
Int. J. Appl. Math. Comput. Sci., 2024, Vol. 34, No. 2, 277–289
DOI: 10.61822/amcs-2024-0020

BOOTSTRAPPED TESTS FOR EPISTEMIC FUZZY DATA

PRZEMYSŁAW GRZEGORZEWSKI a, MACIEJ ROMANIUK b,*

aFaculty of Mathematics and Information Science
Warsaw University of Technology

Koszykowa 75, 00-662 Warsaw, Poland
e-mail: przemyslaw.grzegorzewski@pw.edu.pl

bSystems Research Institute
Polish Academy of Sciences

Newelska 6, 01-447 Warsaw, Poland
e-mail: mroman@ibspan.waw.pl

Epistemic bootstrap is a resampling algorithm that generates bootstrap real-valued samples based on some epistemic fuzzy
data input. We apply this method as a universal basis for various statistical tests which can be then directly used for fuzzy
random variables. Two classical goodness-of-fit tests are considered as an example to examine the suggested methodology
for both synthetic and real data. The proposed approach is also compared with two other goodness-of-fit tests dedicated
directly to fuzzy data.
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1. Introduction
The bootstrap, as introduced by Efron (1979), is a
recognized and widely used statistical inference tool.
However, due to some disadvantages, various extensions
of it have been proposed for real-valued data, like the
smoothed bootstrap, the wild bootstrap, etc. (De Angelis
and Young, 1992; Chernick et al., 2011). The bootstrap
was also applied to fuzzy data (e.g., Gil et al., 2006;
González-Rodríguez et al., 2006; Montenegro et al.,
2004), but some pitfalls similar to those for real data, like
the frequent repetition of several values for small samples,
were still visible. Therefore, a few new resampling
methods for fuzzy data have been proposed recently
(Grzegorzewski et al. 2019; 2020a; 2020b; Romaniuk
and Hryniewicz, 2021), oriented, however, towards ontic
fuzzy data (Couso and Dubois, 2014), i.e., the data that
appear as essentially fuzzy-valued. But, in practice, epis-
temic data (Couso and Dubois, 2014) are also widespread.
They refer to some exact data which exist objectively, but
they are imprecisely observed so their true real values
remain unknown. The concept of epistemic data is more
natural, intuitive, and appealing, e.g., in engineering,
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where imprecise measurements are common.

First attempts for applying the bootstrap to epistemic
fuzzy data were discussed by Grzegorzewski and
Romaniuk (2021; 2022a; 2022b). In this paper, we
proceed to fill the gap between the “bootstrap world”
and the “epistemic fuzzy data universe”. Our new
contribution is threefold. Firstly, we generalize the
epistemic bootstrap so that it can be applied to a wide
class of nonparametric statistical tests (not only for
the Kolmogorov–Smirnov test as in our previous work
(Grzegorzewski and Romaniuk, 2022b)). Secondly, an
entirely new resampling algorithm leading to the final
conclusion (i.e., to accept/reject the null hypothesis) is
provided. This algorithm is related to the so-called
boot-perm test. Finally, through a comprehensive and
detailed numerical analysis, we compare the introduced
approach applied for the Kolmogorov–Smirnov test and
the Cramér-von Mises test with the respective “classical”
(i.e., real-valued) counterparts. Besides small and
moderate samples of synthetic data, real-life case studies
are considered. Our epistemic bootstrap algorithms are
also compared with two other tests for fuzzy data known
in the literature (Grzegorzewski, 2020; Grzegorzewski
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and Gadomska, 2021). Some of the introduced methods
are available in the R package FuzzySimRes (Romaniuk
et al., 2023). Our approach is a very general one, contrary
to others, aimed at selected statistical tests or only some
families of probability distributions (e.g., Hesamian et al.,
2023).

The paper is organized as follows. Section 2 delivers
preliminaries concerning fuzzy data modeling. Two
general epistemic bootstrap algorithms are proposed in
Section 3. Next, in Section 4, four variants of epistemic
bootstrapped goodness-of-fit tests for fuzzy data are
discussed. The suggested methods are examined through
a simulation study in Section 5. Concluding remarks are
given in Section 6.

2. Preliminaries
In practice, unfortunately, instead of exact results
of experiments, we are dealing with their imprecise
measurements or vague perceptions. This is especially
the case when the so-called human factor plays a decisive
role in obtaining the results. An appropriate mathematical
model of such imprecise data is then necessary to allow
drawing reliable conclusions despite the lack of access
to precise data. In the case of statistical inference, it is
also necessary to adapt traditional procedures in such a
way that it is possible to use them to analyze imprecise
data or to construct new statistical tools. A convenient
environment for modeling imprecision, as well as for
further work of data analysts, is the theory of fuzzy sets.
In the case of experimenters whose real results are real
numbers (vectors), a special subfamily of fuzzy sets, i.e.,
fuzzy numbers, turns out to be of interest.

Definition 1. A mapping x̃ : R→ [0, 1] is a fuzzy number
if its α-cuts (x̃)α, defined by

(x̃)α =

{

{x ∈ R : x̃ ≥ α} if α ∈ (0, 1],

cl{x ∈ R : x̃ > 0} if α = 0,

are nonempty compact intervals for all α ∈ [0, 1]. The
operator cl stands here for the closure.

