
Int. J. Appl. Math. Comput. Sci., 2024, Vol. 34, No. 2, 291–307
DOI: 10.61822/amcs-2024-0021

A GAUSSIAN–BASED WGAN–GP OVERSAMPLING APPROACH FOR SOLVING
THE CLASS IMBALANCE PROBLEM

QIAN ZHOU a , BO SUN a,*

aDepartment of Computer Science and Technology
Shandong Agricultural University

61 Daizong Street, 271018, Tai’an, Shandong, China
e-mail: zq@sdau.edu.cn,sunbo87@126.com

In practical applications of machine learning, the class distribution of the collected training set is usually imbalanced, i.e.,
there is a large difference among the sizes of different classes. The class imbalance problem often hinders the achievable
generalization performance of most classifier learning algorithms to a large extent. To ameliorate the learning performance,
some effective approaches have been proposed in the literature, where the recently presented GAN-based oversampling
methods are very representative. However, their generated minority class examples have the risk of high similarity and
duplication degree. To further ameliorate the quality of the generated minority class examples, i.e., to make the generated
examples effectively expand the minority class region, a novel oversampling approach named the GWGAN-GP is proposed,
which is based on the Gaussian distribution label within the framework of a Wasserstein generative adversarial network with
gradient penalty (WGAN-GP). Our GWGAN-GP approach incorporates the Gaussian distribution as an input label, thereby
making the generated examples more diverse and dispersive. The examples are then combined with the original dataset
to form a balanced dataset, which is subsequently utilized to evaluate the classification performance of three selected
classification algorithms. Experimental results on 16 imbalanced datasets demonstrate that the GWGAN-GP not only
generates examples that better conform to the distribution of the original dataset, but also achieves superior classification
performance. Specifically, when combined with the KNN classifier, the GWGAN-GP significantly outperforms other
oversampling approaches considered in the study.

Keywords: machine learning, class imbalance, generative adversarial networks, oversampling, data duplication.

1. Introduction
The class imbalance problem is a common challenge
in the fields of machine learning and data mining,
which refers to the unequal distribution of data among
different classes. This problem has a significant impact
on the efficiency and performance of classification
algorithms (Sun et al., 2009). Therefore, it is crucial
to address the class imbalance problem when applying
classification algorithms. There are two main approaches
to tackle class imbalance: algorithmic improvements
and data-level solutions. The algorithmic improvement
approach focuses on modifying classification algorithms
to mitigate their bias towards the majority class examples
(Ohsaki et al., 2017; Chaabane et al., 2020; Zheng
and Zhao, 2020b). Data-level solutions aim to address
the class imbalance problem prior to the classification

*Corresponding author

process. Oversampling algorithms (Chawla et al., 2002),
undersampling algorithms (Liu et al., 2008), or hybrid
algorithms (Park and Park, 2021; Janicka et al., 2019)
are employed to balance the dataset. Undersampling
algorithms are based on removing examples from the
majority class dataset, while oversampling algorithms
involve generating new examples for the minority class
dataset. By manipulating the dataset, both approaches
aim to achieve a balance of classes before classifying,
ultimately enhancing the efficiency of classification
algorithms.

With the advent of generative adversarial networks
(GANs) as a deep learning algorithm (Goodfellow
et al., 2014), a novel approach has been introduced
for generating examples in oversampling approaches.
GANs employ an adversarial training process, enabling
the iterative generation of highly realistic new examples.
This breakthrough has significantly contributed to the

mailto:zq@sdau.edu.cn,sunbo87@126.com

292 Q. Zhou and B. Sun

advancement of data generation techniques in the context
of oversampling.

Oversampling approaches employ various strategies
to generate new minority class examples. These
strategies include random replication (Moreo et al.,
2016), interpolation approaches (Chawla et al., 2002),
and ensemble learning techniques (Chen et al., 2022).
The most influential one among them is the SMOTE
algorithm (Chawla et al., 2002; Garcı́a et al., 2016),
and many subsequent oversampling approaches have
been developed and expanded based on this algorithm
(Fernández et al., 2018). For example, Ren et al. (2023)
proposed a novel oversampling approach (GB-SMOTE),
which relocates new examples away from overlapping
regions and applies appropriate corrections to the
decision boundary. In addition, Kovács (2019)
conducted a comprehensive comparison and evaluation
of 85 variants of oversampling approaches, concluding
that Polynom-fit-SMOTE (Gazzah and Amara, 2008),
ProWSyn (Barua et al., 2013), and SMOTE-IPF (Sáez
et al., 2015) typically achieve better performance than
other oversampling approaches.

GANs are commonly employed for image data
processing, including image generation (Miyato et al.,
2018) and image enhancement (Yang et al., 2017).
However, GANs also demonstrate promising performance
in generating non-image data. For instance, Xie and
Zhang (2018) introduced the DCGAN model and applied
it to rotational machinery fault diagnosis. When aiming to
generate examples specific to certain class, the conditional
GAN (cGAN) (Mirza and Osindero, 2014) is often
utilized. Douzas and Bacao (2018) employed the cGAN
to generate examples that approximate the distribution
of real examples, and experimental results confirmed the
high quality of the generated examples. GANs have
found extensive application in the generation of tabular
data. For example, they are employed in the generation
of healthcare (Nik et al., 2023) and intrusion detection
(Bourou et al., 2021) data, serving a role in privacy
preservation (Hernandez et al., 2022). TableGAN (Park
et al., 2018) represents an early model designed for the
generation of tabular data, encompassing both numerical
and categorical columns. The CTGAN (Xu et al., 2019)
has the capability to generate tabular data with specific
conditions. Building upon the core features of the
CTGAN and TableGAN, Zhao et al. (2021) developed a
novel conditional table GAN architecture (CTAB-GAN).
It proves effective in modeling various data types with
complex distributions. However, GANs suffer from
limitations, such as generator gradient vanishing and
mode collapse, resulting in repetitive and less diverse
generated examples.

To mitigate these issues, improvements have
been proposed for GANs. The WGAN (Arjovsky
et al., 2017) introduced the Wasserstein distance as a

replacement for the traditional cross-entropy loss function
to alleviate gradient vanishing. Zhang et al. (2021)
utilized the WGAN to generate an imitation learning
module, pre-training the reinforcement learning module
to enhance learning efficiency. Zhang et al. (2023)
proposed the G-GAN algorithm, which incorporates
the Gaussian distribution as prior knowledge and
employs the WGAN to generate examples. Cui
et al. (2023) addressed the issue of insufficient rare
attack examples by constructing multiple Gaussian
distributions for minority class examples, establishing a
mixed distribution model composed of several normal
distributions. The WGAN-GP algorithm (Gulrajani et al.,
2017) replaced weight clipping with gradient penalty to
address the mode collapse problem. Chen et al. (2023)
proposed the pre-training WGAN-GP (PT-WGAN-GP)
for aero-engine high speed bearing fault diagnosis for
data imbalance. Zheng et al. (2020a) introduced the
conditional WGAN-GP (CWGAN-GP) algorithm, which
generates new examples by adding auxiliary conditional
information, such as the class label.

