
Int. J. Appl. Math. Comput. Sci., 2024, Vol. 34, No. 2, 263–275
DOI: 10.61822/amcs-2024-0019

ASSIGNMENT OF TASKS TO MACHINES UNDER DATA REPLICATION
WITH A TIE TO STEINER SYSTEMS

PAWEŁ WOJCIECHOWSKI a,b,* , MARTA KASPRZAK a

aInstitute of Computing Science
Poznan University of Technology

Piotrowo 2, 60-965 Poznań, Poland
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In the paper a problem of assignment of tasks to machines is formulated and solved, where a criterion of data replication
is used and a large size of data imposes additional constraints. This problem is met in practice when dealing with large
genomic files or other types of vast data. The necessity of comparing all pairs of files within a big set of DNA sequencing
results, which we collected, maintained, and analyzed within a national genomic project, brought us to the proposed results.
This problem resembles that of generating a particular Steiner system, and a mechanism observed there is employed in one
of our algorithms. Based on the problem complexity, we propose two heuristic algorithms, which work very well even for
instances with tight constraints and a heterogeneous environment defined. In addition, we propose a simplified method,
nevertheless capable of finding very good solutions and surpassing the algorithms in some special cases. The methods are
validated in tests on a wide set of instances, where values of parameters reflect our real-world application and where their
usefulness is proven.
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1. Introduction
Analysis of genomic data, especially when dealing with
the whole-genome type, requires significant computing
resources and disk space. In the case of the human
genome, files resulting from standard genome sequencing
(NGS technology with 30x coverage) of one sample take
up about 100 GB, while a file with results of analyses
performed for that sample to detect genetic variants takes
about 250 MB (Wojciechowski et al., 2021). These are the
sizes for compressed files. While working in a national
genomic project, we encountered the problem of pairwise
comparison of a significant number of such large files. In
this case, it was a matter of finding potential relatedness
between samples (in population studies, as a rule, samples
of closely related individuals are removed from further
analysis because they could introduce a bias into results).
The issue is the allocation of files (samples) to machines
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so that similarity of each pair of files can be computed
with limited disk resources of each available machine.
Naturally, the computations should finish as quickly as
possible and the data replication should be as small as
possible, due to the above mentioned limited disk space
and costs of data transfer.

This problem has much broader application. For
example, building phylogenetic trees or using clustering
algorithms based on genome sequences often requires
determining symmetric distances between all pairs of
genomes (see, e.g., Bogdanowicz and Giaro, 2013).
For this purpose, approximate methods of similarity
assessment based on similarity sets of k-mers are most
often used (e.g., average nucleotide identity, the measure
implemented in fastANI (Jain et al., 2018)), but these are
very simplified approaches (Ondov et al., 2016). Another
example is the problem of de novo DNA sequence
assembly. In general, there are two main approaches
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to solve the problem, one based on overlap graphs and
the other on subgraphs of de Bruijn graphs (Blazewicz
et al., 2018). The first strategy assumes, in its initial stage,
the construction of a graph where vertices correspond
to DNA sequences and edges correspond to overlaps
between these sequences. In a standard experiment,
there are generally millions of such sequences; thus, an
exact comparison of all pairs is impossible. However,
with new coming technologies, the number of sequences
decreases and their length increases significantly (see,
e.g., Berlin et al., 2015; Nurk et al., 2020), and the
problem formulated here and associated algorithms could
help also in such a kind of genome research. But the issues
discussed in the paper have wider applicability, outside
the area of bioinformatics, wherever a comparison (in
any sense) of all pairs of large files from a given set is
necessary.

According to our knowledge, this problem has
not been solved in the literature. There is a lot
of work related to task assignment in a distributed
system (see, e.g., Majdzik, 2022), also mentioning data
replication, but with a different formulation as well as
uncomparable due to the requirements in our problem.
For example, Gopalakrishnan and Caccamo (2006) used
a criterion of data replication for task allocation to
heterogeneous multiprocessors in a distributed system,
but their tasks were periodic, associated with release
times and deadlines, and solved multiple times on
different machines. Briquet et al. (2007) scheduled
tasks connected with transfer of large input data files
and also considered data replication, but they assumed
shared memory and a dynamically changing environment.
Their scheduling pattern, called temporal tasks grouping,
consists in grouping tasks needing the same input data
and will not work for tasks processing different pairs of
files. Nukarapu et al. (2011) proposed a scheduling
problem in data-intensive distributed systems with data
kept in many resource sites possibly outside machines.
However, reduction in the time of access to files justifies
data multiplication as long as there is free disk space in the
sites. Povoa and Xavier (2018) worked on a static problem
that combined both scheduling and replication problems
in data-intensive distributed systems. Their model, as
ours, assumes the same processing power and different
storage capacity of machines but uses a different criterion
function and is much more complex than required for
our needs. None of the approaches was based on the
assumption that tasks consist in processing all pairs of data
packages given at the input.

The organization of the paper is as follows. In
Section 2 the new problem is described and formulated in
terms of integer linear programming. Section 3 provides
additional analysis on constraints from the problem
together with an approximate method used further for
comparison. The problem complexity is analyzed in

Section 4. In Section 5 two heuristic algorithms are
proposed with proofs of their correctness and complexity.
Results of a computational experiment are presented
and discussed in Section 6. We conclude the paper in
Section 7.

