
Int. J. Appl. Math. Comput. Sci., 2024, Vol. 34, No. 2, 253–261
DOI: 10.61822/amcs-2024-0018

ONLINE AND SEMI–ONLINE SCHEDULING ON TWO HIERARCHICAL
MACHINES WITH A COMMON DUE DATE TO MAXIMIZE

THE TOTAL EARLY WORK

MAN XIAO a , XIAOQIAO LIU a, WEIDONG LI a , XIN CHEN b,*, MALGORZATA STERNA c ,
JACEK BLAZEWICZ c,d

aSchool of Mathematics and Statistics
Yunnan University

Wujiaying, Kunming 650504, China
e-mail: man1205@163.com,1161407532@qq.com,weidongmath@126.com

bSchool of Electronics and Information Engineering
Liaoning University of Technology

Shiying 169, Jinzhou 121001, China
e-mail: chenxin.lut@hotmail.com

cInstitute of Computing Science
Poznan University of Technology

ul. Piotrowo 2, 60-965 Poznań, Poland
e-mail: {malgorzata.sterna,jblazewicz}@cs.put.poznan.pl

dEuropean Centre for Bioinformatics and Genomics
Polish Academy of Sciences

ul. Piotrowo 2, 60-965 Poznań, Poland

In this study, we investigate several online and semi-online scheduling problems related to two hierarchical machines with
a common due date to maximize the total early work. For the pure online case, we design an optimal online algorithm
with a competitive ratio of

√
2. Additionally, for the cases when the largest processing time is known, we give optimal

algorithms with a competitive ratio of 6/5 if the largest job is a lower-hierarchy one, and of
√
5 − 1 if the largest job is a

higher-hierarchy one.

Keywords: online and semi-online, early work, hierarchical scheduling, competitive ratio.

1. Introduction

Scheduling with a due date (Gordon et al., 2002) or
a due window (Janiak et al., 2013) characterizes the
time accuracy in a real production environment. Among
them, early work (Sterna, 2021) is one of the typical
scheduling criteria related to the due date. Early work
scheduling on parallel machines with a common due
date (Chen et al., 2016) involves executing n jobs on
m parallel identical machines in a non-overlapping and
non-preemptive manner, to maximize the total early work

*Corresponding author

of all the jobs. The early work of a job denotes its part
executed before the common due date.

From the optimization point of view, early work
maximization is correlated to late work minimization,
since the late work of a job denotes its part executed
after this due date. Both measures have been widely
investigated over several years (Sterna, 2011; 2021)
from a theoretical perspective as well as within various
practical applications, such as in control systems when
collecting data from sensors, in agriculture in the
process of harvesting crops, in manufacturing systems
when planning technological processes, and in software

mailto:man1205@163.com,1161407532@qq.com,weidongmath@126.com
mailto:chenxin.lut@hotmail.com
mailto:{malgorzata.sterna,jblazewicz}@cs.put.poznan.pl

254 M. Xiao et al.

engineering in the process of software testing. Late and
early work are obviously equivalent when the optimal
solutions should be determined, but the studies on offline
approximation and online algorithms have been done
mostly for early work due to the properties of the two
criteria (late work in an optimal schedule could be zero
so that it cannot be used as a denominator in the case of
ratio analysis).

For an offline maximization problem, a
ρ-approximation algorithm A is a polynomial time
algorithm that always produces a feasible solution (for
any instance I with a minimum ρ) satisfying COPT(I)

CA(I) ≤ ρ,
in which COPT(I)(COPT for short) denotes the optimal
criterion value, and CA(I) (CA for short) denotes the
output value by A.

In the case of online scheduling problems where
the set of jobs is unknown in advance and jobs arrive
one by one, the lack of knowledge on the problem
instance limits the optimization process. However, it is
possible to construct online algorithms, whose efficiency
is evaluated in a similar way to the above-mentioned
offline approximation algorithms.

The performance of an online algorithm is measured
by its competitive ratio. Similar with the approximation
ratio, the competitive ratio of an online algorithm A for a
maximization problem is defined as the minimum r such
that COPT

CA ≤ r holds for any problem instance. Then we
claim that the online problem considered has an upper
bound of r. On the other hand, proving that no online
algorithm has a competitive ratio less than δ means that
δ is a lower bound of this problem. In consequence, an
online algorithm is called optimal (or the best possible) if
its competitive ratio r equals the problem lower bound δ,
i.e., r = δ. In such a case, we say that this problem has a
tight bound.

