57) we
obtain the Lagrangian function with penalty vk for each
constraint (55), k = 1, 2, . . . ,m,

M(S, v) =

n∑

i=1

wiTi +

m∑

k=1

vk(hk(S)− 1). (60)

Substituting (58) to (60) and then changing the order
of the summing operators, we finally obtain

M(S, v) =

n∑

i=1

wiTi +

n∑

i=1

m∑

k=1

vkhki(Si)− V

=

n∑

i=1

[wiTi +

m∑

k=1

vkhki(Si)]− V

def
=

n∑

i=1

Mi(Si, v)− V, (61)
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where

Mi(Si, v) = wiTi +

m∑

k=1

vkhki(Si),

V =

m∑

k=1

vk.

(62)

As before, the lower level problem provides a lower
bound on the optimal solution and can be decomposed on
separate subproblems:

min
S

M(S, v) =

n∑

i=1

min
Si

Mi(Si, v)− V. (63)

For the proposed new relaxation, the formulas
(26)–(28) for the upper level problem are no longer valid.
The formulas below should be used instead:

vr+1
k = vrk + αr(hk(S

r)− 1), (64)

αr = γr UBr −W (vr)
∑m

k=1(hk(Sr)− 1)2
, (65)

where Sr is the optimal solution of the lower level
problem in the r-th iteration.

7.2. Computation and complexity. In this section we
provide an efficient method of finding minSi Mi(Si, v),
from (62). We employ the fact that Mi(Si, v) is
a piecewise linear function. In order to minimize
a piecewise linear function f(·), it is sufficient to
compute minb∈B f(b), where B is a set of breaking
points of f(·). Moreover, if f1, f2, . . . , fn are piecewise
linear functions with breaking points defined by sets
B1, B2, . . . , Bn, respectively, then function f =

∑n
i=1 fi

is also a piecewise linear function with breaking points in
the set B ⊆ ⋃n

i=1 Bi. Thus, to minimize f , it is sufficient
to check all breaking points located in sets B1, . . . , Bn.

In consequence, to find minSi Mi(Si, v), it is
sufficient to check the breaking points of all its
components. There are at most four breaking points
for each component vkhki(Si) and one for component
wiTi; thus, we need to check O(m) values of Si. For
each such Si, the function Mi(Si, v) has to be computed.
Its value can be computed in time O(m) since wi and
vk are constants, while Ti and hki can be computed in
time O(1). We conclude that minSi Mi(Si, v) can be
computed in time O(m2). The last elements from (63)
that we need to account for are (i) component V , which
can be computed in time O(m), and (ii) the sum over
n jobs. This brings our computational complexity to
O(nm2 +m) = O(nm2).

7.3. Acceleration. The resulting complexity O(nm2)
is smaller than O(nH) only when m <

√
H . Now we

will show an alternative computation method that allows
us to compute

∑m
k=1 vkhki(Si) in time O(1) instead of

O(m).
The acceleration is based on the following idea.

We know the time axis is divided into intervals
(0, t1), (t1, t2), . . . (tm−2, tm−1), (tm−1, tH). Let us
consider job i with starting time Si and completion time
Si + pi. The job starts in some interval x and ends in
some interval y. This means that tx−1 < Si ≤ tx and
ty−1 < Si+pi ≤ ty . Three cases are possible, as detailed
below.

The first case is when y = x, i.e., job i starts and
ends in the same interval. In such a case, hki(Si) = 0 for
all k �= x and

∑m
k=1 vkhki(Si) is reduced to a single term

vxhxi(Si), which can be computed in O(1).
The second case is when y = x + 1, i.e., job i spans

two subsequent intervals x and x + 1. Then hki(Si) = 0
for all k �= x and k �= y, and

∑m
k=1 vkhki(Si) is reduced

to vxhxi(Si)+vyhyi(Si) which is computed in time O(1).
The last case is for y > x + 1, i.e., job i spans for at

least three intervals x through y. As before, hki(Si) = 0
for all k < x or k > y and