2. Problem formulation
In this real-world problem the goal is to process all
defined tasks optimally according to a specified criterion,
on a series of machines, such that the load balancing
and file transfer are kept within given limits. The tasks
altogether consist in comparing (in some sense) all pairs
of large files given at the input, i.e., making computations
from the whole upper triangular matrix, besides the
diagonal, where rows and columns correspond to the
files, and entries correspond to elementary computations.
Differences in sizes of particular files are negligible;
therefore, the file transfer can be expressed in the number
of files. A task assigned to a machine consists in
computing some pairs of files for a package of files sent to
the machine (see Fig. 1 for an illustration).

The number of machines in the problem is specified
and all are assumed, in principle, to be involved in
computations. The balance of workloads must be kept
within a range defined by a user. Because of substantial
sizes of files, their transfer to machines and storage
are critical in the problem. The optimization criterion
concerns data replication, namely, the total amount of data
transferred to machines is minimized. In addition, there
are constraints for every machine on the data amount they
can receive. It is assumed that, except for disk capacity,
the machines are characterized by similar parameters
regarding computations.

Data replication grows with the growing number of
machines; on the other hand, the average share of a
machine in the total amount of transferred data decreases.
For example, for a certain number of files, processing all
their pairs on one machine needs all files to be uploaded
once, on three machines approximately twice, and on
five machines approximately thrice, assuming relatively
uniform workload. At the same time, one machine out
of three gets on average ca. 2/3 of the whole set of files,
while one machine out of five ca. 3/5 of the files.

With regard to minimization of data transfer, optimal
use of a package of files sent to a machine means
processing all pairs present there. But in different
packages the same pairs of files inevitably will occur;
therefore, with regard to load balancing, the upper
triangular matrix should be partitioned into disjoint and
possibly equal subareas in the number equal to that of
machines. Such a subarea does not have to be in one
part. If we did not consider data replication, each of
m machines would get a subarea of around 1/m of the
number of entries of the upper triangular matrix, i.e.,
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around n(n − 1)/(2m) entries, where n is the number
of files. Such a subarea, in the worst case (unattainable
in practice), if it were composed of entries not involving
common files, would require around n(n − 1)/m files
to be sent to a machine. In the best case, the transfer
would include around

√
n(n− 1)/m files and all pairs

present there would be processed on that machine. In our
problem, an optimal size of the transferred package will be
in between these values, much closer to the second one.

This problem can be formulated as the following
0-1 integer linear programming (0-1 ILP) problem:

min

m∑

k=1

n∑

i=1

dki

subject to

m∑

k=1

xk
ij = 1, i = 1, . . . , n− 1, j = i+ 1, . . . , n,

(1)

ski =

i−1∑

j=1

xk
ji +

n∑

j=i+1

xk
ij , k = 1, . . . ,m,

i = 1, . . . , n, (2)

ski − (n− 1)dki ≤ 0, k = 1, . . . ,m, i = 1, . . . , n,
(3)

ski − dki ≥ 0, k = 1, . . . ,m, i = 1, . . . , n, (4)
n∑

i=1

dki ≤ Bk, k = 1, . . . ,m, (5)

lk =

n−1∑

i=1

n∑

j=i+1

xk
ij , k = 1, . . . ,m, (6)

|li − lj| ≤ K, i = 1, . . . ,m− 1, j = i+ 1, . . . ,m,
(7)

dki ∈ {0, 1}, k = 1, . . . ,m, i = 1, . . . , n, (8)

xk
ij ∈ {0, 1}, i = 1, . . . , n− 1, j = i+ 1, . . . , n,

k = 1, . . . ,m, (9)

where the number of machines m ≥ 2 and the number of
files n ≥ 2; xk

ij are decision variables for all i, j, k; B is
a vector of size equal to m containing, for every machine
an upper bound on the size of a package of files sent to
the machine; K is an admitted difference between sizes
of tasks of particular machines expressed in the number
of compared pairs of files. Values lk, ski , and dki are
derived from xk

ij and mean, respectively, the number of
pairs assigned to machine k, the number of pairs including
file i assigned to machine k, and a binary variable stating
whether file i is assigned to machine k. The minimized
objective function divided by n gives the replication ratio
of transferred data. The resulting assignment of tasks to
machines is read from the decision variables xk

ij , i =

1, . . . , n − 1 and j = i + 1, . . . , n, where 1 means that
the pair of files i and j is compared on machine k.

3. Dealing with constraints
If the constraint (5) cannot be satisfied because of
insufficient disk storage capacity of a machine or several
machines, the solution may be to divide tasks into parts.
The division can be realized simply by multiplying m
in the above problem. The lengthened vector B is then
filled with copies of the initial B. For example, replacing
m by 2m and doubling B implies division of tasks into
halves; the resulting assignment for machine k is read
from xk

ij (the first task) and xk+m
ij (the second task) for

the whole range of i and j. A drawback of such an
approach is an increase in the total amount of transferred
data. Another method may be to solve the problem with
m equal to the number of machines and with selected
positions of vector B set to arbitrarily large values, and
next, for every machine k with changed Bk, to send files
in portions resulting from partitioning the subarea of the
matrix assigned to machine k. This approach does not
enlarge the data transfer, because files once uploaded to
a machine stay there as long they are needed for further
computations. For example, a subarea of the matrix
covering a set X of rows and a set Y of columns may be
divided into disjoint parts with respect to X = X1 ∪X2;
files are then transferred first in the portion X1 ∪ Y ,
and, after finishing computations and removing from the
machine files from X1 \ Y , the remaining files from
X2 \ Y are uploaded. Sometimes the division must be
done differently, when sets X and Y share a substantial
number of files, because X1 ∪ Y may not give a required
reduction. For example, if X = Y , at least three parts of
the subarea are necessary to reduce the maximal number
of files transferred to a machine, X1 ∪ X2, X2 ∪ X3,
and X1 ∪ X3. But, actually, the case of X = Y usually
implies a lower number of files involved than the case of
X ∩ Y = ∅, and such a reduction may be unnecessary.