Thus, in the remainder of this paper, we will deal
with situations where, instead of real-valued outcomes of
experiments � = (x1, . . . , xn), where xi ∈ R, we have a
respective sequence of fuzzy numbers �̃ = (x̃1, . . . , x̃n).

A fuzzy number as a real function, even with the
constraints resulting from the definition, can take various
shapes. The most commonly used fuzzy numbers are the
so-called trapezoidal fuzzy numbers given by

x̃(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x−a
b−a if a < x ≤ b,

1 if b ≤ x ≤ c,
d−x
d−c if c ≤ x < d,

0 otherwise,

(1)

where a, b, c, d ∈ R, and a ≤ b ≤ c ≤ d. Since
each such fuzzy number is completely described by four
real values, we can denote a trapezoidal fuzzy number by
x̃ = Tra(a, b, c, d). If b = c, then x̃ is a triangular fuzzy
number. Trapezoidal (triangular) fuzzy numbers are so
popular to use because of their simplicity in processing
and calculations, together with their natural interpretation.
This is also the reason why fuzzy numbers with more
complicated shapes are often approximated by trapezoidal
fuzzy numbers (Grzegorzewski, 2008; Ban et al., 2015).

Further on, the family of all fuzzy numbers will be
denoted by F(R), while the family of trapezoidal fuzzy
numbers by F

T (R).
If our imprecise data are the result of some random

experiment, their generation mechanism can be related
to fuzzy-valued random variables (Kwakernaak, 1978;
Kruse, 1982).

Definition 2. Given a probability space (Ω,F , P ), a
mapping ˜X : Ω → F(R) is said to be a fuzzy random
variable (f.r.v.) if, for each α ∈ [0, 1], (inf ˜Xα) : Ω → R

and (sup ˜Xα) : Ω → R are real-valued random variables
on (Ω,F , P ).

In this case, a fuzzy random variable ˜X might
be considered a fuzzy perception of a “standard” (but
unknown) random variable X , called the original of
˜X . Similarly, a whole fuzzy random sample ˜X =
( ˜X1, . . . , ˜Xn) is a fuzzy perception of a usual real-valued
random sample.

3. Epistemic bootstrap
Any statistical inference depends on the underlying
population, a sampling procedure, and the statistics,
i.e., a function T = T (X), relevant to the problem
considered. All these factors provide the so-called
sampling distribution. Sometimes it can be easily
identified, e.g., if our sample consists of n independent
observations from the same normal distribution and
we want to verify the null hypothesis about its mean,
the required test statistic is t-distributed with n − 1
degrees of freedom. In statistical practice, we often
encounter situations when the population distribution
is unknown, so the sampling distribution cannot be
designed straightforwardly. But if the sample size is
large enough, we can often make inference based on the
asymptotic distribution. Otherwise, we apply appropriate
distribution-free procedures. However, if we are dealing
with imprecise data, we also encounter difficulties of
another nature.

Suppose that we have a fuzzy sample �̃ =
(x̃1, . . . , x̃n) that is an imprecise perception of the
real-valued sample � = (x1, . . . , xn). Based on
the epistemic view, we may say that x̃i contains the
actual real-valued realization of the i-th observation, but
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we do not have information about its precise location.
Clearly, this entails additional difficulties in identifying
the sampling distribution. Fortunately, the membership
function of x̃i provides the necessary knowledge about
the possibility that every single point is the true realization
of Xi. Anyway, achieving the goal requires a very large
amount of data, while our sample is not always very large.
And this is where Effron’s idea of the bootstrap to create
new random samples based on what is given to us comes
in very useful. Obviously, to take into account our lack
of knowledge due to the data imprecision, another type of
bootstrap that works differently than the one proposed by
Effron is necessary. Its idea, called the epistemic boot-
strap, was introduced and developed by Grzegorzewski
and Romaniuk (2021; 2022a; 2022b).

The idea of their two-step resampling procedure is
quite simple (see Algorithm 1). In the first step, given
the initial fuzzy sample �̃ = x̃1, . . . , x̃n, we generate
randomly a value α from the uniform distribution on the
unit interval (denoted as U[0, 1]) for each i = 1, . . . , n.
This value points out the respective level of the α-cut for
x̃i. In the second step, a real value x∗

i from the selected
α-cut of x̃i is independently drawn from the uniform
distribution on this α-cut (denoted as U

(

(x̃i)αi

)

). In
this way, we obtain a new real-valued bootstrap sample
x∗
1, . . . , x

∗
n. The advantage of the bootstrap is that we are

not limited to one sample, but we can multiply any number
of them, so we usually generate B ≥ 1 bootstrap samples
denoted by �∗

j = (x∗
1j , . . . , x

∗
nj), where j = 1, . . . , B.

This procedure is known as the standard (or simple)
epistemic bootstrap. Its new version, called the antithetic
approach, was proposed by Grzegorzewski and Romaniuk
(2022a) to improve statistical efficiency. In this case,
the second step was slightly altered—besides drawing a
single real value x′

i from the selected α-cut of x̃i, the
additional real value x′′

i is generated from its counterpart,
i.e., (1− α)-cut, using the respective uniform distribution
U
(

(x̃i)1−αi

)

. Then these two values are averaged to give
the output x∗

i (see Algorithm 2).