∑m
k=1 vkhki(Si) is reduced to∑y

k=x vkhki(Si). However, this takes time O(y − x) to
compute, which can be as large as O(m). Let us notice,
however, that all inner intervals x + 1 through y − 1 are
always full, i.e., hki(Si) = 1 for k ∈ {x+1, x+2, . . . , y−
1}. This means that

y−1∑

k=x+1

vkhki(Si) =

y−1∑

k=x+1

vk. (66)

In order to compute (66) in time O(1), we will use the
m×m matrix A = a[x,y], where

ax,y =

y∑

k=x

vk. (67)

In other words, ax,y contains the value of sum of vk for all
intervals x through y. Thus, our sum

∑m
k=1 vkhki(Si) is

reduced to vxhxi(Si) + ax+1,y−1 + vyhyi(Si). Matrix
A contains prefix sums, i.e., ax,y = ax,y−1 + vy .
Accordingly, A can be constructed in time O(m2). As
a result, the complexity of the algorithm was reduced from
O(nm2) to O(nm + m2), and now offers a reduction
compared to O(nH) as long as m < H and m <

√
nH .

Further reductions might be possible.
It should also be noted that this algorithm requires

us to be able to convert job starting and completion times
Si and Si + pi into interval numbers x and y. To do it
efficiently, we propose to construct vector B such that Bt

is the interval number corresponding to time moment t,
where t ∈ {0, 1, 2, . . . , H − 1, H}. With this, x and y can
be determined in O(1). The last issue is the construction
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Fig. 2. Results for SUBH, SUBH m = 50 and SUBF using
the illustrative instance.

of vector B. In theory, it takes time O(H); however, B
does not change, so it can be created once on the upper
level (e.g., in the subgradient method) and then passed to
the lower problem as input no matter how many times the
lower problem is invoked.

8. Computer experiments
Computer experiments have been performed in order to
evaluate numerical properties of the proposed approaches.
We considered two types of experiments: (i) illustrative
experiments using a sample instance to highlight the
dominant properties of our approaches, and (ii) large-scale
tests performed on a number of instances.

All algorithms were coded in C++ and compiled
using g++ 9.4.0 and -O3 optimization flag. The source
code of the project is accessible through the public GitHub
repository (Idzikowski, 2023). The experiments were
run on a machine with an Intel i7-11850H processor a
with 2.5 GHz clock and 32 GB of RAM. All coding and
experiments were carried out under Ubuntu 20.04 using
the Linux 5.15 kernel.

With regards to problem instances, we have
generated the instances using the scheme shown in
OR-library (Beasley, 1990), which serves a source of
benchmarks for a number of optimization problems,
including the total weighted tardiness on a single machine.
In order to portray GCD scaling, some instances were
altered by multiplying all pi and di values by 16. We will
indicate for which instances this was done.

All figures in this section portray LB and UB
trajectories obtained by the algorithms. In Figs. 2–7, time
(in milliseconds) is represented on the horizontal axis and
the goal function value on the vertical axis.

8.1. Algorithms. The following algorithms were
tested in our experiments:

1. SUBH: the SUB method with sequence αk = c/k,
c = 1.

2. SUBF: the SUB method with the formulas (27) and
(28) applied, where γ starts at 2 and is multiplied by
0.95 if W (u) has not improved in five iterations.

3. SUBR: the SUB method with formulas (27) and
(28) applied, where γk is a random variable from the
uniform distribution on the interval [0.95, 1.05].

4. m-SA: the m-SA method with λ = 0.95, T 0 =
1000.

5. DS: a descent method for the primal problem. This
method is used as a comparison and represents a
non-LR approach.

The additional specification in the form of a = . . .
indicates the range of GCD scaling (e.g., SUBF a = 4).
Similarly, b = . . . indicates the use of arbitrary scaling
(e.g., SUBF b = 5). Finally, term m = . . . indicates
the use of the aggregated relaxation from Section 7 (e.g.,
SUBF m = 50). For DS, the suffix indicates the
neighborhood type:

1. DSswap: neighborhood based on swapping
(interchange) of job pairs.

2. DSadj: neighborhood based on swapping
(interchange) of adjacent job pairs.

3. DSins: neighborhood based on removing a job
and inserting it into a different position in the
permutation.

8.2. Illustrative experiment. In this experiment, we
used one instance (generated according to the OR-library
scheme as indicated earlier) with n = 30 and values
pi and di multiplied by 16 as described earlier. The
illustrative instance is shown in Table 1. The optimal
solution for this instance has the value of 22 864, using
a = 1. By contrast, a standard greedy algorithm
scheduling one job at a time yielded a value of 54 704 for
this instance.