The approach with lengthening vector B can also be
used for selected machines, those more computationally
efficient than others, if such exist and we want to use them
multiple times. The values Bi corresponding to these
machines are then appended to B, and m is increased
to the new length of B. It may be accompanied by an
adjustment of the constraint on K .

With a very large number of files, in order to improve
the efficiency of solving the above problem, we can
change the granularity of objects taken at the input. We
can treat a group of files as a single file, i.e., place it in
one row/column of the matrix. If all rows and columns
are associated with groups of a similar cardinality, each
entry of the matrix brings similar load, as in the basic
problem; however, some adjustment of the value of K
may be necessary. We solve then the problem with
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Fig. 1. Tasks from the problem altogether compose the upper
triangular matrix, besides the diagonal, where rows and
columns correspond to compared files. In a simplified
approach the matrix can be divided as shown, where
each subarea defines a task for a machine. The method
cell-adjust divides the matrix into a predefined
number of cells and assigns to one machine either one
regular cell (in light grey) or one half-filled cell (in dark
grey), or one and a half, depending on the granular-
ity. Part (A) depicts the example for m = 3 machines,
n = 12 files, and p = 2 groups of files; each machine
will get one cell. Part (B) depicts the example for m = 3
machines, n = 12 files, and p = 3 groups of files; each
machine will get one regular cell and one half-filled cell.
A subarea of the matrix assigned to a machine (i.e., a
task) may be composed of separated parts.

values from B reduced to the integer part due to dividing
them by the cardinality of the largest group. However,
in this scheme we get additional entries to process, the
ones from the diagonal of the new matrix, where we
need to compare all pairs of single files composing a
group. Refer to Fig. 1, where matrices with single files
corresponding to rows and columns are presented. If we
group the files by six or four, we obtain new matrices
with two or three rows/columns, respectively. In these
compressed matrices, entries at the diagonal also bring
some computation to be done. Let us call the areas
of initial matrices that are compressed to entries of the
new matrices “cells”, “half-filled cells” if the compressed
entries lie at the diagonal, and “regular cells” otherwise.
The simplest way to compute such a half-filled cell, which
does not increase the transferred amount of data, is to
assign it to the machine that gets this group of files with a
regular task.

If we decide to change the granularity of objects
taken at the input, we can adjust their number to our
purposes, which may be balancing workloads. To achieve
it, one might settle the number of regular cells equal
to m. In most cases it is not possible to adjust the number
of cells exactly in this manner, but we have also these
half-filled cells at the diagonal and it is the margin which
guarantees relatively equable workloads with a deviation
± half of a cell. The matrix has p(p − 1)/2 regular cells,
where p is the number of groups of files (rows/columns
after the compression), and p half-filled cells. We need

to determine the value of p to keep m within the range
〈p(p− 1)/2; p(p+ 1)/2〉. The boundaries of this interval
are defined by two quadratic functions, which are distant
always by a unit on p axis in the Cartesian plane. Thus m,
where m ≥ p(p− 1)/2 and m ≤ p(p+ 1)/2, for each its
natural value, has a corresponding natural value of p inside
this interval (at least one value, at most two). For two
possible values of p, choosing the smaller one will cause
machines to get tasks composed of either one regular cell
or one half-filled cell; the greater value of p will cause
machines to get either one regular cell or one and a half,
but groups of files assigned to cells will be smaller then.
For example (Fig. 1), for m = 3, one can choose p = 2
or 3; with n = 12 files (resulting in n(n − 1)/2 = 66
pairs to compare) and p = 2, each machine will get either
36 pairs (one regular cell, groups of 6 files) or 15 pairs
(one half-filled cell); for p = 3, each machine will get
22 pairs (1.5 of a cell, groups of 4 files). The replication
ratio will be 2 for both values of p. For m = 6, one
can choose p = 3 or 4; with 12 files and p = 3, each
machine will get either 16 pairs to compare (one regular
cell, groups of 4 files) or 6 pairs (one half-filled cell); for
p = 4, each machine will get either 9 pairs (one regular
cell, groups of 3 files) or 12 pairs (1.5 of a cell). The
replication ratio will be 3 for both cases. Thus, the greater
of two possible values of p seems to be a better choice.

This method gives very good approximate results for
any number of machines and files. We treat its results as
reference values in our comparison in Section 6, where we
refer to it as cell-adjust.

4. Problem complexity
The problem in its general version is supposedly
computationally hard. Its restricted variant, where the
difference K between task sizes is zero, resembles the
problem of generating one of possible Steiner systems
S(2,k,n) with k taking values significantly greater than 2.
In the problem, k is the size of a block (being in our
problem the package of files sent to a machine, where
the machine has to compute all pairs of uploaded files)
and n is the number of elements (our set of all files).
Even if we know that for given values of n and k the
Steiner system can be generated (for many values it cannot
be), its construction is not possible in time restricted
by a polynomial of n if k is polynomially dependent
on n. First of all, the input size is of order logn, and
the output is of size polynomially dependent on n. But
even when measuring the complexity related to n, an
algorithm for a Steiner system construction goes beyond
polynomial dependence. Babai and Wilmes (2013) give
a proof that a canonical form of Steiner system S(2,k,n)
can be generated in a quasi-polynomial time of n. If,
in our problem, the number of machines is bounded
by a small constant not related polynomially to the
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number of files, the decision problem does not belong
to class NP, because the size of the output of order n2

(when considering variables xk
ij ) or n (for variables dki )

is exponentially greater than the input size of order logn;
thus, verification of the correctness of a solution for the
problem is exponential in time. An open question is the
existence of an exact pseudopolynomial algorithm solving
the problem (restricted by a polynomial function of m
and n).