4. Epistemic bootstrapped test
Epistemic bootstrap sample generation, while essential
and interesting in itself, is not so much a goal as an
initial step to perform statistical inference of fuzzy data.
After introducing both algorithms, we will move on to the
second step, showing how resampled data can be used for
goodness-of-fit testing in the two-sample problem. It will
also be an illustration of how classical statistical tools can
be transferred to the fuzzy domain.

Let ˜X = ( ˜X1, . . . , ˜Xn) and ˜Y = (˜Y1, . . . , ˜Ym)
denote fuzzy random samples taken independently from
two populations with unknown cumulative distribution
functions (c.d.f.) F and G, respectively. Our goal is
to check whether F and G differ significantly, or we

Algorithm 1. Epistemic fuzzy bootstrap: the standard
approach.
Require: Initial fuzzy sample x̃1, . . . , x̃n ∈ F(R).
Ensure: B bootstrap samples.

1: for j = 1 to B do
2: for i = 1 to n do
3: αij ← U[0, 1].
4: x∗

ij ← U
(

(x̃i)αij

)

.
5: end for
6: end for
7: return �∗

j = (x∗
1j , . . . , x

∗
nj), where j = 1, . . . , B.

Algorithm 2. Epistemic fuzzy bootstrap: the antithetic
approach.
Require: Initial fuzzy sample x̃1, . . . , x̃n ∈ F(R).
Ensure: B bootstrap samples.

1: for j = 1 to B do
2: for i = 1 to n do
3: αij ← U[0, 1].
4: x′

ij ← U
(

(x̃i)αij

)

.
5: x′′

ij ← U
(

(x̃i)1−αij

)

.
6: x∗

ij =
1
2

(

x′
ij + x′′

ij

)

.
7: end for
8: end for
9: return �∗

j = (x∗
1j , . . . , x

∗
nj), where j = 1, . . . , B.

can assume that both samples come from the same
distribution. More formally, we are interested in verifying
the following null hypothesis:

H0 : F (t) = G(t) for all t ∈ R (2)

against the alternative H1 : F (t) �= G(t) (for some t ∈
R).

If the available samples consist of real-valued data,
one can apply many tests for verifying H0, like the
Kolmogorov–Smirnov test (Smirnov, 1933) (abbreviated
further as the KS test) or the Cramer–von Mises test
(Anderson, 1962) (CvM test for short), among the best
known regarding this issue. We will use both of these
tests to show how the epistemic bootstrap can be used to
analyze fuzzy data.

Let �̃ = (x̃1, . . . , x̃n) and �̃ = (ỹ1, . . . , ỹm) stand
for the actual realization of our fuzzy samples. Following
Algorithms 1 or 2 we generate B epistemic bootstrap
samples �∗

1, . . . ,�
∗
B and �∗

1, . . . ,�
∗
B , each consisting of

n or m real-valued observations, respectively.
Let us imagine again, for a moment, that we are

dealing with the classical KS or CvM test based on
real-valued data. Since both tests have right-sided critical
regions, we compute the corresponding p-value as

p = PH0 (T ≥ t) , (3)
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where t = T (�,�) is the actual value of the test statistic.
Returning to the fuzzy data, thanks to the epistemic

bootstrap, we now have B pairs of samples, so we can
derive multiple test statistic values. However, to decide
on the null hypothesis, we can: (a) aggregate the values
of these statistics and compute the p-value following (3),
or (b) find a p-value for each statistic separately and then
aggregate the p-values. All in all, we can follow four
different ways described below.

Multi-statistic approach. Given B pairs of the epistemic
bootstrap samples (�∗

j ,�
∗
j ), j = 1, . . . , B, we can

compute B corresponding values of the test statistic
considered, i.e., t∗1 = T (�∗

1,�
∗
1), . . . , t

∗
B = T (�∗

B,�
∗
B),

and next, following (3), the respective p-values

p∗j = PH0

(

T ≥ t∗j
)

, j = 1, . . . , B. (4)

Then these p-values should be combined into a single
p-value p∗ = A(p∗1, . . . , p

∗
B), where A is some

aggregation function. Many examples of such functions
have been proposed in the literature, but most of them
require independence between tests, which we cannot
assume in the case under consideration. Thus, without
assuming any particular dependence structure among the
p-values, the Simes method (Simes, 1986) is usually
recommended (and we apply it in our analysis), so that

A(p∗1, . . . , p
∗
B) = min

k=1,...,B

B

k
p(k), (5)

where p(k) is the k-th smallest p-value among p∗1, . . . , p∗B .
Another natural way is to combine these p-values using
their average (at least when the tests have similar power),
i.e., p∗ =

∑B
j=1 p

∗
j . Unfortunately, p∗ is not necessarily

a p-value. For more information on combining p-values,
we refer the reader to Vovk and Wang (2020).