These approaches are based on GANs and are
applied for oversampling to address the class imbalance
problem in various real-world domains. The generation
of data using GAN-based approaches often leads to a
problem of high data similarity, accumulation, and a lack
of diversity that does not conform to the distribution
of the real dataset. Relevant studies indicate that the
intrinsic characteristics of imbalanced data also affect the
efficiency of classification algorithms (López et al., 2013),
such as class overlap (Sun et al., 2023), noisy data (He
and Garcia, 2009), and small disjuncts (Japkowicz, 2003).
Class overlap may lead to blurred decision boundaries and
increase classification errors. Additionally, repetition of
minority class data can also lead to a loss of minority class
information, rendering it challenging for the model to
accurately differentiate between various classes (Budach
et al., 2022; Zhao et al., 2021).

To avoid these issues from occuring, Zhu et al.
(2022) presented the GAN-based hybrid sampling
(GBHS) algorithm, which utilizes the WGAN-GP
to generate examples and then use undersampling
approaches to tackle the duplication issue. However,
to achieve direct generation of dispersed examples
without the need for a secondary processing step,
we present a Gaussian-based WGAN-GP approach
(GWGAN-GP) in this paper. By incorporating
the Gaussian distribution label, our method directly
generates dispersed new examples, thereby reducing data
duplication and enhancing data diversity.

The GWGAN-GP performs a novel oversampling
at the data level. By utilizing the Gaussian distribution
label as a condition and employing the WGAN-GP,
synthetic examples of a minority class dataset are
generated to address the class imbalance problem. In

A Gaussian-based WGAN-GP oversampling approach . . . 293

contrast to other algorithms (Zhang et al., 2023; Cui
et al., 2023) that require reshuffling input data to adhere
to a Gaussian distribution, we maintain the original
distribution of input data and disperse the generated new
samples based on Gaussian distribution labels to minimize
data duplication. In comparison with the previously
mentioned GAN, WGAN, WGAN-GP and CWGAN-GP,
the generated examples exhibit low similarity and
increased diversity, and conform more to the distribution
of a real dataset. Furthermore, the balanced datasets
obtained through our oversampling approach demonstrate
excellent performance and a significant practical value
when used in various classifiers.

This paper is structured as follows. In Section 2, we
provide an overview of the relevant algorithms, including
the GAN, WGAN, WGAN-GP and CWGAN-GP. In
Section 3, we present our novel approach, which
integrates the Gaussian distribution label into the
WGAN-GP framework. Section 4 outlines the
experimental procedure. The results and a comprehensive
analysis of the findings are presented in Section 5. Finally,
Section 6 concludes the paper and contains a discussion of
the future work.

2. Related works
2.1. GAN. The GAN is a deep learning model
composed of two neural networks: the generator and the
discriminator (Goodfellow et al., 2014). The objective
of the GAN is to generate realistic examples by training
the generator and discriminator in an adversarial manner.
The generator takes random noise as input and aims to
generate synthetic examples that resemble real examples.
Conversely, the discriminator attempts to distinguish
between real and generated examples by outputting the
probability of a sample being real. The generator uses
this probability to update its parameters and improve the
quality of generated examples, while the discriminator
updates its parameters to better discriminate between real
and generated examples. The training process of the
GAN can be formulated as a minimax game, where the
generator aims to minimize the discriminator’s ability to
distinguish between real and generated examples, while
the discriminator aims to maximize its ability to correctly
discriminate the examples. The loss function for this
adversarial training is defined as follows:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))],

(1)

where pdata (x) represents the distribution of real
examples, x denotes an element from the distribution
pdata (x), pz(z) is a noise distribution, and z represents the
input noise vector for the generator. G(z) represents the

generated examples, D is the discriminator, and D(G(z))
denotes the discriminator’s probability of classifying the
generated examples. From the equation above, it can
be observed that the discriminator aims to maximize
the loss function, while the generator aims to minimize
Ez∼pz(z)[log(1 −D(G(z)))].

During this adversarial process, if the discriminator
performs exceptionally well from the beginning and can
easily distinguish real examples from generated ones, the
gradients may approach zero. This phenomenon limits the
gradient propagation to the generator, leading to gradient
vanishing where the generator’s parameters cannot be
effectively updated. Consequently, the generator becomes
trapped in a specific mode, ignoring other potential
modes, and continuously generates repetitive or similar
examples, resulting in a lack of diversity. This issue
is commonly referred to as mode collapse, where the
generator fails to capture the full distribution and collapses
to a limited set of modes.

2.2. Three GAN-based approaches (WGAN, WGAN-
GP and CWGAN-GP). Compared with the GAN, the
WGAN (Arjovsky et al., 2017) utilizes the Wasserstein
distance as the loss function for the discriminator:

min
G

max
D

V (D,G) = Ex∼pdata (x)[D(x)]

− Ez∼pz(z)[D(G(z))].
(2)

The objective of the discriminator is to maximize the
loss function, while that of the generator is to minimize
−Ez∼pz(z)[D(G(z))].

This distance provides a more accurate measurement
of the difference between real and generated examples,
enabling more precise discriminator evaluation. As a
result, the discriminator’s gradient changes smoothly,
alleviating the issue of gradient vanishing.

By introducing a gradient penalty mechanism, the
WGAN-GP algorithm (Gulrajani et al., 2017) applies
a penalty on the gradients of the discriminator based
on linear interpolations between real and generated
examples. This penalty prevents the discriminator from
excessively chasing a specific mode, thus mitigating
the problem of mode collapse and enhancing algorithm
stability. The improved loss function is expressed as
follows:

min
G

max
D

V (D,G) = Ex∼pdata (x)[D(x)] − Ex̃∼px̃ [D(x̃)]

− λEx̂∼px̂

[
(‖∇x̂D(x̂)‖2 − 1)

2
]
,

(3)

where px̂ represents the linearly interpolated distribution
between the real examples’ distribution pdata(x) and the
generated examples’ distribution px̃, with x̂ = εx +
(1− ε)x̃, where ε is a uniformly sampled random number

294 Q. Zhou and B. Sun

from [0, 1] and x̃ stands for the generated examples from
G(z). The gradient penalty coefficient λ is set to 10.
The objective of the discriminator is to maximize the
loss function, while that of the generator is to minimize
−Ex̃∼px̃ [D(x̃)].

The WGAN-GP can be modified to incorporate the
conditional information (CWGAN-GP), such as the class
label (Zheng et al., 2020a). By adding this conditional
information as an additional input, the CWGAN-GP
enables the generation of examples that satisfies a specific
condition. The modified loss function can be expressed as
follows:

min
G

max
D

V (D,G)

= Ex∼pdata (x)[D(x | y)]− Ex̃∼px̃ [D(x̃ | y)]
− λEx̂∼px̂

[
(‖∇x̂D(x̂ | y)‖2 − 1)

2
]
,

(4)

where y represents the additional auxiliary information,
which in this approach refers to the class label. By
incorporating the class label into the loss function, the
CWGAN-GP allows the generation of examples that
conform to a specific class, enabling more controlled and
targeted data synthesis.