SUB and SA. Figures 2, 3 and 4 show trajectories for
the SA method and various variants of the SUB approach.
Due to a large number of variants, we split this into
three separate plots, with SUBF shown in all three as
a reference. Predictably, the SUBH method with the
harmonic sequence performs badly despite its theoretical
convergence guarantees. Surprisingly, the aggregated
variant only compounds the result. The SUBF and SUBR
methods provide much better results, and their aggregated
variants have considerably higher convergence rates with
little effect on the solution quality. Finally, the m-SA



246 J. Rudy et al.

Table 1. Illustrative instance.
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pi 48 160 16 64 128 80 80 32 160 160 64 16 128 64 160
di 496 1056 768 864 1072 1376 1120 1040 1072 1280 480 1008 1312 976 912
wi 10 4 5 2 5 9 4 10 10 9 4 3 5 10 1
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
pi 96 32 160 80 80 16 128 80 32 64 32 128 48 32 48
di 1376 592 656 1136 736 1056 1072 1376 480 640 560 1200 976 1392 592
wi 8 5 10 7 6 1 5 3 4 3 10 5 3 8 7
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Fig. 3. Results for SUBF, SUBFm = 50 and m-SA using the
illustrative instance.

method performs in-between SUBH and SUBF. It should
be noted, however, that m-SA convergences faster in the
early stage, making it more viable for use in time-sensitive
situations.

GCD scaling. Figure 5 shows trajectories for possible
GCD scaling for a ∈ {1, 2, 8, 16} (all potential divisors).
Regarding the algorithm running time, the observed
acceleration was approximately a times. Moreover, the
observed trajectories in iterations were identical for all a.
The main profit of this approach is to reduce the running
time without the loss in LB and UB quality.

Arbitrary scaling. Figure 6 shows trajectories for
arbitrary scaling for b ∈ {1, 5, 10, 15} (we avoided too
many cases to increase plot readability). The observed
acceleration was close to b, but different values of b
result in different trajectories and thus different solution
quality. Note that greater b introduces deeper relaxation.
Therefore, the value of b should be set as a compromise
between the quality and computational time of the LB.
Nonetheless, the presented research confirms that the
approach yields much faster convergence early on, and
for b = 5 the inaccuracy caused by the relaxation is
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Fig. 4. Results for SUBF, SUBR and SUBR m = 50 using
the illustrative instance.

negligible.

Aggregation. Figure 7 shows trajectories for aggregated
relaxation for m = {10, 50, 250} (once again, the number
of cases is limited for the readability of the figure). For
m = 10 and m = 50, we observe that the aggregated
relaxation results in much higher convergence speed. The
trajectories have different shapes, but the acceleration can
be approximated as being between 3 and 4 for m = 50
and between 6 and 10 for m = 10. It should also be
noted that for m = 10 there is little loss in the LB and
UB quality, and m = 50 provides even better LB than
non-aggregated variant. On the other hand, for m = 250
the aggregated method converges much slower than the
non-aggregated variant. This is because at m = 250,
the O(nm2) complexity of the aggregated is larger than
O(nH) complexity of the non-aggregated method (H =
2416 for this instance). Thus, m needs to be small enough.
Interestingly, even seemingly large relaxation with m =
10 still allows us to obtain good quality results.

8.3. Large-scale experiment. Due to the number of
methods, variables, stopping conditions and a limited
length of this article, a comprehensive study of the
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Fig. 5. Results of GCD scaling using SUBF and the illustrative
instance for various values of a.
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Fig. 6. Results of arbitrary scaling using SUBF and the illustra-
tive instance for various values of b.
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Fig. 7. Results of aggregated relaxation using SUBF and the
illustrative instance for various values of m.

proposed methods is not possible here. Nonetheless,
we carried out limited research on multiple problem
instances. We considered three problem sizes n ∈
{30, 40, 50} with 50 instances each (150 instances in
total). To highlight the strengths and weaknesses of the
methods, the instances were divided into two groups. For
the first half instances, the pi values were multiplied by
16 as before, resulting in larger H relative to the problem
size. We term those instances “large H instances.” For
the second half of the instances, the multiplication by 16
is skipped. Those are termed “small H instances.” The
stopping condition was 0.1n milliseconds (except for the
greedy heuristic).