Resampling approach. If the null hypothesis H0 holds,
then it should not matter how we pair the samples when
determining the value of the statistic T . Therefore,
given the epistemic bootstrap samples �∗

1, . . . ,�
∗
B and

�∗
1 , . . . ,�

∗
B , we can use additional resampling to select

randomly K pairs (�∗
k1
,�∗

k2
), where k1 and k2 are

randomly and independently picked up with probability
1/B from the set 1, . . . , B. Then we compute the p-values
as follows:

p∗k = PH0

(

T ≥ T (�∗
k1
,�∗

k2
)
)

, k = 1, . . . ,K. (6)

Finally, these p-values have to be aggregated (e.g., with
the Simes method). A natural question appears of why to
use not all possible but only K ≤ B pairs. Obviously, if B
is small, there is no problem with considering all possible
pairs of samples, but if B is large, we reduce the numbers
of the pairs considered due to the numerical efficiency.

Averaging approach. The methods discussed
earlier require p-value aggregation, which is usually

controversial although necessary in some applications.
In our case, this can be avoided by using the typical
bootstrap approach, i.e., by averaging the statistics
obtained in subsequent steps. Namely, we can determine
a desired single p-value by computing

p∗ = PH0(T ≥ t∗∗), (7)

where

t∗∗ =
1

B

B
∑

j=1

t∗j =
1

B

B
∑

j=1

T (�∗
j ,�

∗
j ). (8)

Otherwise, we can combine the last formula with
the resampling approach applied for obtaining t∗j =
T (�∗

k1
,�∗

k2
).

Bootperm approach. As the name suggests, it consists
of two basic steps combining two methods: bootstrap
and permutation tests. Suppose we have two initial fuzzy
samples �̃ and �̃. In the first step (bootstrap), we generate
the respective epistemic bootstrap samples �∗ and �∗ and
calculate our test statistic value t∗ = T (�∗,�∗). Then, in
the step typical for permutation tests, the two samples are
pooled into one, i.e., we consider �∗ = �∗ � �∗, where
� stands for the vector concatenation, so that w∗

i = x∗
i if

1 ≤ i ≤ n and w∗
i = y∗i if n + 1 ≤ i ≤ n + m. A

key premise for a further action is that, if H0 holds, then
all available observations may be viewed as if they were
randomly assigned to both samples, but they come from
the same population. Therefore, we create a permutation
�∗∗ of�∗ and divide it into two subsamples by assigning
first n elements of �∗∗ to �∗∗ and the remaining m
elements into �∗∗. Next we determine the test statistic
value t∗∗ = T (�∗∗,�∗∗). After considering such K
permutations, we obtain t∗∗1 , . . . , t∗∗K which can be used
to approximate the p-value (see Algorithm 3):

p∗∗j =
1

K

K
∑

k=1

�(t∗∗k > t∗). (9)

Finally, by repeating the whole procedure B times,
we receive p∗∗1 , . . . , p∗∗B , which are then aggregated to
give p∗.

5. Simulation study
To compare the proposed methods, we conduct a
broad simulation study. We restricted our experiments
to trapezoidal fuzzy numbers, which dominate in the
practical use. Moreover, as was shown by Lubiano et al.
(2017), the shape of the membership function scarcely
affects statistical conclusions. To construct a fuzzy
number x̃ = Tra(a, b, c, d), as given by (1), we need four
real numbers. Therefore, we generate fuzzy samples as
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Algorithm 3. Boot-perm goodness-of-fit test.
Require: Initial fuzzy samples �̃ and �̃.
Ensure: The approximated p-value p∗∗j .

1: Generate epistemic bootstrap samples �∗ =
(x∗

1, . . . , x
∗
n) and �∗ = (y∗1 , . . . , y∗m) based on �̃ and

�̃.
2: Calculate t∗ = T (�∗,�∗).
3: Pool the data �∗ = �∗ � �∗.
4: for k = 1 to K do
5: Draw a permutation�∗∗ of �∗.
6: Divide �∗∗ into two samples �∗∗ and �∗∗.
7: Calculate t∗∗k = T (�∗∗,�∗∗).
8: end for
9: Compute p∗∗j using (9).

10: return p-value p∗∗j .

realizations of trapezoidal fuzzy random numbers defined
as follows:

a = X − Sl − Cl, b = X − Cl, (10)
c = X + Cr, d = X + Cr + Sr,

where X is a random variable corresponding to the “true”
population distribution, while Cl, Cr, Sl, Sr denote
random variables used for “bluring” X and producing its
fuzzy perception x̃ (Grzegorzewski et al., 2019; 2020b;
Grzegorzewski and Romaniuk, 2022a; Romaniuk and
Hryniewicz, 2021; Romaniuk and Grzegorzewski, 2023).
Two random variables Cl and Cr are applied to create
the core of x̃ to avoid naive defuzzification identifying the
original value with the center of the core. Additionally,
Sl and Sr are used for modeling the support of the
generated fuzzy observation. All these random variables
are generated independently from the distributions given
in Table 1. The notation in the table is self-explanatory,
e.g., if x̃i ∈ F(N,U,U), then X is simulated from the
standard normal distribution with zero mean and unit
standard deviation, Cl, Cr are generated from the uniform
distribution on the interval (0, 0.6), and Sl, Sr from
the uniform distribution on (0, 0.8). Similarly, Exp(λ)
denotes the exponential distribution with the parameter
λ, Γ(α, β) – the gamma distribution with the shape
parameter α and scale parameter β, and β(a, b) stands
for the beta distribution with the parameters a, b, etc.
The first two models are used to analyze a difference
in location and dispersion (see Sections 5.1 and 5.2),
while the others—to compare a difference in distributions’
shape (Section 5.3).