For binary classification problems, the class label as
input information may not hold significant meaning. In
this paper, we propose employing a Gaussian distribution
as the input label instead, aiming to mitigate issues such
as data accumulation and overlap.

3. Proposed oversampling approach
(GWGAN-GP)

By conducting feature correlation analysis (Guyon and
Elisseeff, 2003) and incorporating a Gaussian distribution
(Wasserman, 2004) as the input label, the GWGAN-GP
enhances the diversity of the generated examples
and ensures that it better captures the distribution
characteristics of the real examples. Firstly, we perform
feature correlation analysis to identify the features most
relevant to the target variable, referred to as the key
features. This analysis aims to identify the features
that exhibit strong correlations with the class label.
Subsequently, the mean and standard deviation of the key
feature are calculated for the minority class dataset. These
computed values serve as the parameters for the Gaussian
distribution, with the mean indicating the central tendency
and the standard deviation representing the spread.
Alternatively, based on the different characteristics of
the dataset, other suitable values can be chosen as the
mean and standard deviation parameters for the Gaussian
distribution. Ultimately, this Gaussian distribution is
introduced as a conditional information y input in the
WGAN-GP framework.

The procedure for identifying the column index of
the key feature can be expressed using the following

�

�� � �

��������� 	
���

�����

�� ����	� �

�� � �

Fig. 1. Structure of our GWGAN-GP approach.

equation:

Cj

= argmax
j

μ([(X − μ(X,N))(Y − μ(Y,N))], N)

σ(X,N)σ(Y,N)
.

(5)

where X = Xj , Y = Yclass. Specifically, Xj represents
the vector composed of values from all examples in the
j-th column for dataset p. The number of all examples is
denoted as N. Yclass represents the class label column. The
argmaxj operation identifies the index j that maximizes
the correlation value.

The mean μ
(
XCj , Nmin

)
and standard deviation

σ
(
XCj , Nmin

)
of the minority class dataset pdata about

the column of Cj are computed, and these values are
used as the mean and standard deviation for the Gaussian
distribution. The size of pdata is Nmin.

For datasets with complex feature values, where a
key feature may not have significant impact, it is possible
to choose more suitable values for the mean and standard
deviation of the Gaussian distribution. For example, μ =
10 and σ = 5 can be used, although these values are not
fixed and may vary to achieve better experimental results.

From the above equations and values, the conditional
input y conforms to the distribution N(y;μ, σ). The
structure of our GWGAN-GP approach is illustrated in
Fig. 1.

In Fig. 1, the process begins by the generator
producing fake examples based on the distribution of the
conditional y and random noise z. Subsequently, the
generated fake examples, the real minority class dataset,
and the conditional y are fed into the discriminator. It
calculates the loss function separately for each input and
back-propagates the gradients to update its parameters.
This iterative process continues with multiple iterations
of generator and discriminator updates. Eventually, the
trained model outputs new examples that conform to the
distribution specified by the conditional y. The new loss

A Gaussian-based WGAN-GP oversampling approach . . . 295

Algorithm 1. Procedures of our GWGAN-GP.
Require: Dataset p

1: Calculate Cj of the key feature column of p using
Eqn. (5).

2: Extract the minority class dataset pdata from p.
3: Calculate the mean μ

(
XCj , Nmin

)
and standard

deviation σ
(
XCj , Nmin

)
of column Cj in pdata .

4: Generate the y distribution label by inputting μ and σ
into N(y;μ, σ).

5: while k ⇐ 1, 2, 3, . . . , num epochs do
6: while i ⇐ 1, 2, 3, . . . , Nmin/batch size do
7: Sample a batch from noise data and y randomly.

8: Sample a batch from pdata and y randomly.
9: Generator()

10: Compute Gradient Penalty()
11: Discriminator()
12: Calculate the loss functions for the generator and

discriminator. {Referring to Eqn. (6)}
13: Update the parameters of the generator and

discriminator
14: end while
15: end while
16: return the generated examples after oversampling

function can be expressed as follows:

min
G

max
D

V (D,G) = Ex∼pdata (x),y∼N(μ,σ)[D(x | y)]
−Ex̃∼px̃,y∼N(μ,σ)[D(x̃ | y)]

−λEx̂∼px̂,y∼N(μ,σ)

[
(‖∇x̂D(x̂ | y)‖2 − 1)

2
]
.

(6)

The complete procedures of our GWGAN-GP,
incorporating the structure and equations mentioned, can
be described as follows.

Firstly, the calculations of the key feature columns,
mean, and standard deviation, along with the generation
of the y distribution label, ensure that the generated
examples conform to the real distribution and incorporate
the specified conditioning information. Secondly, the
iterative process involves training the generator and
discriminator by sampling batches from the noise data, the
minority class dataset, and conditional y. Subsequently,
the parameters are updated, and loss functions are
optimized during each iteration. Finally, the generated
examples are outputted after oversampling.

4. Experimental study
To demonstrate that the minority examples generated
by the GWGAN-GP approach are more dispersed
compared with those obtained with other GAN-based
approaches, some experiments have been performed.

Additionally, when combined with different classification
algorithms, our approach can achieve better classification
performance than other oversampling approaches. We
aim to identify an optimal combination strategy of a
classification algorithm with the GWGAN-GP and apply
it to address real-world class imbalance problems. The
following experimental procedure was conducted.

4.1. Imbalanced datasets used. The dataset utilized in
this paper was sourced from imbalanced datasets available
on KEEL (Derrac et al., 2015), UCI (Dua and Graff,
2019), and Kaggle (2024). The sizes of these datasets
varied, ranging from 213 to 26,851 instances, while the
number of features encompassed a range of 3 to 96.
Furthermore, the datasets exhibited varying degrees of
class imbalance, with imbalance ratios ranging from 1.87
to 29.9. Table 1 presents the size, imbalance ratio, and
number of features for each dataset.

Datasets with IDs 12-16 are sourced from real-world
applications. The Adult dataset is extracted from the
1994 U.S. census data and includes detailed individual
information such as the age, education level, and
other features. The Bank dataset, focused on banking
marketing, includes fundamental information like the
user age, occupation, etc. The Telecom Churn dataset
is a commonly used dataset for predicting customer
churn. These datasets are widely employed in research
related to income prediction and the field of business
economics. Additionally, two healthcare-related datasets
are the Lower Back Pain dataset and the Mammography
dataset. The former is used to determine the presence
of a lower back pain by inputting relevant features such
as pelvic and sacral characteristics. The latter (Woods
et al., 1993) is used to predict the likelihood of cancer
by inputting breast-related image data, age, and other
information.

4.2. Generator and discriminator configura-
tion. The generators and discriminators in GAN-based
approaches (GAN, WGAN, WGAN-GP, CWGAN-GP,
and GWGAN-GP) are implemented as three-layer neural
networks. The hidden layers are set to 64–128 neurons.
It is important to note that the parameters for the hidden
layers should not be smaller than the size of features
in the dataset. The batch size is set to 16, which
should be smaller than the number of the minority class
dataset. The number of epochs is 100, as setting a larger
value would result in highly similar data generated by
GAN-based approaches, significantly deviating from the
real examples’ distribution and affecting the classifier’s
judgment. The Adam optimizer is used in the algorithm.
The detailed network topology and hyperparameter
settings are shown in Table 2.