Previous studies on early work maximization for
parallel identical machines and a common due date
focus mainly on offline scheduling. The non-preemptive
problem is weakly NP-hard for the fixed number of
machines, while for an arbitrary number of machines it
becomes strongly NP-hard (Chen et al., 2016). For the
two-machine model (m = 2), Sterna and Czerniachowska
(2017) designed a PTAS (polynomial time approximation
scheme) based on structuring the problem input. Chen
et al. (2020b) proved that the classical LPT (longest
processing time first) heuristic has an approximation ratio
of 10

9 , and then Jiang et al. (2021) demonstrated that
the tight bound of LPT is exactly 12

11 . For the more
general case where the number of machine m is fixed
(m ≥ 2), Chen et al. (2020a) proposed an FPTAS
(fully polynomial time approximation scheme) based on
a dynamic programming approach. Later, for the cases
with an arbitrary number of machines, Györgyi and Kis
(2020) introduced a PTAS, while Li (2024) proposed

an EPTAS (efficient polynomial time approximation
scheme). Recently, Chen et al. (2022) improved their
previous dynamic programming and suggested two new
FPTASs for the m-machine case. For the model of the
unrelated machines, Wang et al. (2020) proposed two
meta-heuristic algorithms. Recently, Liu et al. (2023)
introduced a mathematical model and two dedicated
exact approaches, based on the branching and bounding
strategy and on enumerating combined with a dynamic
programming algorithm.

The total early work maximization was introduced
into online environment by Chen et al. (2016), who
designed an optimal online algorithm with a competitive
ratio of

√
5− 1 for two identical machines and a common

due date case. (Note that they used the context of late
work minimization at that time.) Then, this group (Chen
et al., 2021) continued this topic on several semi-online
models, where some partial knowledge of the problem
instances is available in advance. For the cases when
the total processing time or the optimal criterion value is
known, they designed an optimal online algorithm with
a competitive ratio of 6

5 . For the cases when the maximal
job processing time is known, they obtained a lower bound
of 1.1231 and an upper bound of 1.1375, respectively.

In the scheduling field, the hierarchical constraint
(Bar-Noy et al., 2001) means that jobs may have different
hierarchies, and some of the machines can process all
types of jobs, while others are dedicated to high-hierarchy
jobs only. For example, in a bank service, some
windows are open for all the customers, but some of
them are for VIPs (very important person) only. This
constraint has been introduced into online scheduling
independently by Jiang et al. (2006) and Park et al.
(2006), when both of the two groups considered makespan
minimization on identical machines. Jiang (2008) later
generalized his results (Jiang et al., 2006). Luo and
Xu (2015) studied online and semi-online hierarchical
scheduling on two identical machines with the goal of
maximizing the minimum machine load, and proposed
several optimal algorithms. Recently, Akaria and Epstein
(2022) revisited the semi-online scheduling problem on
two hierarchical machines, in which bounded migration
is allowed, and showed the best possible result for the
considered problem.

Hierarchical scheduling was combined with early
work maximization in our previous work (Xiao et al.,
2021) for the first time, when we studied three semi-online
models assuming that jobs’ total size is provided in
advance. Specifically, when the total size of the lower or
higher hierarchy is known, the tight bound was proven to
be

√
5− 1. Additionally, if both pieces of information are

known, the tight bound was shown to be 6
5 . Very recently,

Xiao et al. (2023) further considered these models on two
uniform machines, where the speeds of the two machines
are s and 1, respectively. They designed an optimal online

Online and semi-online scheduling on two hierarchical machines . . . 255

Table 1. Relevant results.
Model Tight bound Reference

Pure online
√
2 This paper

Semi-online

T1

√
5− 1 Xiao et al., 2021

T2

√
5− 1 Xiao et al., 2021

T1&T2
6
5 Xiao et al., 2021

T 4
3 Xiao et al., 2023

pmax

√
2 This paper

pmax,1
6
5 This paper

pmax,2

√
5− 1 This paper

algorithm with a competitive ratio of min {1 + s, 2+2s
1+2s}

for the case when the total processing time of all
jobs is known. Then, two optimal online algorithms
were given for the cases when the total processing
time of low- and high-hierarchy jobs is known with
competitive ratios of min {1 + s,

√
9s2+10+1−s−1

2s } and
min {√s+ 1,

√
s2 + 2s+ 2− s}, respectively. When

both mentioned pieces of information are provided, they
proved a lower bound 2s+2

s+2 when s ≤ 2
3 , and designed an

optimal online algorithm with a competitive ratio of 3s+3
3s+2

for s > 2
3 .

Motivated by the previous works mentioned above,
we consider several online and semi-online models
for early work maximization related to two identical
machines with the hierarchical constraint and a common
due date, and propose efficient approaches for them.
In this paper, our primary contributions are outlined as
follows:

• First, we consider the pure online version without
any information on the job sequence, and design an
optimal algorithm with a competitive ratio of

√
2.

• Then, for the cases when the maximal job processing
time is known, we design optimal semi-online
algorithms with competitive ratios of 6

5 and
√
5 − 1,

depending on whether the largest job is of a lower
hierarchy or a higher hierarchy, respectively.

For a clear comparison of the results in this paper, we
summarize the relevant ones on hierarchical early work
maximization problems with two identical machines in
Table 1.

The rest of this paper is organized as follows. In
Section 2, we give the formal definition for the problem
considered. Then, the pure online case is analysed in
Section 3, followed by the analysis of the case when the
largest processing time is known in Section 4. Finally,
we present conclusions and possible directions for future
work in Section 5.