In our experiments, we considered samples of
relatively small (n = m = 10) or moderate (n = m =
100) sizes. Firstly, we performed the classical KS and
CvM tests (in the second case, the CvM2SL1Test package
(Xiao, 2012) was used) for the real-valued samples
X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym). Next,

following (10), fuzzy samples �̃ and �̃ were generated.
Then B epistemic bootstrap samples �∗ and �∗ are
created from these fuzzy samples using the standard (see
Algorithm 1) or the antithetic (see Algorithm 2) method.
Finally, the epistemic bootstrapped versions of the KS
and CvM tests are conducted (abbreviated as EKS and
ECvM, respectively). Actually, four versions of each
bootstrapped test, corresponding to the methods proposed
in Section 4, were considered. To shorten the notation,
we use the following: ms for the multi-statistic approach,
res for the statistics resampling, avs for the averaging
approach, btp for the boot-perm approach, and std for the
standard and ant for the antithetic methods. The Simes
method (from the metapod package (Lun, 2021)) or plain
averaging is applied to aggregate the p-values.

In our study, we know the actual distribution
of real-valued samples. Although such a situation
usually does not occur in practice, here it allows us
to compare our epistemic versions of tests with their
classical counterparts used as reference points. To reduce
randomness, each experiment was repeated 10000 times
and the outcomes were averaged. To evaluate the results
the following measures related to the confusion matrix
are also calculated: accuracy (ACC), false positive ratio
(FP), and false negative ratio (FN). ACC is the frequency
of situations when both the epistemic test (ET) and
its classical counterpart (CT) lead to the same decision
concerning the null hypothesis at the significance level
αsl = 0.05, i.e.,

ACC =
1

l

l
∑

i=1

(

�(ET rejects H0)·�(CT rejects H0)

+ �(ET accepts H0)·�(CT accepts H0)
)

, (11)

FP =
1

l

l
∑

i=1

�(ET accepts H0)·�(CT rejects H0), (12)

FN =
1

l

l
∑

i=1

�(ET rejects H0)·�(CT accepts H0), (13)

where �(·) is the indicator function.
Only some numerical results are further provided.

Other outcomes and figures are available upon request.

5.1. Detecting a difference in location. We examined
firstly the test behavior in situations when the distributions
differ only in location. It was enforced by the
deterministic shift added to Y .

In the case of the EKS test and the initial samples
from F(N,U,U) and F(E,U,U), the ms and res methods give
bigger p-values, while the avs approach—lower p-values
in comparison with the KS test (Fig. 1). For the small
sample (i.e., n = m = 10), the btp approach leads to
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Table 1. Scenarios for simulating fuzzy random variables.

Type X Cl, Cr Sl, Sr

F(N,U,U) N(0, 1) U(0, 0.6) U(0, 0.8)

F(E,U,U) Exp(12 ) U(0, 0.6) U(0, 1.2)

F(β,U,U),1 β(2, 5) U(0, 0.6) U(0, 0.8)

F(U,U,U),1 U(4−
√
15

14 , 4+
√
15

14 ) U(0, 0.6) U(0, 0.8)

F(N,U,U),1 N
(

2
7 ,
√

5
196

)

U(0, 0.6) U(0, 0.8)

F(Γ,U,U),1 Γ
(

16
5 , 5

56

)

U(0, 0.6) U(0, 0.8)

very small p-values. This method behaves better for the
bigger sample (i.e., n = m = 100) when the obtained
p-values are still lower but comparable with their “crisp”
counterparts. Surprisingly, averaging p-values (instead
of obtaining the respective values by the Simes method)
leads to significant improvements of the estimated final
p-values, especially for the ms and res approaches (Fig. 4).
Accuracy is usually very high (more than 80–90%; Fig. 2),
apart from the btp approach, where some very low values
(even about 30–40%) can be noticed. It seems that the
decrease in ACC in the interval [0.5, 1.5] is caused by the
increase in both the FP and FN, but the FN contributes
significantly more in this case.

Generally, the Simes method leads to larger p-values
for all of the approaches, apart from the btp method. The
differences for ACC are insignificant, also besides the btp
method. The values of FP are usually rather low (about
5–6%), especially for the avs and the btp approaches (even
about 1–2%). But the btp algorithm gives bigger values
for the FN (even about 30%). It seems that the ms-ant
and res-ant methods are the golden means regarding this
criterion, and averaging p-values improves the results.
The estimated power curves (Fig. 3) for the EKS tests are
usually slightly higher than for the KS test, but averaging
the p-values leads to the overlapping of the results, apart
from the btp method with the questionably high values.

For the CvM/ECvM tests, the conclusions are very
similar (Figs. 5 and 6). However, the btp approach leads
to the p-values which are closer to the “crisp” outputs,
even for the small sample, but ACC is still lower for the
btp approach than for other methods. The power curve
for the CvM test is slightly higher than its counterparts
for the ECvM tests, apart from the btp method for which
the values are clearly too big. The averaging of p-values
gives very good approximations of the “crisp” p-values
and lowers the distances between the power graphs. It can
also lead to an almost negligible loss for ACC.