5. Algorithms
We propose two heuristic algorithms solving the general
assignment problem (the 0-1 ILP problem). A greedy
heuristic is presented in Section 5.1 together with its
procedure refineLoad(). A heuristic based on
a block design mechanism is in Section 5.2 together
with an additional procedure assignRange(). Their
performance is analyzed in Section 6.

5.1. Greedy heuristic. A feasible solution for the
problem, if it exists, can be generated, e.g., by a greedy
heuristic. However, we must keep in mind that it can fail
even if a solution exists, especially if we must deal with
tight bounds for K and B. The algorithm greedy-opt,
given further on as a pseudocode, realizes a greedy
heuristic approach extended by a refinement of a result.
Without loss of generality we can assume Bk ≥ 2 for
every k, as machines not satisfying this can be simply
removed from the instance, and that entries in B are sorted
in non-increasing order.

The instruction exit(1) in the algorithm
greedy-opt terminates the algorithm without a
solution. Symbol ⊕m means addition modulo m. Lines
6–25 of the algorithm are for initializing assignments for
particular machines such that they involve (if possible)
different pairs of files. Lines 26–37 realize the greedy
strategy, where every next entry of the matrix is assigned
in the way that results in the least increase of the objective
function. If more than one machine is optimal in this
sense, the one is chosen that is safer from the point
of view of the problem constraints. The procedure
refineLoad() realizes a heuristic adjustment of
workloads, especially for satisfying the constraint on K .

Proposition 1. The algorithm greedy-opt re-
turns a feasible solution or none and has time
complexity O(n4m2).

Proof. First, the algorithm terminates for every input.
Although it is obvious for the main part of the algorithm,
the procedure refineLoad() may seem to be at risk
of endless cycles of the same moves. In the first loop
while of this procedure (l. 1–5), each iteration leads to
removing a file from a machine; thus, there is always
a progress toward improving the value of the objective

Algorithm 1. greedy-opt
Input: m ≥ 2, n ≥ 2, K ≥ 0, Bk ≥ 2 for k = 1..m
Output: xk

ij for i = 1..(n− 1), j = (i+1)..n, k = 1..m

1: if
∑m

k=1 Bk < n then
2: exit(1)
3: end if
4: xk

ij ← 0 for i = 1..(n− 1), j = (i+1)..n, k = 1..m
5: t← 0
6: for i = 1..n do
7: if i > 2m then
8: if Bt+1 =

∑n
q=1 d

t+1
q then

9: t← 0
10: end if
11: xt+1

2t+2,i ← 1
12: t← t⊕m 1
13: else if i even then
14: xt+1

i−1,i ← 1
15: t← t⊕m 1
16: end if
17: end for
18: if n < 2m then
19: i← n
20: while i > n/2 + 1 and t < m do
21: xt+1

n−i+1,i ← 1
22: i← i− 1
23: t← t+ 1
24: end while
25: end if
26: while ∃ i, j : ∑m

q=1 x
q
ij = 0 do

27: if ∃ k : dki = 1 and dkj = 1 then
28: t← such k of smallest lk
29: else if ∃ k : (dki = 1 or dkj = 1) and

∑n
q=1 d

k
q <

Bk then
30: t← such k of greatest Bk −

∑n
q=1 d

k
q

31: else if ∃ k : ∑n
q=1 d

k
q < Bk − 1 then

32: t← such k of greatest Bk −
∑n

q=1 d
k
q

33: else
34: exit(1)
35: end if
36: xt

ij ← 1
37: end while
38: refineLoad()
39: if max(lk : k = 1..m)− min(lk : k = 1..m)> K

then
40: exit(1)
41: end if
42: return

function. In the second loop while (l. 10–37), in each
iteration, adding an entry to a machine of a smallest l
leads to increasing this value to l + 1, simultaneously
the machine losing that entry does not fall with its load
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Procedure 1. refineLoad()
1: while ∃ i, j, q, k : xq

ij = 1 and (sqi = 1 or sqj = 1)

and dki = 1 and dkj = 1 and q = k do
2: t← such k of smallest lk
3: xq

ij ← 0

4: xt
ij ← 1

5: end while
6: c← 1
7: if max(lk : k = 1..m)− min(lk : k = 1..m)≤ K

then
8: c← 0
9: end if

10: while c = 1 do
11: t← k of smallest lk
12: u← k of greatest lk
13: if ∃ i, j, q : dti = 1 and dtj = 1 and xq

ij = 1 and
lq > lt + 1 then

14: xq
ij ← 0

15: xt
ij ← 1

16: else if ∃ i, j, q : xu
ij = 1 and lu > lq + 1 and

dqi = 1 and dqj = 1 then
17: xu

ij ← 0
18: xq

ij ← 1

19: else if
∑n

k=1 d
t
k < Bt and ∃ i, j, q : (dti = 1 or

dtj = 1) and xq
ij = 1 and lq > lt + 1 then

20: xq
ij ← 0

21: xt
ij ← 1

22: else if ∃ i, j, q : xu
ij = 1 and lu > lq + 1 and

(dqi = 1 or dqj = 1) and
∑n

k=1 d
q
k < Bq then

23: xu
ij ← 0

24: xq
ij ← 1

25: else if
∑n

k=1 d
t
k < Bt − 1 and lu > lt + 1 and

∃ i, j : xu
ij = 1 then

26: xu
ij ← 0

27: xt
ij ← 1

28: else if ∃ i, j, q : xu
ij = 1 and lu > lq + 1 and∑n

k=1 d
q
k < Bq − 1 then

29: xu
ij ← 0

30: xq
ij ← 1

31: else
32: c← 0
33: end if
34: if max(lk : k = 1..m) − min(lk : k = 1..m)