296 Q. Zhou and B. Sun

Table 1. Details of the datasets used.
ID Dataset Instances Majority instances Minority instances Imbalance ratio Features
1 Abalone9-18 731 689 42 16.40 8
2 Car-good 1728 1659 69 24.04 6
3 Ecoli2 336 284 52 5.46 7
4 Fare-F 306 267 39 6.85 11
5 Glass0 213 144 69 2.09 9
6 Haberman 289 210 79 2.66 3
7 Pima 768 500 268 1.87 8
8 Vehicle0 846 647 199 3.25 18
9 Winequality 1359 1306 53 24.64 11

10 Yeast1458vs7 688 658 30 21.93 8
11 Yeast2vs8 457 437 20 21.85 8
12 Adult 26851 20730 6121 3.39 96
13 Bank 4521 4000 521 7.68 16
14 Lower back pain 310 210 100 2.10 12
15 Mammography 7849 7595 254 29.90 6
16 Telecom Churn 7031 5163 1868 2.76 27

Table 2. Settings of GAN-based approaches.
Parameters GAN WGAN WGAN-GP CWGAN-GP GWGAN-GP
Network topology (input dim,64)

(64,128)
(128,output dim)

(input dim,64)
(64,128)
(128,output dim)

(input dim,64)
(64,128)
(128,output dim)

(input dim+1,64)
(64,128)
(128,output dim)

(input dim+1,64)
(64,128)
(128,output dim)

Activation function Sigmoid() Tanh() Tanh() ReLU() Tanh() ReLU() Tanh()
Loss function BCELoss() Wasserstein

Loss
Wasserstein
Loss
GradientPenalty
Loss

Wasserstein
Loss
GradientPenalty
Loss

Wasserstein
Loss
GradientPenalty
Loss

Optimizer Adam Adam Adam Adam Adam
Learning rate 0.0002 0.00005 0.00005 0.0002 0.0002
Number of epochs 100 100 100 100 100
Batch size 16 16 16 16 16
Lambda GP – – 10 10 10

4.3. Details of classification algorithms. We
combined the examples generated by the GWGAN-GP
algorithm with the original dataset, resulting in a balanced
dataset that was used for evaluation by the classification
algorithms.

The three commonly used classification algorithms
include k-nearest neighbors (k-NN) (Cover and Hart,
1967), random forest (RF) (Breiman, 2001), and adaptive
boosting (AB) (Freund and Schapire, 1997). The k-NN
algorithm assigns a class label to a sample by considering
the majority class labels among its k nearest neighbors
(k = 3). The RF algorithm constructs an ensemble
of decision trees (Breiman, 2017) and combines their
predictions to make the final classification. We created
a random forest classifier consisting of 10 trees, each with
a maximum depth of 10. In each split, only one randomly
selected feature is considered. The AB algorithm will
employ 200 decision trees as the base classifiers, where

each decision tree is constrained by a maximum depth
limit of 1.

4.4. Performance evaluation metrics used. In order
to demonstrate the effectiveness of the GWGAN-GP
algorithm in addressing the challenges of duplication
and high similarity, the Euclidean distances D =
{di}Nnew−1

i=1 are computed between generated examples.
Here, Nnew denotes the size of the generated examples.
Subsequently, the mean and variance of the calculated
Euclidean distances are evaluated. A higher mean value
indicates greater distances and lower similarity among
the generated examples, while a larger variance implies
a more dispersed data distribution.

Additionally, we employ principal component
analysis (PCA) (Wold et al., 1987) to visually demonstrate
the changes in the quantity of the dataset before and after
oversampling, as well as the distribution of the generated

A Gaussian-based WGAN-GP oversampling approach . . . 297

	�������

�
���
��

��������

��� �������� �����
��

�����������������

����������������

�����������
�
���
��������
���� �

��!"#!��$

#
%�������������%��
���
��

Fig. 2. Experimental workflow about datasets.

examples using the GAN-based approaches.

We performed five-fold cross-validation (Kohavi,
1995) to calculate various performance metrics for
classification algorithms, including recall, F1 score,
G-mean and the area under the curve (AUC) (He and
Garcia, 2009; Powers, 2020). Recall measures the ability
of the classifier to correctly identify positive instances,
making it particularly suitable for applications that are
concerned with the omission of positive instances, such
as medical diagnosis. The F1 score is the harmonic
mean of precision and recall, making it a good metric
for classifiers that achieve a balance between positive
and negative instances. G-mean is highly effective
for classification problems with imbalanced datasets.
It considers the performance of the classifier on both
positive and negative classes, taking the geometric mean
between them. Therefore, when considering the balance
between different classes, G-mean is an appropriate
choice. The AUC metric assesses the performance of the
classification algorithm based on the receiver operating
characteristic (ROC) curve, providing insights into the
algorithm’s ability to distinguish between positive and
negative instances. The AUC is suitable for assessing the
overall ranking ability of a classifier. Unlike the previous
three metrics, it does not focus on a specific threshold but
instead considers the overall performance across different
thresholds. Moreover, it exhibits a certain tolerance to
class imbalance.

By comparing the performance of the classification
algorithms using the new balanced dataset, we were able
to quantitatively evaluate the efficacy of the GWGAN-GP
in generating diverse examples. The experimental
workflow about datasets is illustrated in Fig. 2. The
experimental results and performance metrics obtained
will be presented and discussed in the subsequent sections.

5. Experimental results and analysis
5.1. Data distribution after oversampling. The
distribution of newly generated examples varies among
the ten small datasets for GAN-based approaches. The
means and variances of the distances between the newly
generated examples are illustrated in Fig. 3.

Based on the figure, it is evident that the means and
variances of distances between the generated examples
differ among GAN-based approaches across the ten
small datasets. Specifically, the examples generated by
the GAN exhibit relatively small means and variances
of distances, indicating a high level of similarity and
significant duplication. For comparison, the WGAN-GP
and CWGAN-GP show slightly increased mean and
variance values compared with the GAN. Notably,
Datasets 8 exhibits the largest mean and variance of
distances for the WGAN-GP. On other datasets, the
GWGAN-GP generates examples with the highest means
of distances, suggesting a lower similarity and duplication
degree among the generated examples. Additionally,
the larger variances of the distance about generated
examples indicate a more dispersed data distribution. On
the average, the GWGAN-GP generates examples with
higher means and variances of distances compared with
the other GAN-based approaches. This highlights the
effectiveness of the GWGAN-GP in addressing problems
related to data duplication and high similarity encountered
in GAN-based oversampling approaches.

Figure 4 presents a more visually insightful depiction
of the distribution of generated examples across three
datasets. In order to present clear results, we chose three
datasets with varying sizes, avoiding overly large datasets.
Dataset 3, of moderate size, features a unique distribution
where the minority class data predominantly occupies
the central region, flanked by the majority class data on
either side. This setup often results in a majority of safe
examples in the minority class, which are generally more
straightforward for classifiers to learn from (Napierala
and Stefanowski, 2016). Dataset 5, smaller in size,
presents a different scenario where there is notable overlap
between the two classes. In this case, the minority class is
characterized by a greater proportion of unsafe examples,
complicating the classification task. Lastly, Dataset 7,
larger in size, displays a higher rate of overlap between the
two classes in one dimension, adding to the complexity of
the classification challenge.