In general, it is advisable to use the ant method
instead of its std counterpart, and the averaging of the
obtained p-values may be profitable.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

Shift

p−
va

lu
e

ms−std
ms−ant
res−std
res−ant
avs−std
avs−ant
btp−std
btp−ant
KS

Fig. 1. Empirical p-values for the KS test, X ∼ F(N,U,U), and
K = 10, n = m = 10 (shift added to Y ).

5.2. Detecting a difference in dispersion. Next, we
compared the tests’ behavior in situations when both
distributions differ only in dispersion. This was modeled
by the gradually increasing variance of the second sample
Y when the initial samples are from F(N,U,U).

The results are similar to those obtained above, i.e.,
the ms and res approaches give bigger p-values, and avs
—lower p-values when compared with the KS test. The
btp approach leads to relatively low values for the small
sample. However, for ECvM, avs is a promising approach
(Fig. 7). The ACC levels (apart from the btp method)
are usually very high (Fig. 8). The power curve for the
KS test is slightly lower (or higher for the CvM test)
when compared with its EKS (or ECvM) counterparts.
The averaging of p-values can improve the final p-value,
reduces distances between power curves, and has almost
negligible effect for ACC (apart from the btp approach,
which significantly lowers this value). Therefore, the avs,
ms-ant, res-ant approaches should be preferred.
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Fig. 2. Simulated ACC values for the KS test, X ∼ F(N,U,U),
and K = 10, n = m = 10 (shift added to Y ).
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Fig. 3. Simulated power for the KS test, X ∼ F(N,U,U), and
K = 10, n = m = 10 (shift added to Y ).

5.3. Detecting a difference in shape. In the next
study, X and Y come from quite different distributions,
but are selected to have identical expected values and
variances. For instance, X ∼ β(2, 5) and Y ∼
N(2/7,

√

5/196), where EX = EY = 2/7 and VarX =
VarY = 5/196.

Results in Table 2 show that the avs and ms
methods deliver p-values close to the results of the
KS/CvM tests, while the btp approach gives relatively
low p-values (to make it more readable, the p-values for
the EKS/ECvM tests which are the most similar to the
KS/CvM counterparts are given in bold). ACC is usually
very high (about 80–90%), apart from the btp method (see
Table 3). The ant approaches give better results than their
std versions. Averaging p-values produces the aggregated
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Fig. 4. Empirical p-values for the KS test, X ∼ F(N,U,U), and
K = 10, n = m = 10 (shift added to Y ), averaged
p-values.
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Fig. 5. Empirical p-values for the CvM test, X ∼ F(N,U,U), and
K = 10, n = m = 10 (shift added to Y ).

p-values slightly closer to the KS/CvM counterparts and
leads to a more significant improvement of ACC.

To better check the quality of our estimators, we
estimated their standard errors. The obtained values were
very low, e.g., for the p-values from Table 2, the estimated
standard errors were equal from 0.0011 up to 0.0037, and
for ACC given in Table 3, these values were in the interval
0.0021–0.0050. Then, it seems that our conclusions are
not influenced by the variability caused by the randomness
of our numerical experiments.

5.4. Real-life case study.

5.4.1. Lifetimes of street light equipment. In
Hesamian and Taheri (2013), fuzzy data concerning the
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Table 2. Comparison of the estimated p-values for the CvM test and different distributions.
ms-std ms-anti res-std res-ant avs-std avs-ant btp-std btp-ant CvM

F(β,U,U),1 vs F(U,U,U),1

n=10 0.6345 0.7000 0.6481 0.7066 0.4382 0.4768 0.0981 0.1535 0.5067
n=100 0.2524 0.6191 0.2793 0.6326 0.2638 0.4588 0.0392 0.2815 0.3091
F(β,U,U),1 vs F(N,U,U),1

n=10 0.6319 0.6959 0.6484 0.7016 0.4373 0.4749 0.0971 0.1488 0.5134
n=100 0.2490 0.6152 0.2761 0.6245 0.2628 0.4571 0.0368 0.2820 0.3860
F(β,U,U),1 vs F(Γ,U,U),1

n=10 0.6318 0.6982 0.6486 0.7048 0.4378 0.4767 0.0974 0.1470 0.5213
n=100 0.2419 0.6148 0.2689 0.6294 0.2604 0.4610 0.0366 0.2775 0.4337

Table 3. Comparison of ACC for the CvM test and different distributions.
ms-std ms-anti res-std res-ant avs-std avs-ant btp-std btp-ant

F(β,U,U),1 vs F(U,U,U),1

n = 10 0.9355 0.9403 0.9365 0.9419 0.9529 0.9531 0.2217 0.2977
n = 100 0.7888 0.8896 0.7946 0.8879 0.8982 0.8990 0.1747 0.4581
F(β,U,U),1 vs F(N,U,U),1

n = 10 0.9309 0.9373 0.9325 0.9339 0.9454 0.9459 0.2261 0.2968
n = 100 0.7890 0.8947 0.7952 0.8924 0.9054 0.9066 0.1604 0.4500
F(β,U,U),1 vs F(Γ,U,U),1

n = 10 0.9387 0.9439 0.9383 0.9422 0.9549 0.9551 0.2173 0.2864
n = 100 0.7995 0.9205 0.8126 0.9255 0.9388 0.9401 0.1308 0.4280
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Fig. 6. Simulated power for the CvM test, X ∼ F(N,U,U), and
K = 10, n = m = 10 (shift added to Y ).