2. Problem definition
The problem studied in this paper can be defined as
follows.

There are two identical machines M = {M1, M2},
and a set of jobs J = {J1, J2, . . . , Jn} which come to
the system one by one. We say that these jobs come
“over a list”, contrary to the online problems where jobs
are released at a given time (i.e., “over time”). Once
a job arrives, it has to be scheduled immediately and
irrevocably on one of the machines. The j-th job Jj
is described by two parameters (pj , gj), where pj is the
processing time and gj ∈ {1, 2} is the hierarchy of this
job. The hierarchical constraint means that the machines
have different capabilities when processing jobs, i.e.,
M1 is a general machine which is available for all the
jobs, while M2 is a specific one and available only for
the high-hierarchy jobs (such as VIP service in a bank
system). Hence, M1 can process all the jobs with gj ∈
{1, 2}, whereas M2 can process only jobs of hierarchy 2
(gj = 2). Moreover, we assume that all the jobs share
a common due date d > 0 (dj = d), and pj ≤ d for
j = 1, 2, . . . , n.

The goal is to schedule these jobs on the machines
without preemption, to maximize the total early work of
all jobs. The early work of job Jj , denoted as Xj , is the
part of Jj executed before the common due date d, i.e.,
Xj = min{pj,max{0, d− (Cj − pj)}}, where Cj is the
completion time of Jj . More precisely, if Jj is completed
before d (Cj ≤ d), this job is called totally early and we
have Xj = pj . If Jj starts before d, (Cj − pj < d), but
finishes its execution after d (Cj > d), we say that this job
is partially early (or partially late) andXj = d−(Cj−pj).
Finally, if Jj starts its execution after d (Cj−pj ≥ d), this
job is totally late and we have no profit in this case, i.e.,
Xj = 0.

Using the three-field notation, which is commonly
applied in the scheduling domain (Graham et al., 1979),
the pure online model of the problem considered can
be denoted as P2|GoS, online, dj = d|max(X), in
which GoS (Grade of Service) stands for the hierarchical
constraint described above.

We can see that a schedule of J on M can be
considered a partition (S1, S2) of all jobs to the two
machines, such that S1 ∪ S2 = J and S1 ∩ S2 = ∅.
We define the load of machine Mi (i ∈ {1, 2}) by Li,
i.e., Li =

∑
Jj∈Si

pj . Then the early work of jobs
assigned to Mi is equal to min{Li, d}. Thus, the aim
of the scheduling is to find a partition such that X =∑n

j=1 Xj =
∑2

i=1 min {Li, d} is maximized.

Let Lj
i be the load of Mi after job Jj is assigned

to one of the machines (i ∈ {1, 2} and 1 ≤ j ≤ n),
so that we have Li = Ln

i for each machine. Moreover,
let Tk (k ∈ {1, 2}) be the total processing time of the
jobs with hierarchy k, and let T be the total processing

256 M. Xiao et al.

Table 2. Some important symbols.
Lj
i Load of Mi after job Jj is assigned

to one of the machines, and Li =
Ln
i .

Tk Total processing time of the jobs
with hierarchy k, and T = T1 +T2.

pmax,k Largest job processing time with
hierarchy k.

XOPT Optimal criterion value.

XA Criterion value obtained by an
algorithm A.

time of all jobs, i.e., T = T1 + T2. For any instance of
problem P2|GoS, online, dj = d|max(X), let XOPT be
its optimal criterion value, and XA be the criterion value
obtained by an algorithm A. For convenience, we also list
some important symbols in Table 2.

Based on the definitions, we have the following
result.

Lemma 1. In the problem P2|GoS, online, dj =
d|max(X), the optimal criterion value XOPT satisfies

XOPT ≤ min {T, 2d} ≤ d+
T

2
.

In the pure online case, i.e., P2|GoS, online, dj =
d|max(X), no additional knowledge on problem
instances is given (cf. Section 3). However, if some
information (not all) is given in advance, i.e., in
semi-online cases, we can utilize this knowledge to
achieve more efficient procedures. We denote by
P2|GoS, online, dj = d,Δ|max(X) the semi-online
problem if some information on the maximum processing
time is known, where Δ ∈ {pmax, pmax,1, pmax,2} stands
for the maximum processing time (pmax), along with its
hierarchy k ∈ {1, 2} (pmax,1 and pmax,2) (cf. Section 4).

3. Pure online case
In this section, we study the online problem
P2|GoS, online, dj = d|max(X), where no information
on problem instances is available a priori. We prove
a lower bound of

√
2 for this problem, and provide an

optimal online algorithm solving it with a competitive
ratio of

√
2. It is worth mentioning that this model has not

been studied before, even in our previous research (Xiao
et al., 2021; 2023).

Theorem 1. Any online algorithm A for the problem
P2|GoS, online, dj = d|max(X) has a competitive ra-
tio of at least

√
2.