≤ K then
35: c← 0
36: end if
37: end while
38: return

below l+1. The receiving machine may, in next iterations,
further increase or decrease its load but never comes back
to the initial smallest value of l. Similar reasoning is
applied to the case of a machine with a greatest l. Hence,

a series of iterations in the second loop while, although
it may include receiving and losing the same entry of
the matrix by the same machine, consequently leads to
narrowing the range between extreme sizes of workloads.

A solution is feasible if all the constraints (1–9) are
satisfied. For the constraint (9) this follows from data
structures. The constraints (2)–(4), (6), and (8) define
auxiliary variables on the basis of xk

ij . The constraint (5)
is kept throughout the algorithm; no new file can be
added to a machine when there is no space for it. The
constraint (7) can be disobeyed during computations, but
the refinement step works as long as it is not fulfilled or
exits without a solution. It remains to prove that each
entry of the matrix is assigned to exactly one machine.
The initial part of the algorithm (l. 6–25) assigns either at
most one entry [i, j] per any j = 1..n or two entries [i1, j],
[i2, j] per a j, where i1 = j−1 and i2 < j−1, i.e., i1 = i2.
The rest of the algorithm completes the assignment, every
entry being assigned exactly once due to the condition in
the main loop while of the algorithm (l. 26–37). The
refinement step (l. 38) can only replace one machine by
another.

The main part of the algorithm (without l. 38)
has time complexity O(n2m), when a current size of
a package of files assigned to a machine is kept
in a variable. The procedure refineLoad() has
complexity O(n4m2), which follows from the second loop
while (l. 10–37) run at most O(n2m) times. Therefore,
the whole algorithm is of complexity O(n4m2). �

The time complexity seems to be quite noticeable;
however, such a worst case is rarely met. What is
more, the elementary operations are very simple and the
execution time of the algorithm can be short even for
large n, see the experimental results.

5.2. Block design heuristic. The second heuristic
algorithm is inspired by the Steiner system construction
problem. A Steiner system described as S(2,k,n) is
composed of k-element subsets (blocks) of an n-element
set such that each pair of elements from the set belongs
to exactly one block (see, e.g., Reid and Rosa, 2010). In
relation to our problem, a pair of elements is a pair of
files, and blocks could correspond to packages of files
assigned to machines. A Steiner system would be then
an optimal solution to the assignment problem for n files
and the number of machines equal to the number of
blocks in S(2,k,n), where every machine would get the
same number of entries to compute provided that it could
receive k files (see Appendix for an illustration). A Steiner
system S(2,k,n) can be constructed only for some pairs of
values of k and n. For example, for k = 3, the value
of n must give 1 or 3 as the result of the division mod 6;
for k = 4, the value of n mod 12 must be 1 or 4; for
k = 5, the value of n mod 20 must be 1 or 5 (Grannell
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Algorithm 2. block-design
Input: m ≥ 2, n ≥ 13, K ≥ 0, Bk ≥ 2 for k = 1..m
Output: xk

ij for i = 1..(n− 1), j = (i+1)..n, k = 1..m

1: if
∑m

k=1 Bk < n then
2: exit(1)
3: end if
4: xk

ij ← 0 for i = 1..(n− 1), j = (i+1)..n, k = 1..m
5: b← �(n− 1)/12�
6: q ← (n− 1) mod 12
7: for k = 1..m do
8: if k ≤ 13 then
9: assignRange(k)

10: else if q > 0 then
11: xk

12b+q,12b+q+1 ← 1
12: q ← q − 1
13: end if
14: end for
15: while ∃ i, j : ∑m

q=1 x
q
ij = 0 do

16: if ∃ k : dki = 1 and dkj = 1 then
17: t← such k of smallest lk
18: else if ∃ k : (dki = 1 or dkj = 1) and

∑n
q=1 d

k
q <

Bk then
19: t← such k of greatest Bk −

∑n
q=1 d

k
q

20: else if ∃ k : ∑n
q=1 d

k
q < Bk − 1 then

21: t← such k of greatest Bk −
∑n

q=1 d
k
q

22: else
23: exit(1)
24: end if
25: xt

ij ← 1
26: end while
27: refineLoad()
28: if max(lk : k = 1..m)− min(lk : k = 1..m)> K

then
29: exit(1)
30: end if
31: return

and Griggs, 1994). For greater values of k, these cases are
even sparser. In real applications of our problem, k may
reach significant values dependent on n, and, for every n,
a solution is expected. What is more, the number of blocks
in a non-trivial Steiner system S(2,k,n) reaches the value
of n or more, and we cannot expect such a big number
of machines. A heuristic approach allows us to omit such
limitations.

The algorithm block-design uses a mechanism
of assignment of elements to blocks (files to machines)
similar to the one observed in the Bose algorithm for
construction of Steiner systems S(2,4,n) (Bose, 1939),
adapted to our needs. Our heuristic partitions the upper
triangular matrix (besides the diagonal) into blocks of
similar size, which are assigned to machines provided
that the constraints on B are satisfied. Due to separating
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Fig. 2. Example assignment produced by the algorithm
block-design for m = 13 and n = 25. Entry mk

at position [i, j] means xk
ij = 1, i.e., the pair of files

i and j will be compared on machine k (assumed that
some defined constraints on K and B are satisfied).
The squares distinguished in the matrix are of size equal
to b = �(n − 1)/12�, here 2. If n and m were equal
to 13, the assignment would reflect the blocks generated
by the Bose algorithm for the Steiner system S(2,4,13)
after appropriate mapping of its elements to rows and
columns of the matrix (see Appendix).