lifetimes of street light equipment for two suppliers
(denoted by A and B) are analyzed. We would
like to check if these lifetimes can be regarded as
“similar”, i.e., originating from the same distributions
of originals for these two samples. In the work
of Gibbons and Chakraborti (2010), the respective
real-valued counterparts of these data are given, so we
compared the estimated p-values based on the epistemic
approach (see Table 4) with the “desirable” outputs (see
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Fig. 7. Empirical p-values for the CvM test, X ∼ F(N,U,U), and
K = 10, n = m = 10 (increasing σ).

Table 5). It seems that the p-values for the EKS/EcvM
tests are very close to each other and to the results for
the KS test (except btp) and not far from the p-value of
the CvM test. The final decisions regarding the tested
hypotheses, indicated by the methods proposed by us, are
consistent with the conclusions of Hesamian and Taheri
(2013).

To strengthen our reasoning, we added two “rather
big” triangular values (namely, (96, 100, 105) and
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Table 4. Estimated p-values of tests on the street light equipment lifetimes.
Suppliers ms-std ms-anti res-std res-ant avs-std avs-anti btp-std btp-ant
EKS test
A vs B 0.3185 0.2973 0.3182 0.2977 0.3176 0.2969 0.2385 0.2247
A vs C 0.1365 0.1263 0.1357 0.1265 0.1351 0.1263 0.0816 0.0753
ECvM test
A vs B 0.3048 0.2968 0.3054 0.2971 0.3044 0.2965 0.2840 0.2758
A vs C 0.1090 0.1051 0.1093 0.1054 0.1083 0.1051 0.1038 0.1001

Table 5. Actual p-values of tests on the street light equipment
lifetimes.

Suppliers KS test CvM test
A vs B 0.2857 0.2222
A vs C 0.1212 0.07879

(104, 110, 117)) to the data of supplier B and denoted this
new set as supplier C. Once again, the p-values for the
epistemic tests behave in a stable manner and are very
close to the outputs of their classical counterparts (again,
except btp).

The estimated p-values in the second example by
Hesamian and Taheri (2013) concerning happiness of
people were a little bigger (but still consistent) for the
EKS/EcvM tests than their classical counterparts.

5.4.2. Electronic circuit thickness. In the work
of Faraz and Shapiro (2010), fuzzy data concerning
measurements of electronic circuit thickness are
examined. This characteristic is essential during the
production of electronic boards for vacuum cleaners. As
noted, one subsample (number 21) makes the process out
of control. Therefore, we checked the null hypothesis (2)
when the first sample consists of the above-mentioned
troublesome values, and the second one includes the
rest of the observations. Then, the null hypothesis
was not rejected (see Table 6) at the significance level
0.05, but the obtained p-values are significantly lower
if they are compared under another data grouping (see
Table 7). In this second analysis, the 21-st subsample
was removed from the whole sample, and then the newly
obtained set was divided into two samples (with 44 and
43 observations, respectively). Hence, it seems that the
21-st subsample is potentially troublesome, as indicated
by Faraz and Shapiro (2010).

5.5. Comparison with other approaches. The
works of Grzegorzewski (2020) or Grzegorzewski and
Gadomska (2021), other approaches to goodness-of-fit
tests for fuzzy data were presented. These methods
are related to the ontic approach, which is different
than the epistemic view for fuzzy data used in this
paper. But, because of the lack of similar epistemic

goodness-of-fit tests, we compare our method with the
test by Grzegorzewski (2020) (further on abbreviated
as perm test) as well as Grzegorzewski and Gadomska
(2021) (knn test for short). The first one is an m-sample
goodness-of-fit test, and its test statistic is based on the
measure Dλ

θ proposed by Gil et al. (2002) and Trutschnig
et al. (2009). Permutations of the initial data are used
to approximate the respective p-value, so this procedure
is called a “permutation test” by its authors. In the
second test, which is also an m-sample goodness-of-fit
test, the k-nearest neighbor approach is utilized for its test
statistics together with the measure Dλ

θ and permutations
of the original sample. For the knn test, we set k = 5 (i.e.,
five nearest neighbors, as advised by Grzegorzewski and
Gadomska (2021)).

Firstly, as in Section 5.1, the shift in the location
is analyzed. In Figs. 9 and 10, the estimated p-values
are compared, when X ∼ F(N,U,U), and K = 10, n =
m = 10. To facilitate understanding, only the most
significant results (i.e., for res-ant, avs-ant, btp-ant) are
reproduced from the previous figures. The p-values for
the perm test seem to be lower (especially for the KS test)
than for the respective KS or CvM test, and rather close
to the avs-ant approach. This leads to a higher factor
of H0 rejection for the perm test, even when the second
sample is without the shift. For the knn test, the respective
p-values are lower and rather close to the ones for the KS
test, but significantly higher for the CvM test. Then, the
final answer concerning the null hypothesis can be more
disturbed and dependent on the test applied. As for the
power curves (Fig. 11), the perm method leads to very
big values when compared with the KS test, and the knn
approach—to low values for the CvM test. Therefore,
their behavior seems to be more unstable than the case
with the EKS/ECvM tests.