Proof. Let d = 1, and the first job in the job sequence be
J1 = (

√
2− 1, 2).

Case 1: If J1 is assigned to M1, then the last job is J2 =
(1, 1), which implies that XA = 1. However, we have
XOPT =

√
2, by assigning J2 to M1, and J1 to M2.

Case 2: If J1 is assigned to M2, the second job J2 =
(1, 2) arrives.

Case 2.1: If J2 is assigned to M2, no more jobs arrive,
implying that XA = 1. But we have XOPT =

√
2 again,

by assigning J1 and J2 to different machines.

Case 2.2: If J2 is assigned to M1, the last job is J3 =
(1, 1) and we get XA =

√
2. However, we have XOPT =

2, which is obtained by assigning J3 to M1, and {J1, J2}
to M2.

Therefore, in any case, we have XOPT

XA ≥ √
2, and the

theorem holds. �

Now we propose an optimal online algorithm solving
the pure online scheduling problem considered, presented
as Algorithm 1. The primary concept of this algorithm
is that large jobs are not assigned to M2 (the machine
dedicated for high-hierarchy jobs only) unless the current
load of M2 is relatively small, which helps to keep a
threshold of the load on this machine.

Theorem 2. The competitive ratio of Algorithm 1 is
√
2.

Proof. Based on Lemma 1, if min {L1, L2} ≥ d, we have
XA = 2d ≥ XOPT. If max {L1, L2} ≤ d, we have XA =
T ≥ XOPT. This implies that we only need to consider the
case when min {L1, L2} < d < max {L1, L2}, implying
that

XA = d+min {L1, L2}.

Subsequently, we distinguish the following two cases:

Case 1: max {L1, L2} = L1 > d. In this case, we have
XA = d + L2. If there is no job of hierarchy 2 assigned
to M1, we have L1 = T1 > d and L2 = T2 < d, implying
that Algorithm 1 reaches the optimal solution. Otherwise,
let Jl = (pl, 2) be the last job of hierarchy 2 assigned to
M1. By the choice of Algorithm 1, we have L2 ≥ Ll−1

2 >
(
√
2− 1)d. By Lemma 1, we have

XOPT

XA
≤ 2d

d+ L2
≤ 2d

d+ (
√
2− 1)d

=
√
2.

Case 2: max {L1, L2} = L2 > d. In this case, we have
XA = d + L1. Let L1,2 be the total processing time of
jobs of hierarchy 2 assigned to M1, and Jl = (pl, 2) be
the last job assigned to M2.

If Jl is assigned to M2 in Line 7 of the algorithm,
we have L2 = Ll

2 = Ll−1
2 + pl ≤ d, contradicting the

assumption L2 > d.
If Jl is assigned to M2 in Line 10, we have L2 =

Ll
2 = Ll−1

2 + pl > d and Ll−1
2 ≤ (

√
2− 1)d. Therefore,

T2 = Ll−1
2 + pl + L1,2 ≤ (

√
2 − 1)d + pl + L1,2 ≤

Online and semi-online scheduling on two hierarchical machines . . . 257

Algorithm 1. A1.
1: Initially, let L0

2 = 0 and j = 1;
2: When a new job Jj = (pj , gj) arrives,
3: if gj = 1 then
4: Assign Jj to M1, and set Lj

2 = Lj−1
2 .

5: else
6: if Lj−1

2 + pj ≤ d then
7: Assign Jj to M2, and set Lj

2 = Lj−1
2 + pj .

8: else
9: if Lj−1

2 ≤ (
√
2− 1)d then

10: Assign Jj to M2, and set Lj
2 = Lj−1

2 + pj .
11: else
12: Assign Jj to M1, and set Lj

2 = Lj−1
2 .

13: end if
14: end if
15: end if

√
2d + L1,2, where the last inequality follows from the

assumption pl ≤ d. Based on Lemma 1, we have

XOPT

XA
≤ T

d+ L1
=

T1 + T2

d+ T1 + L1,2

≤ T1 +
√
2d+ L1,2

d+ T1 + L1,2
≤

√
2.

�

4. Semi-online case with the largest
processing time known

In this section, we consider a series of models when some
information on the largest job processing time is known
in advance, which we denote as P2|GoS, online, dj =
d,Δ|max(X), and Δ ∈ {pmax, pmax,1, pmax,2}. If Δ =
pmax, this means that we know the information on the
largest processing time of the input jobs. Unfortunately,
just this information is not helpful, since by applying
the same instance as in the proof of Theorem 1
we can get a lower bound of

√
2 for the problem

P2|GoS, online, dj = d, pmax|max(X), even we know
that the largest job processing time is 1. This means that
we cannot obtain a better semi-online algorithm with the
knowledge of pmax, compared with the pure online case.