13 such blocks, the algorithm performs best for a similar
number of machines or lower. It is assumed here that the
number of files cannot be smaller than 13, and that entries
in B are sorted in non-increasing order.

The instruction exit(1) in the algorithm
block-design terminates the algorithm without
a solution. The procedure refineLoad() realizes
a heuristic adjustment of workloads and it is the
same procedure as in the previous subsection. The
procedure assignRange(), given below, assigns
entries of the matrix according to the mechanism
of S(2,4,13). The instruction exit(0) in the procedure
assignRange() means the return to the main
algorithm without an error; see Fig. 2 for an example.

Proposition 2. The algorithm block-design re-
turns a feasible solution or none and has time
complexity O(n4m2).

Proof. A solution is feasible if all the constraints (1)–(9)
are satisfied. The reasoning for the constraints (2)–(9) is
the same as in the proof of Proposition 1. It remains to
prove that each entry of the matrix is assigned to exactly
one machine. The procedure assignRange(t), for
different values of t ≤ 9, assigns entries from disjoint
subareas, regardless of the offset (p1, p2), because each
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t gives a different pair of values (w1, w2). For the same
(p1, p2) and two different pairs (w1, w2) and (w1′ , w2′),
w1 differentiates the ranges if w2 = w2′ and vice versa,
due to the component w1 ⊕3 aw2 in both dimensions
(a = p1 − 2 or a = p2 − 2), which can be easily checked
by enumeration. For 9 < t ≤ 13, every new subarea
considered is disjoint from the previous ones, because it is
located outside the area assigned when t ≤ 9, and for t >
9, the ranges related to columns are disjoint for different
values of t. In the main algorithm, for remaining machines
(if any), single entries outside the previous subareas are
assigned and they are all different (l. 10–12). The rest of
the algorithm completes the assignment, every entry being
assigned exactly once due to the condition in the main
loop while of the algorithm (l. 15–26). The refinement
step (l. 27) can only replace one machine by another.

The procedure assignRange() has time
complexity O(n2); altogether with the main part of
the algorithm (without l. 27) we have O(n2m), when a
current size of a package of files assigned to a machine
is kept in a variable. The procedure refineLoad(),
identical as in the algorithm greedy-opt, has
complexity O(n4m2); thus, the whole algorithm is of
complexity O(n4m2). �

The proposed algorithms have the same worst-case
complexity resulting from the final refinement procedure.
However, both algorithms in many cases will distribute
entries among machines nearly evenly. As a result, at
the beginning of the procedure refineLoad(), the
constraint on K is often satisfied and the most time
consuming part is not executed.

6. Results
The computational experiment was performed on a PC
workstation with a single CPU, AMD Ryzen 5900
3 GHz (12 cores/24 threads), 32 GB RAM. The program
execution was single-threaded. We used in the tests the
following values of parameters. The number of files n
takes values from the range 〈500; 5000〉with step 500 and
the number of machines m from 〈2; 20〉 with step 2, and
additionally 13. Vector B is filled with values dependent
on n and m just to give enough space to find a solution
but not much else. We used a formula based on the lower
bound

√
n(n− 1)/m discussed in Section 2, here with a

safe margin added. For identical machines (in terms of
capacity), Bk = �n/√m + 0.3 · n�, k = 1, . . . ,m, if
m > 2, and Bk = n otherwise. For a set of non-identical
machines (where m ∈ {8, 10, 12}), some of the values
are modified, B1 = B2 = �1.2 · B3� and Bm = Bm−1 =
Bm−2 = Bm−3 = �0.8 · B3�. The accepted difference
between task sizes K is set to a percentage (depending
on the test case) from the average number of entries per
machine, i.e., from n(n− 1)/(2m).

Procedure 2. assignRange(t)
1: if t ≤ 9 then
2: w1 ← (t− 1) mod 3
3: w2 ← �(t− 1)/3�
4: for p1 = 1..3 do
5: for p2 = (p1 + 1)..4 do
6: if p1 > 1 then
7: z1 ← 3b(p1−1)+b(w1⊕3w2(p1−2))+2
8: else
9: z1 ← bw2 + 2

10: end if
11: z2 ← z1 + b− 1
12: z3 ← 3b(p2− 1)+ b(w1 ⊕3 w2(p2 − 2)) + 2
13: z4 ← z3 + b− 1
14: for i = z1..z2 do
15: for j = z3..z4 do
16: if

∑n
k=1,k/∈{i,j} d

t
k > Bt − 2 then

17: exit(0)
18: else
19: xt

ij ← 1
20: end if
21: end for
22: end for
23: end for
24: end for
25: else
26: z1 ← 3b(13− t) + 2
27: z2 ← z1 + 3b− 1
28: for i = z1..z2 do
29: if

∑n
k=2,k �=i d

t
k > Bt − 2 then

30: exit(0)
31: else
32: xt

1i ← 1
33: end if
34: end for
35: for i = z1..(z2 − 1) do
36: for j = (i+ 1)..z2 do
37: if