As depicted in Fig. 4, examples generated by the
GAN tend to be relatively concentrated, displaying a high
degree of duplication. Unlike this, the WGAN-GP and
CWGAN-GP show a slight reduction in duplication for
the generated examples compared with the GAN. Notably,
examples generated by the GWGAN-GP exhibit greater
dispersion with a lower duplication rate, aligning more

298 Q. Zhou and B. Sun

����

����

����

����

����

����

����

����

� � � � 	
 � �� �� �� ������

�
��
��
�
��

�������

��� ������� �������� ��������

���

���

���

��	

���

���

���

� � � � 	
 � �� �� �� ������

�
��
�

�������

��� ������� �������� ��������

Fig. 3. Means and variances of the distances.

closely with the distribution of the real minority class
dataset.

5.2. Obtained experimental results measured
using recalls. To evaluate the performance of
GAN-based oversampling approaches in comparison
with oversampling algorithms such as SMOTE (Chawla
et al., 2002), Polynom-fit-SMOTE (PFS) (Gazzah
and Amara, 2008), ProWSyn (Barua et al., 2013)
and SMOTE-IPF (Sáez et al., 2015), the evaluation is
conducted using a five-fold cross-validation approach on
various datasets and classifiers. The mean recall values
achieved by each approach are computed and compared
across the different datasets and classifiers. The recall
values are presented in Table 3.

Based on the data presented in the table, it is evident
that the GWGAN-GP outperforms other oversampling
methods in recall across three classifiers. Specifically, in
the five datasets (2, 9, 10, 11, 15) where the imbalance
ratio exceeds 20, the combination of the GWGAN-GP
and a classification algorithm also achieves superior recall
values.

In the context of imbalanced datasets, the minority
class examples are of particular importance as they
often represent crucial, rare, or significant instances.
Specifically, in oversampling algorithms, the generation
of examples primarily focuses on the minority class

(positive instances). Hence, it is desirable for the classifier
to effectively capture a maximum number of minority
class dataset. The recall metric accurately assesses
the proportion of correctly identified minority class data
among all real minority class dataset, thereby effectively
evaluating the performance of oversampling approaches.

The higher frequency of the GWGAN-GP
consistently yielding the best recall values across
various datasets when combined with classifiers indicates
its capability to enhance the classifier identifying the
minority class dataset.

5.3. Obtained experimental results measured us-
ing F1 scores. The average F1 scores are presented in
Table 4.

The table reveals that the GWGAN-GP algorithm
attains superior optimal F1 scores, suggesting that
the synergy between the GWGAN-GP algorithm and
classifiers can strike an effective balance between
precision and recall. Among the three classifiers, the
fusion of the KNN classifier and the GWGAN-GP
produces an average F1 score of 0.8917 across 16
datasets, surpassing other oversampling approaches by a
margin of 0.0044 to 0.2156. Similarly, when the RF
classifier is paired with the GWGAN-GP, the average F1
score reaches 0.8958, outperforming other oversampling
algorithms by 0.0033 to 0.2490. Additionally, the

A Gaussian-based WGAN-GP oversampling approach . . . 299

(a) Dataset 3: GAN (b) Dataset 3: WGAN-GP (c) Dataset 3: CWGAN-GP

(d) Dataset 3: GWGAN-GP (e) Dataset 5: GAN (f) Dataset 5: WGAN-GP

(g) Dataset 5: CWGAN-GP (h) Dataset 5: GWGAN-GP (i) Dataset 7: GAN

(j) Dataset 7: WGAN-GP (k) Dataset 7: CWGAN-GP (l) Dataset 7: GWGAN-GP

Fig. 4. Data distribution of the datasets (the pentagram symbol represents the majority class dataset, the triangle symbol represents the
original minority class dataset, and the circle symbol represents the generated examples).

combination of the AB classifier and the GAN achieves
an average F1 score of 0.8975, marginally surpassing the
GWGAN-GP algorithm by 0.0008.

5.4. Obtained experimental results measured us-
ing G-means. The average G-mean metric results are
presented in Table 5.

From Table 5, it can be observed that the
GWGAN-GP algorithm performs well compared with
other oversampling approaches across the three classifiers.

It excels particularly with the KNN classifier, achieving
the maximum G-mean values across 10 datasets.
Considering the earlier F1 experimental results, the
GWGAN-GP algorithm, in comparison with other
oversampling approaches, tends to bring about a
more balanced classification performance for the KNN
classifier in both positive and negative classes.

5.5. Obtained experimental results measured us-
ing AUCs. Utilizing five-fold cross-validation, we

300 Q. Zhou and B. Sun

Table 3. Obtained recalls of each approach.
Dataset Classifers NONE SMOTE PFS ProWSyn SMOTE GAN WGAN WGAN CWGAN GWGAN

IPF -GP -GP -GP

1
KNN 0.5298 0.9245 0.8741 0.9013 0.9180 0.9611 0.9124 0.9676 0.9509 0.9555
RF 0.5943 0.9340 0.8913 0.9078 0.9289 0.9596 0.8935 0.9633 0.9509 0.9504
AB 0.6324 0.9166 0.9498 0.9223 0.9289 0.9517 0.9139 0.9553 0.9422 0.9598

2
KNN 0.6534 0.9436 0.9563 0.9250 0.9433 0.9653 0.9653 0.9653 0.9653 0.9674
RF 0.6474 0.9608 0.9255 0.9485 0.9551 0.9650 0.9665 0.9677 0.9662 0.9674
AB 0.5187 0.8165 0.8230 0.8210 0.8177 0.9792 0.9792 0.9789 0.9792 0.9653

3
KNN 0.9157 0.8924 0.9069 0.8959 0.9012 0.9180 0.8918 0.9180 0.9074 0.9253
RF 0.8716 0.9293 0.9235 0.9153 0.9311 0.9198 0.9286 0.9216 0.8929 0.9329
AB 0.8894 0.9171 0.9122 0.9083 0.9312 0.9412 0.9466 0.9448 0.9465 0.9294

4
KNN 0.5082 0.8352 0.8178 0.8165 0.8322 0.8939 0.8884 0.8883 0.8884 0.9034
RF 0.4991 0.8577 0.8818 0.8446 0.9020 0.8845 0.8921 0.8939 0.8940 0.9034
AB 0.6380 0.8633 0.8743 0.8577 0.8741 0.9034 0.9015 0.8996 0.8996 0.8923

5
KNN 0.8042 0.8333 0.8117 0.8229 0.8264 0.8125 0.7917 0.8056 0.8090 0.8403
RF 0.8007 0.8507 0.8268 0.8125 0.8681 0.8438 0.7917 0.8194 0.8160 0.8125
AB 0.7938 0.8264 0.8264 0.8021 0.8542 0.8299 0.7951 0.8090 0.8088 0.8264