However, the bounds could be reduced if we knew
more about the largest processing time of the jobs. We
define Δ = pmax,k if we know pmax, and also know that
the hierarchy of the job with processing time pmax is k
(k ∈ {1, 2}). For Δ = pmax,1, i.e., for the problem
P2|GoS, online, dj = d, pmax,1|max(X), we prove a
tight bound of 6

5 (cf. Section 4.1). In contrast, if the
hierarchy of the largest job is 2 (Δ = pmax,2), i.e., for
the problem P2|GoS, online, dj = d, pmax,2|max(X), a
tight bound is proven to be

√
5− 1 (cf. Section 4.2).

4.1. Largest job with a low hierarchy. In this
subsection, we focus on the semi-online case when the
largest job has hierarchy 1, allowing its processing on
machine M1 only (Δ = pmax,1), i.e., for any job Jj =
(pj , gj), we have

pj ≤ pmax,1 ≤ d.

We prove the lower bound of this problem in Theorem 3,
and then propose an optimal semi-online algorithm.

Theorem 3. Any online algorithm A for the problem
P2|GoS, online, dj = d, pmax,1|max(X) has a compet-
itive ratio of at least 6

5 .

Proof. Let d = 1 and pmax,1 = 2
3 . The first two jobs are

J1 = (23 , 1) and J2 = (13 , 2). Job J1 can only be assigned
to M1.

Case 1: If J2 is assigned to M1, the last job J3 = (23 , 1)
arrives, implying that XA = 1. However, we have
XOPT = 4

3 by assigning {J1, J3} to M1, and J2 to M2.

Case 2: If J2 is assigned to M2, the next job J3 = (13 , 2)
arrives. Subsequently, we distinguish the following two
subcases:

Case 2.1: If J3 is assigned to M1, the last job J4 = (23 , 1)
arrives, implying that XA = 4

3 . But we can get XOPT = 5
3

by assigning {J1, J4} to M1, and {J2, J3} to M2.

Case 2.2: If J3 is assigned to M2, the next job J4 = (23 , 2)
arrives.

If J4 is assigned to M1, the last job J5 = (23 , 1)
arrives, implying that XA = 5

3 . On the other hand, by
the assignment of {J1, J5} to M1 and {J2, J3, J4} to
M2, we get XOPT = 2.

If J4 is assigned to M2, then no more jobs arrive,
implying that XA = 5

3 . In this case, an optimal solution
can be get by assigning {J1, J3} to M1 and {J2, J4} to
M2, with XOPT = 2.

Thus, XOPT

XA ≥ 6
5 in any case. �

Now we propose an optimal semi-online
algorithm, i.e., Algorithm 2, to solve the problem
P2|GoS, online, dj = d, pmax,1|max(X). The main
idea of this algorithm is as follows: we keep assigning
jobs with hierarchy 2 to machine M2, until its load
first exceeds a threshold 2d

3 . The competitive ratio of
Algorithm 2 is proven in Theorem 4.

Theorem 4. The competitive ratio of Algorithm 2 is 6
5 .

Proof. As before, if min {L1, L2} ≥ d or
max {L1, L2} ≤ d, Algorithm 2 reaches the optimal
solution. We only need to consider the case when
min {L1, L2} < d < max {L1, L2}, which implies that

XA = d+min {L1, L2}.

258 M. Xiao et al.

Algorithm 2. A2.
1: Initially, let L0

2 = 0 and j = 1.
2: When a new job Jj = (pj , gj) arrives,
3: if gj = 1 then
4: Assign Jj to M1, and set Lj

2 = Lj−1
2 .

5: else
6: if Lj−1

2 < 2d
3 then

7: Assign Jj to M2, and set Lj
2 = Lj−1

2 + pj .
8: else
9: Assign Jj to M1, and set Lj

2 = Lj−1
2 .

10: end if
11: end if

We distinguish the following two cases.

Case 1: max {L1, L2} = L1 > d. In this case, we have
XA = d+L2. If there is no job of hierarchy 2 assigned to
M1, we have L1 = T1 > d and L2 = T2 < d, which
implies that Algorithm 2 reaches the optimal solution.
Otherwise, let Jl = (pl, 2) be the last job of hierarchy
2 assigned to M1. By the choice of Algorithm 2, we have
L2 ≥ Ll−1

2 ≥ 2d
3 . Based on Lemma 1, we have

XOPT

XA
≤ 2d

d+ L2
≤ 2d

d+ 2d
3

=
6

5
.

Case 2: max {L1, L2} = L2 > d. In this case, we have
XA = d + L1. If pmax,1 ≥ 2d

3 , we have L1 ≥ pmax,1 ≥
2d
3 . Therefore,

XOPT

XA
≤ 2d

d+ L1
≤ 2d

d+ 2d
3

=
6

5
.

If pmax,1 < 2d
3 , let Jl = (pl, 2) be the last job

assigned to M2. Assume that pl = αd ≤ pmax,1, which
implies α < 2

3 . By the choice of Algorithm 2, we have
Ll−1
2 < 2d

3 and L2 = Ll
2 = Ll−1

2 + pl <
2d
3 + αd. Based

on Lemma 1, we have

XOPT

XA
≤ T

d+ L1
=

L1 + L2

d+ L1
= 1 +

L2 − d

L1 + d

< 1 +
2d
3 + αd− d

L1 + d
.