∑n
k=1,k/∈{i,j} d

t
k > Bt − 2 then

38: exit(0)
39: else
40: xt

ij ← 1
41: end if
42: end for
43: end for
44: end if
45: return

Let us begin with results of the approximate method
cell-adjust from the end of Section 3; they are
presented in Tables 1 and 2. The method partitions
the matrix without referring to B and K but allows
assigning near the same number of files to each machine
for most cases (for other cases, when m = 13, 14,
or 20, the maximal difference between file package sizes
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Table 1. Total number of files sent to identical machines according to the method cell-adjust.

m p n
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2 2 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
4 3 1334 2667 4000 5334 6667 8000 9334 10667 12000 13334
6 4 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000
8 4 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

10 5 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
12 5 2400 4800 7200 9600 12000 14400 16800 19200 21600 24000
13 5 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000
14 5 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000
16 6 2668 5336 8000 10668 13336 16000 18668 21336 24000 26668
18 6 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000
20 6 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

Table 2. Maximal difference between machines’ workloads according to the method cell-adjust, for identical machines, mea-
sured in the number of the matrix entries.

m n
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2 250 500 750 1000 1250 1500 1750 2000 2250 2500
4 13528 55278 125250 220778 346528 500500 678028 887778 1125750 1385278
6 7750 31125 70125 124750 195000 280875 382375 499500 632250 780625
8 125 250 375 500 625 750 875 1000 1125 1250
10 4950 19900 44850 79800 124750 179700 244650 319600 404550 499500
12 5050 20100 45150 80200 125250 180300 245350 320400 405450 500500
13 5050 20100 45150 80200 125250 180300 245350 320400 405450 500500
14 5050 20100 45150 80200 125250 180300 245350 320400 405450 500500
16 3403 13695 31375 55278 86320 125250 169653 221445 281625 346528
18 249 830 250 999 2080 500 1749 3330 750 2499
20 3652 14525 31375 56277 88400 125250 171402 224775 281625 349027

for machines is up to 20% of n). We can observe
almost no difference between machines’ workloads when
the number of machines is equal to p2/2 for some p,
but the assignment is not such even for other cases.
The replication ratio of transferred data (being the
objective function value from Table 1 divided by n)
for cell-adjust depends only on the number of
machines—it is a property of this method.

These values characterize very good solutions, yet
not feasible in some settings. For all the cases, except
for m = 2, 8, or 18, K should be set to at least
40% of the average machine load to make the solutions
feasible. The two proposed algorithms work much better
in this sense, even when restrictions in the problem are
very strict. The algorithm greedy-opt reaches from
94% to 164% of the value of the objective function
returned by cell-adjust but is able to fit in very
tight limits imposed for capacity of machines and balance
of workloads. Actually, it returned, in each test case,

allocations of files and tasks of almost the same sizes
for all machines. The maximal difference between file
package sizes for machines within a test case is not greater
than 3. The maximal difference between numbers of
entries assigned to machines is shown in Table 3, with
the average value equal to 760, where K was set to 1% of
the average number of entries per machine. The maximal
computation time for these tests is 4 s.

More information about the quality of results
generated by greedy-opt is provided in Fig. 3, and also
in Table 5 and Fig. 4, where tests for machines differing in
capacity are summarized. In Table 4, the quality of results
of the algorithm block-design is presented, for sets
of identical machines.

The algorithm block-design supported by the
procedure refineLoad()works for any set of problem
parameters but needs a lot of time when K is set to
small values and m is greater than 13. For this reason,
K in these tests was set to 40% of the average number
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Table 3. Maximal difference between machines’ workloads obtained by the algorithm greedy-opt, for identical machines, mea-
sured in the number of the matrix entries.

m n
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2 252 502 752 1002 1252 1502 1752 2002 2252 2502
4 250 872 750 1747 1250 2622 1750 3497 2250 4372
6 178 71 751 713 178 1497 1251 284 2248 1785
8 57 88 802 458 1003 682 2362 2253 1864 1423

10 37 373 444 576 472 567 677 836 932 976
12 103 96 82 217 550 443 497 657 341 788
13 78 210 237 454 375 633 607 862 697 1186
14 83 167 291 304 440 721 310 1186 1405 282
16 71 167 191 233 321 308 760 451 596 713
18 33 157 103 304 358 691 492 567 325 956
20 62 97 51 216 224 344 416 279 346 549

Table 4. Total number of files sent to identical machines according to the algorithm block-design.

m n
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2 999 1999 2999 3999 4999 5999 6999 7999 8999 9999
4 1321 2643 3965 5286 6611 7930 9255 10575 11896 13221
6 1999 3994 5924 8130 9883 12159 14479 16102 18617 20277
8 2206 4458 6670 8864 11187 13727 16028 17882 20455 22747

10 2404 4827 7362 9686 11936 14660 16995 19382 22046 24500
12 2197 4378 6597 8781 10950 13151 15337 17519 19728 21913
13 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

of entries per machine. For K set to 1% of this value
and m = 13, this algorithm returned values of the
objective function as follows: [2056, 4153, 6186, 8263,
10357, 12416, 14493, 16568, 18621, 20699], for n from
500 to 5000, respectively. However, the computation time
is noticeably greater; the time for K as 1% and m = 13
was from below 1 s. for n = 500 to above one hour for
n = 5000, for 40% it was not more than 4 s. for any
instance. With greater m, time significantly increases.
Still, it is not a problem in practical use, when a user
has a given number of files and machines and needs one
assignment determined at a time. As to the quality of
results, depending on m, they can be much better than
the ones generated by other methods. Also for m > 13
they are very good, for example, for n = 3000 and
K set as 40%, block-design achieved the objective
function value equal to 12993, 14908, 16833, and 18612,
for m = 14, 16, 18, and 20, respectively.