6
KNN 0.5747 0.7357 0.7102 0.6667 0.7520 0.7377 0.6686 0.7639 0.7472 0.7663
RF 0.5391 0.7048 0.7245 0.7095 0.7550 0.7616 0.7354 0.7545 0.7593 0.7641
AB 0.5648 0.7119 0.7618 0.7500 0.6986 0.7877 0.7520 0.7782 0.7830 0.7664

7
KNN 0.6936 0.7860 0.8238 0.7611 0.7881 0.7800 0.7402 0.7771 0.7711 0.7892
RF 0.7003 0.7912 0.7699 0.7551 0.7921 0.8043 0.7484 0.7831 0.7922 0.8055
AB 0.6955 0.7570 0.7930 0.7621 0.7701 0.8002 0.7544 0.7611 0.7882 0.7642

8
KNN 0.9311 0.9590 0.9533 0.9552 0.9606 0.9583 0.9560 0.9583 0.9583 0.9591
RF 0.9138 0.9583 0.8663 0.9490 0.9482 0.9390 0.9228 0.9459 0.9506 0.9714
AB 0.9788 0.9799 0.8667 0.9691 0.9776 0.9815 0.9490 0.9737 0.9776 0.9846

9
KNN 0.5045 0.9043 0.7960 0.8672 0.9032 0.9733 0.9369 0.9687 0.9434 0.9739
RF 0.4981 0.9315 0.8279 0.8664 0.9173 0.9775 0.9112 0.9675 0.9491 0.9766
AB 0.5470 0.8806 0.8433 0.8641 0.8679 0.9591 0.8836 0.9522 0.9330 0.9739

10
KNN 0.5071 0.8320 0.7518 0.7689 0.8191 0.9263 0.8068 0.9301 0.9004 0.9217
RF 0.4969 0.8776 0.8112 0.7917 0.8768 0.9544 0.9453 0.9598 0.9666 0.9491
AB 0.5257 0.8715 0.8444 0.8183 0.8723 0.9308 0.9301 0.9270 0.9286 0.9491

11
KNN 0.7227 0.9109 0.9363 0.9187 0.9223 0.9851 0.9141 0.9770 0.9507 0.9441
RF 0.6989 0.9462 0.9875 0.9336 0.9623 0.9747 0.9759 0.9770 0.9667 0.9852
AB 0.7466 0.9599 0.9852 0.9577 0.9588 0.9828 0.9782 0.9816 0.9828 0.9863

12
KNN 0.6815 0.8303 0.7815 0.8101 0.8516 0.8394 0.8394 0.8378 0.8395 0.8568
RF 0.5019 0.7892 0.8267 0.8269 0.8049 0.8510 0.8523 0.8524 0.8522 0.8521
AB 0.7221 0.8375 0.7933 0.8207 0.8546 0.8602 0.8592 0.8603 0.8596 0.8635

13
KNN 0.5993 0.9140 0.8968 0.9057 0.9118 0.9195 0.9183 0.9189 0.9195 0.9246
RF 0.5357 0.8931 0.9327 0.9107 0.8982 0.9315 0.9318 0.9323 0.9318 0.9296
AB 0.6534 0.9116 0.9222 0.9167 0.9134 0.9176 0.9183 0.9184 0.9188 0.9109

14
KNN 0.7111 0.8000 0.7942 0.7833 0.8095 0.8071 0.7571 0.8262 0.8119 0.8117
RF 0.6752 0.8000 0.8309 0.7881 0.7976 0.8190 0.7881 0.8214 0.8452 0.8214
AB 0.7261 0.8071 0.8006 0.7929 0.8000 0.8048 0.7905 0.8167 0.8238 0.8405

15
KNN 0.7787 0.9532 0.9718 0.9555 0.9687 0.9864 0.9795 0.9856 0.9860 0.9864
RF 0.7239 0.9506 0.9732 0.9598 0.9651 0.9871 0.9849 0.9875 0.9873 0.9874
AB 0.7299 0.9267 0.9715 0.9517 0.9461 0.9835 0.9820 0.9861 0.9856 0.9857

16
KNN 0.6767 0.8059 0.7986 0.7932 0.8074 0.8040 0.8029 0.8040 0.8039 0.8238
RF 0.6911 0.8123 0.7784 0.8186 0.8125 0.8224 0.8173 0.8193 0.8038 0.8393
AB 0.7143 0.8165 0.7788 0.7930 0.8198 0.8334 0.8330 0.8349 0.8328 0.8188

computed the average AUC (area under the curve) metrics
for different oversampling algorithms combined with
three classifiers across 16 datasets. The AUC results offer
a comprehensive assessment of the classifier performance
under various datasets and oversampling approaches. The
detailed results are presented in Table 6.

On all 16 datasets and with three different classifiers,
each oversampling approach exhibited its optimal AUC
value. Overall, the GWGAN-GP performed best, closely
followed by the GAN and WGAN-GP. This demonstrates
that, overall, our approach can achieve good performance.

A Gaussian-based WGAN-GP oversampling approach . . . 301

Table 4. Obtained F1 scores of each approach.
Dataset Classifers NONE SMOTE PFS ProWSyn SMOTE GAN WGAN WGAN CWGAN GWGAN

IPF -GP -GP -GP

1
KNN 0.5355 0.9242 0.8742 0.9009 0.9176 0.9595 0.9104 0.9657 0.9493 0.9519
RF 0.6185 0.9339 0.8910 0.9076 0.9288 0.9579 0.8912 0.9612 0.9493 0.9469
AB 0.6571 0.9165 0.9497 0.9223 0.9288 0.9499 0.9120 0.9532 0.9405 0.9565

2
KNN 0.5976 0.9433 0.9560 0.9242 0.9430 0.9647 0.9647 0.9647 0.9647 0.9669
RF 0.5675 0.9607 0.9248 0.9482 0.9549 0.9644 0.9659 0.9671 0.9656 0.9669
AB 0.3813 0.7849 0.7914 0.7894 0.7861 0.9786 0.9786 0.9783 0.9786 0.9647

3
KNN 0.9091 0.8908 0.9037 0.8947 0.8998 0.9147 0.8879 0.9152 0.9024 0.9214
RF 0.8692 0.9287 0.9222 0.9148 0.9306 0.9176 0.9263 0.9194 0.8851 0.9316
AB 0.8818 0.9167 0.9111 0.9080 0.9311 0.9406 0.9462 0.9444 0.9461 0.9281

4
KNN 0.4978 0.8303 0.8159 0.8104 0.8310 0.8734 0.8679 0.8676 0.8677 0.8847
RF 0.4924 0.8551 0.8779 0.8406 0.9014 0.8659 0.8715 0.8755 0.8755 0.8867
AB 0.6257 0.8593 0.8702 0.8523 0.8711 0.8852 0.8811 0.8791 0.8791 0.8783

5
KNN 0.7866 0.8281 0.8040 0.8160 0.8201 0.8064 0.7816 0.7991 0.8032 0.8334
RF 0.7997 0.8495 0.8253 0.8099 0.8672 0.8382 0.7802 0.8072 0.8088 0.8063
AB 0.7913 0.8248 0.8231 0.7967 0.8532 0.8213 0.7863 0.7981 0.7977 0.8220