Since L1 ≥ pmax,1 ≥ pl = αd, we have

XOPT

XA
≤ 1 +

2d
3 + αd− d

L1 + d
≤ 1 +

(α− 1
3)d

(1 + α)d

= 1 +
3α− 1

3 + 3α
= 2− 4

3 + 3α
<

6

5
,

where the last inequality follows from the fact that α < 2
3 .
�

4.2. Largest job with a high hierarchy. In this
subsection, we focus on the case when the largest job
has hierarchy 2, allowing its processing on both machines
(Δ = pmax,2), i.e., for any job Jj = (pj , gj), we have

pj ≤ pmax,2 ≤ d.

As for the previous case, we prove the lower bound
of this problem in Theorem 5, and propose an optimal
semi-online algorithm, i.e., Algorithm 3.

Theorem 5. Any online algorithm A for the problem
P2|GoS, online, dj = d, pmax,2|max(X) has a compet-
itive ratio at least

√
5− 1.

Proof. Let d = 1 and pmax,2 =
√
5−1
2 . The first job is

J1 = (
√
5−1
2 , 2).

Case 1: If J1 is assigned to M1, the last two jobs J2 =
(12 , 1) and J3 = (12 , 1) arrive, which implies that XA = 1.
But we can get XOPT =

√
5+1
2 by assigning {J2, J3} to

M1, and J1 to M2.

Case 2: If J1 is assigned to M2, the next job J2 =

(
√
5−1
2 , 2) arrives.

Case 2.1: If J2 is assigned to M1, the last two jobs
J3 = (12 , 1) and J4 = (12 , 1) arrive, which implies that
XA = 1 +

√
5−1
2 =

√
5+1
2 . However, XOPT = 2 by the

assignment of {J3, J4} to M1, and {J1, J2} to M2.

Case 2.2: If J2 is assigned to M2, no more jobs arrive,
which implies that XA = 1. In this situation, XOPT =√
5− 1 by assigning J1 and J2 to different machines.

Thus, XOPT

XA ≥ √
5− 1 in any case. �

The main idea of Algorithm 3 is to preserve machine
M2 for the first largest job in the input sequence until it
appears. We use n2 = 0 to denote that the first largest job
has not appeared, and n2 is set to be 1 when this job comes
to the system. The competitive ratio of this approach is
proven in Theorem 6.

Theorem 6. Algorithm 3 achieves a competitive ratio of√
5− 1.

Proof. As before, whenever min {L1, L2} ≥ d or
max {L1, L2} ≤ d, Algorithm 3 reaches the optimal
solution. We only need to consider the case when
min {L1, L2} < d < max {L1, L2}, implying that

XA = d+min {L1, L2}.

Subsequently, we distinguish the following two cases.

Case 1: max {L1, L2} = L1 > d. In this case, we have
XA = d + L2. If there is no job of hierarchy 2 assigned
to M1, we have L1 = T1 > d and L2 = T2 < d, implying

Online and semi-online scheduling on two hierarchical machines . . . 259

Algorithm 3. A3.
1: Initially, let L0

2 = 0, j = 1 and n2 = 0.
2: When a new job Jj = (pj , gj) arrives,
3: if gj = 1 then
4: Assign Jj to M1, and set Lj

2 = Lj−1
2 .

5: else
6: if n2 = 0 && pj �= pmax,2 then
7: if Lj−1

2 + pmax,2 + pj ≤ (
√
5− 1)d then

8: Assign Jj to M2, and set Lj
2 = Lj−1

2 + pj .
9: else

10: Assign Jj to M1, and set Lj
2 = Lj−1

2 .
11: end if
12: else
13: if n2 = 0 && pj = pmax,2 then
14: Set n2 = 1, assign Jj to M2, and set Lj

2 =

Lj−1
2 + pj .

15: else
16: if Lj−1

2 + pj ≤ (
√
5− 1)d then

17: Assign Jj to M2, and set Lj
2 = Lj−1

2 + pj .
18: else
19: Assign Jj to M1, and set Lj

2 = Lj−1
2 .

20: end if
21: end if
22: end if
23: end if

that Algorithm 3 reaches the optimal solution. Otherwise,
let Jl = (pl, 2) be the last job of hierarchy 2 assigned to
M1, and Jt = (pt, 2) be the first largest job with pt =
pmax,2. Clearly, l �= t, as Jt is assigned to M2.

If l < t, by the choice of Algorithm 3, we have (
√
5−

1)d < Ll−1
2 + pmax,2 + pl ≤ 2(Ll−1

2 + pmax,2). Since
Jt is assigned to M2 after job Jl, we have L2 ≥ Ll−1

2 +

pmax,2 > (
√
5−1)d
2 .