The quality of results from the above tests is
visualized in Fig. 3 for selected numbers of machines.
To increase readability, absolute values of the objective
function are converted to the replication ratio (the
lower, the better). For different numbers of machines

we can observe different ranks of the methods. As
mentioned above, greedy-opt does not show the
highest quality in general, but it beats the two other
approaches when machines are few. For m = 4, the
replication ratio is ca. 2.50 for greedy-opt, ca. 2.64 for
block-design, and 2.67 for cell-adjust. When
m = 8, we have the case where m fits p2/2 for
some p, i.e., the ideal case for cell-adjust. It is
understandable, then, that it outperforms other methods,
with the replication ratio being 4.00 vs. the average values
4.49 for block-design and 4.59 for greedy-opt.
For m = 12, block-design is the best with
the replication ratio ca. 4.39, cell-adjust is next
with 4.80, and greedy-opt reaches 6.24 on average.

For non-identical machines, results of the algorithms
are compared with the lower bound for the objective
function value for identical machines, discussed in
Section 2, which is m

√
n(n− 1)/m. It must be stressed

that only pure Steiner systems can get close to this value
when m > 1, and it is not possible for real-world
instances (of identical machines). The comparison is
visualized in Fig. 4, where the quality is expressed in
terms of the replication ratio.
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Fig. 3. Replication ratio obtained by the algorithms (y-axis), being the total number of files sent to machines divided by n (x-axis),
for identical machines. The results of greedy-opt (the triangle marker) and block-design (the square marker) are
juxtaposed with those of cell-adjust (without markers). The dotted line shows the results for m = 4, the dashed line
for m = 8, the solid line for m = 12.

Fig. 4. Replication ratio obtained by the algorithms (y-axis), being the total number of files sent to machines divided by n (x-axis),
for non-identical machines. The results of greedy-opt (the triangle marker) and block-design (the square marker) are
juxtaposed with the lower bound for identical machines (without markers). The dotted line shows results for m = 8, the dashed
line for m = 10, the solid line for m = 12.

For sets of non-identical machines, K was set to 50%
of the average number of entries per machine. As we see
in Fig. 4, block-design achieved very good results for
all the test cases. The results of greedy-opt for m = 8
are equally good and worse for m = 10 or 12. Table 5
presents additional information.

These results clearly show the advantage of
the algorithm block-design over greedy-opt.
However, in other circumstances the rank may change.
What is important, both algorithms adjust to tight
constraints and can quickly produce very good initial
solutions even without the refinement step.

7. Conclusions

The problem formulated and solved within this work
arose from real needs that emerged during realization of
a national genomic project. However, it has a wider
application, wherever a comparison (in any sense) of all
pairs of large files from a given set is necessary. We
proposed three heuristic approaches, each of them having
different advantages. The method cell-adjust gives
very good approximate solutions, also in the sense of
even assignment of files to machines, but workloads in
most cases are not very well balanced. The algorithm
greedy-opt returns solutions of even better quality for
a small number of machines, but its main advantages are
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Table 5. Results for 10 non-identical machines obtained by the algorithms: f stands for the objective function value, dmin and dmax

are extreme values for dk while lmin and lmax for lk, k = 1, . . . ,m, t stands for computation time in seconds. The values for
greedy-opt are placed at the top of each table cell while for block-design at the bottom.

n
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

f
2601 5178 7547 9973 13283 17492 18221 20614 22483 25078
2088 4357 6547 8733 10913 13098 15282 17466 19653 21834

dmin
209 418 612 794 1081 1457 1476 1666 1813 2024
157 337 506 676 845 1014 1184 1353 1522 1691

dmax
334 666 984 1297 1699 2199 2341 2654 2924 3259
282 583 877 1170 1462 1755 2047 2339 2632 2924

lmin
11244 45162 95463 189905 294431 421065 555613 720845 839763 1040762

9846 40381 90374 160979 250169 360314 491564 640167 808991 1001053

lmax
17481 70136 151675 289855 450617 645989 861775 1120744 1345900 1665637
16083 65356 146586 260929 406356 585239 797726 1040067 1315127 1625928

t
0.1 0.9 156 1040 173 1179 121 247 10098 18997
0.1 0.8 3 9 23 43 83 147 213 342

computation time close to zero in many cases and quite
even distribution of files and tasks. It needs more time
when such distribution is not the goal, when machines
differ in capacity, and the procedurerefineLoad() has
too big participation in computations. The distribution
for the algorithm block-design fits within defined
ranges, but its main advantage is high quality of generated
solutions, close to optimum for appropriately defined
parameters. Its computation time is negligible comparing
to the time spent on genomic (or other) computations
within a big project. The approaches were compared on a
wide set of instances, where the values of parameters were
set to the ones coming from our real-world application.
The tests demonstrated usefulness of these approaches
in practice as well as for the algorithms, also for cases
with a set of machines defined as a diverse computational
environment with tight constraints.

As possible future work on this subject, we could
mention developing procedures better suited for some
special cases. For certain settings, where the procedure
refineLoad() works too long, its complexity starts
to be noticeable. Supported by another procedure,
refineLoad() could be dedicated strictly to refining
the resulting assignment.
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Appendix

Figure A1 explains how blocks from the Steiner
system S(2,4,13) are mapped to the upper triangular
matrix (besides the diagonal), where rows and columns
correspond to the elements of the system.
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Fig. A1. Blocks generated by the Bose algorithm for the Steiner
system S(2,4,13) (top), the same blocks visualized as
parts of the upper triangular matrix (center), and the
matrix with rearranged rows and columns (bottom).
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