6
KNN 0.5744 0.7313 0.7031 0.6660 0.7494 0.7143 0.6545 0.7369 0.7309 0.7514
RF 0.5271 0.7017 0.7067 0.7057 0.7527 0.7429 0.7119 0.7359 0.7408 0.7502
AB 0.5525 0.7064 0.7366 0.7445 0.6941 0.7680 0.7339 0.7583 0.7647 0.7489

7
KNN 0.6977 0.7856 0.8242 0.7607 0.7870 0.7758 0.7376 0.7729 0.7671 0.7862
RF 0.7074 0.7906 0.7614 0.7545 0.7917 0.8023 0.7473 0.7790 0.7896 0.8043
AB 0.7012 0.7568 0.7892 0.7609 0.7698 0.7983 0.7524 0.7577 0.7857 0.7615

8
KNN 0.9324 0.9590 0.9525 0.9551 0.9605 0.9582 0.9558 0.9582 0.9582 0.9589
RF 0.9194 0.9582 0.8543 0.9490 0.9481 0.9382 0.9221 0.9455 0.9503 0.9714
AB 0.9741 0.9799 0.8487 0.9690 0.9776 0.9815 0.9490 0.9737 0.9776 0.9846

9
KNN 0.5046 0.9032 0.7945 0.8651 0.9021 0.9730 0.9367 0.9684 0.9433 0.9734
RF 0.4891 0.9314 0.8232 0.8657 0.9172 0.9772 0.9109 0.9672 0.9489 0.9761
AB 0.5521 0.8804 0.8412 0.8638 0.8677 0.9588 0.8832 0.9519 0.9327 0.9734

10
KNN 0.4996 0.8247 0.7492 0.7547 0.8110 0.9254 0.8026 0.9291 0.8991 0.9213
RF 0.4873 0.8764 0.8085 0.7817 0.8746 0.9542 0.9449 0.9596 0.9665 0.9488
AB 0.5290 0.8706 0.8428 0.8138 0.8712 0.9300 0.9292 0.9261 0.9277 0.9489

11
KNN 0.7802 0.9100 0.9359 0.9184 0.9219 0.9850 0.9141 0.9768 0.9507 0.9435
RF 0.7282 0.9462 0.9875 0.9336 0.9622 0.9745 0.9757 0.9768 0.9665 0.9851
AB 0.7974 0.9599 0.9852 0.9577 0.9588 0.9828 0.9782 0.9817 0.9828 0.9863

12
KNN 0.6866 0.8293 0.7443 0.8017 0.8522 0.8282 0.8282 0.8282 0.8283 0.8502
RF 0.4397 0.7882 0.7751 0.8251 0.8051 0.8148 0.8161 0.8162 0.8160 0.8048
AB 0.7388 0.8369 0.7397 0.7949 0.8544 0.8478 0.8463 0.8478 0.8468 0.8559

13
KNN 0.6260 0.9135 0.8971 0.9055 0.9112 0.9118 0.9106 0.9112 0.9118 0.9169
RF 0.5389 0.8930 0.9296 0.9096 0.8982 0.9238 0.9240 0.9245 0.9240 0.9219
AB 0.6831 0.9107 0.9193 0.9146 0.9124 0.9099 0.9105 0.9106 0.9110 0.9031

14
KNN 0.6892 0.7779 0.7656 0.7597 0.7866 0.8052 0.7517 0.8241 0.8089 0.8053
RF 0.6696 0.7711 0.8221 0.7690 0.7718 0.8164 0.7862 0.8181 0.8425 0.8157
AB 0.6946 0.7813 0.7736 0.7712 0.7717 0.8016 0.7850 0.8137 0.8211 0.8371

15
KNN 0.8208 0.9532 0.9717 0.9555 0.9685 0.9863 0.9795 0.9856 0.9860 0.9863
RF 0.7863 0.9505 0.9732 0.9598 0.9651 0.9871 0.9849 0.9875 0.9873 0.9873
AB 0.7713 0.9267 0.9715 0.9517 0.9462 0.9835 0.9820 0.9861 0.9856 0.9856

16
KNN 0.6809 0.8038 0.7975 0.7917 0.8050 0.7945 0.7934 0.7945 0.7944 0.8162
RF 0.7074 0.8114 0.7213 0.8108 0.8116 0.8045 0.7962 0.7997 0.7668 0.8282
AB 0.7267 0.8136 0.7216 0.7596 0.8170 0.8226 0.8219 0.8241 0.8218 0.8130

5.6. Algorithm comparison using statistical analysis.
We employ the Wilcoxon signed-rank test method (James
et al., 2013) to calculate p-values, separately for various
classifiers and metrics, comparing other oversampling
approaches with the GWGAN-GP, as illustrated in Fig. 5.

From the figure, it can be observed that, in the
results of AUCs, there is a significant difference when

combined with the KNN classifier for the GWGAN-GP
compared with other oversampling approaches. The
difference is not pronounced when combined with the
other two classifiers. For F1 scores and G-means,
there is a significant difference compared with most
oversampling approaches, regardless of the combined
classifier. The differences between the GWGAN-GP

302 Q. Zhou and B. Sun

Table 5. Obtained G-means of each approach.
Dataset Classifers NONE SMOTE PFS ProWSyn SMOTE GAN WGAN WGAN CWGAN GWGAN

IPF -GP -GP -GP

1
KNN 0.5590 0.9282 0.8750 0.9043 0.9221 0.9651 0.9177 0.9724 0.9548 0.9594
RF 0.6560 0.9344 0.8959 0.9095 0.9298 0.9639 0.9012 0.9683 0.9545 0.9555
AB 0.6738 0.9170 0.9526 0.9228 0.9293 0.9561 0.9190 0.9603 0.9470 0.9654

2
KNN 0.6090 0.9473 0.9588 0.9304 0.9470 0.9683 0.9683 0.9683 0.9683 0.9701
RF 0.5907 0.9623 0.9311 0.9511 0.9572 0.9680 0.9695 0.9706 0.9692 0.9703
AB 0.5062 0.8489 0.8550 0.8530 0.8500 0.9818 0.9818 0.9815 0.9818 0.9683

3
KNN 0.9168 0.9017 0.9104 0.9019 0.9093 0.9282 0.8989 0.9279 0.9186 0.9342
RF 0.8830 0.9336 0.9271 0.9181 0.9351 0.9286 0.9380 0.9303 0.9096 0.9400
AB 0.8926 0.9205 0.9160 0.9106 0.9336 0.9464 0.9507 0.9493 0.9510 0.9366

4
KNN 0.5002 0.8516 0.8241 0.8320 0.8478 0.8791 0.8728 0.8740 0.8734 0.8993
RF 0.4946 0.8691 0.8953 0.8589 0.9087 0.9027 0.8772 0.9112 0.9108 0.9204
AB 0.6458 0.8780 0.8892 0.8744 0.8854 0.9196 0.8860 0.8844 0.8844 0.9071