If l > t, Jt is assigned to M2 before assigning job Jl,
which implies that Ll−1

2 ≥ pt = pmax,2 ≥ pl. Moreover,
by the choice of Algorithm 3, we have Ll−1

2 +pl > (
√
5−

1)d, which implies that L2 ≥ Ll−1
2 ≥ (

√
5−1)d
2 . Based on

Lemma 1, we have

XOPT

XA
≤ 2d

d+ L2
≤ 2d

d+ (
√
5−1)d
2

=
√
5− 1.

Case 2: max {L1, L2} = L2 > d. Set XA = d + L1.
Let Jl = (pl, 2) be the last job assigned to M2. If Jl
is assigned to M2 in Line 16, according to the choice of
Algorithm 3, L2 = Ll−1

2 + pl ≤ (
√
5− 1)d.

If Jl is the first largest job with pl = pmax,2, it is
assigned to M2 in Line 13. Let Jt = (pt, 2) be the last
job assigned to M2 before Jl. According to the choice of
Algorithm 3, we have L2 = Lt−1

2 + pt + pl = Lt−1
2 +

pmax,2 + pt ≤ (
√
5− 1)d.

By Lemma 1, we have

XOPT

XA
≤ T

d+ L1
=

L1 + L2

d+ L1
≤ (

√
5− 1)d+ L1

d+ L1

≤
√
5− 1,

which is the desired conclusion. �

5. Conclusions
In this paper, we studied several online or semi-online
scheduling models with the goal of early work
maximization under a common due date in a system
consisting of two identical hierarchical machines. For
each model, we proposed an optimal online or semi-online
algorithm, by analysing the problem’s lower bound and
proving the algorithm’s competitive ratio.

Particularly, we studied the pure online model
where no information on problem input is known
in advance (P2|GoS, online, dj = d|max(X)), the
semi-online models where the maximum processing time
is known together with the hierarchy of the largest
job (P2|GoS, online, dj = d, pmax,1|max(X) and
P2|GoS, online, dj = d, pmax,2|max(X)). For these
models, we designed optimal (semi-)online algorithms
with competitive ratios of

√
2, 6

5 and
√
5−1, respectively.

The obtained results demonstrate that the natural
directions for future research could be the analysis
of some other semi-online variants, such as when the
information of the jobs from one of the hierarchies is
known; but for the other hierarchy it is completely
unknown. Moreover, one could focus on the more
complex models, such as extending our models to two (or
more) uniform machines (Xiao et al., 2023), scheduling
two (or more) types of jobs on an arbitrary number
of machines, scheduling jobs with a machine-dependent
processing time, or even scheduling jobs with arbitrary
due dates.

Acknowledgment
This work is supported in part by the National Natural
Science Foundation of China (nos. 12371363, 12071417),
the Foundation Research Project of the Educational
Department of Liaoning Province (LJKZZ20220085),
and the statutory funds of the Poznan University of
Technology (Poland).

References
Akaria, I. and Epstein, L. (2022). Online scheduling with

migration on two hierarchical machines, Journal of Com-
binatorial Optimization 44(5): 3535–3548.

Bar-Noy, A., Freund, A. and Naor, J. (2001). On-line load
balancing in a hierarchical server topology, SIAM Journal
on Computing 31(2): 527–549.

260 M. Xiao et al.

Chen, X., Kovalev, S., Liu, Y., Sterna, M., Chalamon, I.
and Błażewicz, J. (2021). Semi-online scheduling on
two identical machines with a common due date to
maximize total early work, Discrete Applied Mathematics
290: 71–78.

Chen, X., Liang, Y., Sterna, M., Wang, W. and Błażewicz, J.
(2020a). Fully polynomial time approximation scheme to
maximize early work on parallel machines with common
due date, European Journal of Operational Research
284(1): 67–74.

Chen, X., Shen, X., Kovalyov, M.Y., Sterna, M. and
Błażewicz, J. (2022). Alternative algorithms for identical
machines scheduling to maximize total early work with a
common due date, Computers & Industrial Engineering
171: 108386.

Chen, X., Sterna, M., Han, X. and Błażewicz, J. (2016).
Scheduling on parallel identical machines with late work
criterion: Offline and online cases, Journal of Scheduling
19: 729–736.

Chen, X., Wang, W., Xie, P., Zhang, X., Sterna, M. and
Błażewicz, J. (2020b). Exact and heuristic algorithms
for scheduling on two identical machines with early
work maximization, Computers & Industrial Engineering
144: 106449.

Gordon, V., Proth, J.M. and Chu, C. (2002). A survey of
the state-of-the-art of common due date assignment and
scheduling research, European Journal of Operational Re-
search 139(1): 1–25.

Graham, R., Lawler, E., Lenstra, J. and Rinnooy Kan, A.
(1979). Optimization and approximation in deterministic
sequencing and scheduling: A survey, Annals of Discrete
Mathematics 5: 287–326.

Györgyi, P. and Kis, T. (2020). A common approximation
framework for early work, late work, and resource leveling
problems, European Journal of Operational Research
286(1): 129–137.