Since multiple instances were used in this
experiment, we cannot compare the obtained results
directly. Instead we use percentage relative deviation
(PRD). Let us start with upper bound. Given instance I
and algorithm A, we define PRDUB(A, I) as

PRDUB(A, I) = 100%
AUB(I)− REFUB(I)

REFUB(I)
, (68)

where AUB(I) is the UB obtained by algorithm A
for instance I and REFUB(I) is the UB obtained by
the reference algorithm. In our case, we used the
best of all tested algorithms as REFUB(I). In other
words, PRDUB(A, I) = 20% means that for instance I
algorithm A obtained a 20% worse (larger) UB than the
best tested algorithm. The PRD for the lower bound is
defined similarly:

PRDLB(A, I) = 100%
REFLB(I) −ALB(I)

REFLB(I)
. (69)

As before, as REFLB(I) we chose the best LB obtained
by all tested algorithms.

The summarized average PRDUB and PRDLB over
all instances for each algorithm considered are shown in
Tables 2 and 3, respectively. The complete raw result
data is available on GitHub (Idzikowski, 2023). The
most important results obtained by our newly proposed
algorithms are shown in bold. The symbol “n/a” (not
applicable) means that the algorithm does no provide this
result.

Considering the large H instances, we observe that
arbitrary scaling managed to greatly improve the SUBF
and SUBR methods. A similar situation, though to
a lesser degree, can be observed for aggregated relaxation.
The regular variants of SUBF and SUBR perform worse,
but still generally outperform the remaining methods. It
should also be noted that SUBR yields better results
than SUBF. As for the m-SA method, it performs
similarly to SUBF and SUBR as far as the LB is
concerned, but is worse when it comes the UB. Finally,
the SUBH method performs the worst and, interestingly,
is not improved by any arbitrary scaling and aggregated
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Table 2. Summary of large-scale experiments for large H in-
stances.
Algorithm PRDLB PRDUB

SUBH 80.1 127.9
SUBHm = H/50 100.0 201.5
SUBH b = 3 59.1 145.6
SUBF 84.9 35.8
SUBF b = 3 2.6 0.4
SUBFm = H/50 11.4 23.8
SUBR 60.7 42.2
SUBR b = 3 1.1 2.2
SUBRm = H/50 12.9 40.0
m-SA 74.4 96.6
greedy n/a 216.3
DSswap n/a 4.6
DSadj n/a 69.3
DSins n/a 8.6

constraints techniques. We also note that the arbitrary
scaling approach with SUBR and SUBF outperformed all
variants of the DS algorithm.

In the case of small H instances, the situation
changes, as arbitrary scaling fails to improve the base
variants of methods. This is due to the fact that for
small values of pi the scaling introduces a considerable
approximation error. Similarly, the aggregation relaxation
also leads to considerably worse results, as for small H
the resulting number m is too small to provide a good
approximation. Of course, one could choose higher m to
reduce the error, but one has to be careful as this increases
the computation time. Overall, the base variant of SUBF
achieved the best performance for small H instances,
followed by SUBR. We also note that m-SA yielded very
good results and outperformed the DS algorithm, proving
that LR-based metaheuristics are a viable alternative to the
subgradient method and classic approaches.

9. Conclusions
In this paper, we presented several ideas for using
Lagrangian relaxation to solve the total weighted tardiness
scheduling problem. The general approach can be easily
extended to cover single-machine scheduling with ready
times, job precedence constraints, any non-decreasing
cost function. Since more complex scheduling problems,
for example, flow-shop, job-shop, open-shop, can be
introduced by the precedence among operations, the
proposed ideas can be extended to a wide class of
scheduling problems.