For the moderate sample (n = m = 100), the
p-values are rather close to one another for larger values
of the shift when X ∼ F(N,U,U). The perm test also
leads to slightly lower p-values, even without the shift,
which may be seen as a disadvantage of this method. On
the contrary, the p-values for the knn test are significantly
higher, especially for even moderate values of the shift
(i.e. 0.25–0.75). This can lead to acceptance of the false
null hypothesis.
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Table 6. Estimated p-values of tests on the electronic circuit thickness (with the 21-st subsample).
Test ms-std ms-anti res-std res-ant avs-std avs-anti btp-std btp-ant
EKS 0.3185 0.2973 0.3182 0.2977 0.3176 0.2969 0.2385 0.2247
ECvM 0.1365 0.1263 0.1357 0.1265 0.1351 0.1263 0.0816 0.0753

Table 7. Estimated p-values of tests on the electronic circuit thickness (without the 21-st subsample).
Test ms-std ms-anti res-std res-ant avs-std avs-anti btp-std btp-ant
EKS 0.7899 0.8604 0.7910 0.8600 0.7909 0.8627 0.7845 0.8628
ECvM 0.7957 0.8739 0.7961 0.8729 0.7978 0.8742 0.7944 0.8737
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Fig. 8. Simulated ACC values for the KS test, X ∼ F(N,U,U),
and K = 10, n = m = 10 (increasing σ).

Then, as in Section 5.2, the p-values for the shift
in dispersion are compared. However, the perm test is
not suitable for this case (see, e.g., Grzegorzewski and
Gadomska, 2021). For the small initial sample (see
Fig. 12), the p-values for the knn test are significantly
lower (in the case of the KS test) or similar to
the benchmark (for the CvM test), but with more
unpredictable behavior than avs-ant—first, the p-values
are bigger, then lower than the benchmark. The power
curve for the knn test is significantly higher than its
counterparts for the EKS/ECvM tests (which are close to
our benchmarks; see, e.g., Fig. 13). For the moderate
sample, the knn test leads to relatively higher p-values
for the moderate change of σ for the second population
(i.e., σ ∈ [2, 3]). This can be especially seen when the
averaging of the p-values is applied.

For the street light equipment lifetimes (see
Section 5.4.1), the p-values of both the perm and knn
tests with 10000 permutations are very big—considerably
higher than the outputs for their epistemic and classical
counterparts (see Table 8). The same conclusions apply to
the measurements of the electronic circuit thickness (see
Section 5.4.2), where the obtained p-values do not indicate
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Fig. 9. Estimated p-values, X ∼ F(N,U,U), and K = 10, n =
m = 10 (shift added to Y ), averaged p-values: KS test
based approaches.

any problems with the troublesome 21st subsample (see
Table 9), contrary to the case of Faraz and Shapiro (2010).

6. Conclusions

The epistemic bootstrap can be seen as a useful tool
to support statistical inference for a certain type of
imprecise data modeled by fuzzy sets. When the results
of random experiments are somehow hidden, imprecisely
defined, or measured, the epistemic perspective on fuzzy
data perception and its analysis is required. However,
as noted by Grzegorzewski and Romaniuk (2022b),
the direct application of the extension principle in
statistical inference to such data may be computationally
unsatisfactory to potential users.

In this paper, we presented the epistemic bootstrap
with several modifications as a universal basis for
various statistical tests, involving their very important
type—the goodness-of-fit tests. To check the quality
of the proposed algorithms, we discussed two epistemic
versions of the classical two-sample goodness-of-fit tests:
the Kolmogorov–Smirnov and Cramer–von Mises tests.
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Fig. 10. Estimated p-values, X ∼ F(N,U,U), and K = 10, n =
m = 10 (shift added to Y ), averaged p-values: CvM
test based approaches.

Table 8. Estimated p-values for other approaches: street light
equipment.

Suppliers knn perm
A vs B 0.3442 0.3808
A vs C 0.2685 0.1488

Based on both synthetic and real-life data, the epistemic
versions of these tests were compared with their “crisp”
counterparts that served as our benchmarks. It seems
that the avs-ant, ms-ant, and res-ant approaches give
the best results measured by both the similarity of
the obtained p-values to the respective benchmarks and
overall accuracy. Now these procedures are part of the
R package FuzzySimRes. Moreover, the simple averaging
of the p-values (instead of their combining by the Simes
method) leads to an improvement in the results. The
discussed epistemic tests were also compared with two
other approaches known in the literature: the perm and
knn tests. Also in this case our algorithms performed
better and the obtained p-values seem to be more stable,
outperforming inference based on these other tests.

Further research on resampling approaches for
epistemic fuzzy data would be recommended. In
particular, some hybrid methods, like combining the
introduced epistemic tests with other nonparametric
algorithms based on machine learning, e.g., the GAN
(generative adversarial network), can lead to interesting
results. These more sophisticated algorithms seem
promising.
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