Janiak, A., Kwiatkowski, T. and Lichtenstein, M. (2013).
Scheduling problems with a common due window
assignment: A survey, International Journal of Applied
Mathematics and Computer Science 23(1): 231–241, DOI:
10.2478/amcs-2013-0018.

Jiang, Y. (2008). Online scheduling on parallel machines with
two GoS levels, Journal of Combinatorial Optimization
16(1): 28–38.

Jiang, Y., Guan, L., Zhang, K., Liu, C., Cheng, T. and Ji, M.
(2021). A note on scheduling on two identical machines
with early work maximization, Computers & Industrial
Engineering 153: 107091.

Jiang, Y., He, Y. and Tang, C. (2006). Optimal online algorithms
for scheduling on two identical machines under a grade
of service, Journal of Zhejiang University: Science A
7(3): 309–314.

Li, W. (2024). Improved approximation schemes for early work
scheduling on identical parallel machines with common
due date, Journal of the Operations Research Society of
China 12: 341–350, DOI: 10.1007/s40305-022-00402-y.

Liu, X., Wang, W., Chen, X., Sterna, M. and Blazewicz,
J. (2023). Exact approaches to late work scheduling
on unrelated machines, International Journal of Applied
Mathematics and Computer Science 33(2): 285–295, DOI:
10.34768/amcs-2023-0021.

Luo, T. and Xu, Y. (2015). Semi-online hierarchical load
balancing problem with bounded processing times, Theo-
retical Computer Science 607: 75–82.

Park, J., Chang, S. and Lee, K. (2006). Online and semi-online
scheduling of two machines under a grade of service
provision, Operations Research Letters 34(6): 692–696.

Sterna, M. (2011). A survey of scheduling problems with late
work criteria, Omega 39(2): 120–129.

Sterna, M. (2021). Late and early work scheduling: A survey,
Omega 104: 102453.

Sterna, M. and Czerniachowska, K. (2017). Polynomial
time approximation scheme for two parallel machines
scheduling with a common due date to maximize early
work, Journal of Optimization Theory and Applications
174: 927–944.

Wang, W., Chen, X., Musial, J. and Blazewicz, J. (2020).
Two meta-heuristic algorithms for scheduling on unrelated
machines with the late work criterion, International
Journal of Applied Mathematics and Computer Science
30(3): 573–584, DOI: 10.34768/amcs-2020-0042.

Xiao, M., Liu, X. and Li, W. (2021). Semi-online early work
maximization problem on two hierarchical machines with
partial information of processing time, in W. Wu and H. Du
(Eds), Algorithmic Applications in Management, Lecture
Notes in Computer Science, Vol. 13153, Springer, Cham,
pp. 146–156.

Xiao, M., Liu, X. and Li, W. (2023). Semi-online early
work maximization problems on two hierarchical uniform
machines with partial information of processing time,
Journal of Combinatorial Optimization 46(3): 21.

Man Xiao is currently a doctoral student in the
School of Mathematics and Statistics at Yunnan
University, China. His research interests include
online scheduling and computational geometry.

Xiaoqiao Liu holds an MS degree from the
School of Mathematics and Statistics at Yunnan
University, China. Her research interests include
combinatorial optimization and scheduling prob-
lems.

Online and semi-online scheduling on two hierarchical machines . . . 261

Weidong Li received his PhD degree in the
School of Mathematics and Statistics at Yunnan
University, China, in 2010. He is currently a full
professor there. His research interests include
discrete optimization, algorithmic game theory
and cloud computing.

Xin Chen received his BS degree in computer
science from the Dalian University of Technol-
ogy, China, in 2005 and his PhD degree in in-
formation science from the Poznan University
of Technology, Poland, in 2014. He is cur-
rently a full professor at the School of Electronic
and Information Engineering, Liaoning Univer-
sity of Technology, China. His research covers
combinatorial optimization, especially schedul-
ing problems and algorithm design.

Malgorzata Sterna is a full professor at the
Poznan University of Technology. Her research
interests include scheduling theory, complexity
theory, algorithms design, combinatorial opti-
mization and selected aspects of graph theory.
She holds a PhD and a habilitation (DSc) in
computer science from the Poznan University of
Technology.

Jacek Blazewicz is a full professor at the Poz-
nan University of Technology and the director of
the Institute of Computing Science there. His re-
search interests include algorithm design, com-
putational complexity, scheduling, combinatorial
optimization, bioinformatics, e-commerce. He
holds a PhD and a habilitation (DSc) in computer
science from the Poznan University of Technol-
ogy. His publication record includes over 400 pa-
pers in many outstanding journals. He is also the

author and a co-author of over ten monographs.

Received: 20 October 2023
Revised: 10 January 2024
Accepted: 2 February 2024

	Introduction
	Problem definition
	Pure online case
	Semi-online case with the largest processing time known
	Largest job with a low hierarchy
	Largest job with a high hierarchy

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