Regarding the basic relaxation approach, we
presented an arbitrary scaling technology together with
a discussion of its properties and correctness. With
computer experiments we illustrated that this approach
can greatly improve the convergence rate of the

Table 3. Summary of large-scale experiments for small H in-
stances.
Algorithm PRDLB PRDUB

SUBH 38.6 67.0
SUBHm = H/50 100.0 211.2
SUBH b = 3 133.7 270.0
SUBF 0.0 0.1
SUBF b = 3 30.9 12.1
SUBFm = H/50 213.3 256.7
SUBR 2.4 1.0
SUBR b = 3 37.0 11.7
SUBRm = H/50 163.5 244.1
m-SA 8.7 3.0
greedy n/a 221.9
DSswap n/a 4.8
DSadj n/a 71.0
DSins n/a 8.6

subgradient method. The results also showed how scaling
affects their quality and that it is possible to reduce the
computation time with little loss in quality.

We also proposed a novel Lagrangian relaxation
approach to the problem considered based on constraint
aggregation. This approach is adjustable, allowing one
to find a compromise between the relaxation error and
the algorithm running time. The experiments indicated
that, compared with the original relaxation method,
this approach allows obtaining similar quality results
in much shorter time. Regarding the basic relaxation
approach, we proposed a solution method based on
a local-search metaheuristic. The results showed that
it is a viable alternative to the subgradient method and
exhibits faster convergence rate early on, compared with
the subgradient method. We believe that further research
in applying metaheuristics to this problem would result
in an algorithm capable of outperforming the subgradient
method.

Finally, in our research we focused on reducing the
computation time of the solution methods. The computer
experiments indicated that the proposed method is capable
of obtaining good quality results in a few milliseconds
for problem instances of 30 to 50 jobs. As a result, the
proposed approach could be employed as a subroutine in
other solving methods.
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Appendix
The correctness of (35) can be shown as follows. First,
let us notice that L′(S′, u′) is a scaled version of the same
problem, so (17) still applies. Therefore,

L′(S′, u′) =
n∑

i=1

(
wiT

′
i +

S′
i+p′

i∑

r=S′
i+1

u′
r

)
−

H′
∑

r=1

u′
r. (A1)

We shall now transform this formula to use symbols
from the nonscaled problem (e.g., pi instead of p′i, and so
on) and extension ût instead of u′

r. Let us start by proving
that

H′
∑

r=1

u′
r =

1

a

H∑

t=1

ût. (A2)

Summing (36) for fixed r and the whole given range of t,
we have

ra∑

t=(r−1)a+1

ût = au′
r, r = 1, 2, . . .H ′. (A3)

Then, applying (A3) and the transformations (32), we get

H′
∑

r=1

u′
r =

1

a

H′
∑

r=1

au′
r

=
1

a

H
a∑

r=1

ra∑

t=(r−1)a+1

ût

=
1

a

( a∑

t=1

ût +

2a∑
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ût +

3a∑

t=2a+1

ût + . . .

+
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t=H−a+1

ût

)
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1

a

H∑

t=1

ût. (A4)

Next, we shall prove that

n∑

i=1

(
wiT

′
i +

S′
i+p′

i∑

r=S′
i+1

u′
r

)

=

n∑

i=1

(
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Ti

a
+

1

a

Si+pi∑

t=Si+1

ût

)
. (A5)

We start with the decomposition,

1

a

S′
i+p′

i∑

r=S′
i+1

au′
r

=
1

a

(
au′

r|r=S′
i+1 + au′

r|r=S′
i+2

+ . . .+ au′
r|r=S′

i+p′
i

)
. (A6)

Similarly as before, adding (36) for a given range
of t and for each r specified in (A6) with the use of the
transformations (32), we obtain the sequence of equations

Si+a∑

t=Si+1

ût = au′
r|r=S′

i+1, (A7)

Si+2a∑

t=Si+a+1

ût = au′
r|r=S′

i+2, (A8)

... (A9)
Si+pi∑

t=Si+pi−a+1

ût = au′
r|r=S′

i+p′
i
. (A10)

Substituting (A7) . . . (A10) into (A6), we obtain
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ût

)

=
1

a

Si+pi∑

t=Si+1
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With this and T ′
i = Ti/a, we transformed (A1) into

n∑

i=1

(
wi

Ti

a
+

1

a
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t=Si+1

ût

)
− 1

a
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ût, (A12)

which, due to (17), is equal to L(S, û)/a.
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