5
KNN 0.8097 0.8466 0.8260 0.8379 0.8417 0.8228 0.8057 0.8172 0.8189 0.8500
RF 0.8280 0.8548 0.8300 0.8193 0.8718 0.8550 0.8012 0.8355 0.8287 0.8237
AB 0.8094 0.8302 0.8326 0.8129 0.8580 0.8457 0.8002 0.8263 0.8238 0.8340

6
KNN 0.5839 0.7436 0.7213 0.6674 0.7605 0.7460 0.6711 0.7718 0.7538 0.7801
RF 0.5351 0.7101 0.7474 0.7161 0.7628 0.7650 0.7355 0.7577 0.7627 0.7701
AB 0.5599 0.7174 0.7731 0.7569 0.7017 0.8018 0.7610 0.7887 0.7953 0.7728

7
KNN 0.7020 0.7873 0.8286 0.7620 0.7915 0.7893 0.7468 0.7859 0.7800 0.7957
RF 0.7128 0.7931 0.7817 0.7567 0.7938 0.8094 0.7511 0.7903 0.7977 0.8094
AB 0.7059 0.7573 0.8005 0.7636 0.7709 0.8060 0.7578 0.7685 0.7947 0.7699

8
KNN 0.9345 0.9605 0.9537 0.9567 0.9616 0.9598 0.9574 0.9598 0.9598 0.9609
RF 0.9237 0.9592 0.8879 0.9501 0.9499 0.9428 0.9255 0.9487 0.9529 0.9719
AB 0.9752 0.9802 0.8932 0.9702 0.9780 0.9816 0.9494 0.9741 0.9778 0.9849

9
KNN 0.5362 0.9121 0.7991 0.8768 0.9110 0.9750 0.9387 0.9704 0.9445 0.9764
RF 0.4892 0.9321 0.8379 0.8695 0.9185 0.9791 0.9131 0.9696 0.9503 0.9790
AB 0.5559 0.8818 0.8469 0.8654 0.8689 0.9613 0.8861 0.9542 0.9358 0.9764

10
KNN 0.4997 0.8521 0.7551 0.7897 0.8384 0.9316 0.8138 0.9360 0.9070 0.9249
RF 0.4874 0.8825 0.8194 0.8034 0.8841 0.9569 0.9487 0.9619 0.9682 0.9525
AB 0.5303 0.8755 0.8517 0.8262 0.8767 0.9363 0.9358 0.9332 0.9337 0.9518

11
KNN 0.8141 0.9165 0.9381 0.9218 0.9260 0.9861 0.9142 0.9792 0.9517 0.9459
RF 0.7728 0.9465 0.9880 0.9342 0.9627 0.9770 0.9778 0.9792 0.9688 0.9863
AB 0.8138 0.9601 0.9856 0.9578 0.9590 0.9834 0.9788 0.9823 0.9834 0.9871

12
KNN 0.6873 0.8345 0.8078 0.8238 0.8563 0.8521 0.8520 0.8493 0.8522 0.8670
RF 0.5599 0.7918 0.7811 0.8343 0.8081 0.8292 0.8305 0.8306 0.8304 0.8334
AB 0.7430 0.8399 0.7481 0.8497 0.8579 0.8752 0.8747 0.8755 0.8749 0.8752

13
KNN 0.6524 0.9193 0.8976 0.9082 0.9173 0.9321 0.9306 0.9312 0.9321 0.9370
RF 0.6260 0.8940 0.9406 0.9156 0.8989 0.9438 0.9440 0.9445 0.9440 0.9419
AB 0.6957 0.9158 0.9306 0.9250 0.9179 0.9303 0.9309 0.9310 0.9313 0.9238

14
KNN 0.7363 0.8170 0.8042 0.7948 0.8244 0.8099 0.7659 0.8283 0.8139 0.8151
RF 0.7197 0.8201 0.8392 0.7922 0.8115 0.8221 0.7898 0.8246 0.8495 0.8247
AB 0.7576 0.8210 0.8082 0.8031 0.8100 0.8075 0.7961 0.8190 0.8263 0.8435

15
KNN 0.8282 0.9532 0.9719 0.9556 0.9687 0.9867 0.9799 0.9860 0.9864 0.9874
RF 0.8082 0.9508 0.9735 0.9598 0.9651 0.9875 0.9853 0.9879 0.9877 0.9882
AB 0.7820 0.9270 0.9717 0.9518 0.9462 0.9839 0.9823 0.9865 0.9860 0.9866

16
KNN 0.6816 0.8129 0.8110 0.7989 0.8150 0.8179 0.8168 0.8178 0.8178 0.8353
RF 0.7153 0.8157 0.7326 0.8314 0.8159 0.8453 0.8413 0.8426 0.8354 0.8546
AB 0.7299 0.8239 0.7330 0.8238 0.8273 0.8505 0.8496 0.8518 0.8495 0.8292

and other approaches like the GAN, WGAN-GP, and
CWGAN-GP are not pronounced. This is attributed to
the fact that GAN-based approaches tend to generate
minority class examples that are more concentrated, often
resulting in the creation of safe examples which are easier
for classifiers to recognize (Napierala and Stefanowski,
2016). However, as demonstrated in Section 5.1, the

data generated by the GWGAN-GP are more dispersed
compared to these algorithms.

6. Conclusions and future work
In this study, we introduced an oversampling approach,
the GWGAN-GP, to address the class imbalance problem.

A Gaussian-based WGAN-GP oversampling approach . . . 303

Table 6. Obtained AUCs of each approach.
Dataset Classifers NONE SMOTE PFS ProWSyn SMOTE GAN WGAN WGAN CWGAN GWGAN

IPF -GP -GP -GP

1
KNN 0.6299 0.9596 0.9271 0.9455 0.9613 0.9683 0.9451 0.9698 0.9635 0.9690
RF 0.7190 0.9795 0.9662 0.9702 0.9794 0.9765 0.9529 0.9694 0.9698 0.9712
AB 0.8162 0.9582 0.9782 0.9682 0.9655 0.9868 0.9398 0.9484 0.9583 0.9695

2
KNN 0.9596 0.9807 0.9796 0.9592 0.9804 0.9792 0.9798 0.9797 0.9798 0.9818
RF 0.8875 0.9964 0.9791 0.9983 0.9975 0.9792 0.9792 0.9788 0.9791 0.9791
AB 0.8879 0.9458 0.9247 0.9474 0.9477 0.9744 0.9807 0.9902 0.9804 0.9792

3
KNN 0.9482 0.9363 0.9514 0.9361 0.9455 0.9611 0.9322 0.9611 0.9487 0.9769
RF 0.9623 0.9744 0.9639 0.9649 0.9787 0.9880 0.9870 0.9845 0.9839 0.9911
AB 0.9506 0.9683 0.9568 0.9641 0.9738 0.9782 0.9837 0.9740 0.9714 0.9955

4
KNN 0.6075 0.8743 0.8974 0.8672 0.8992 0.9247 0.9240 0.9199 0.9311 0.9372
RF 0.5971 0.9519 0.9350 0.9567 0.9716 0.9434 0.9420 0.9420 0.9336 0.9569
AB 0.7923 0.9652 0.9279 0.9663 0.9692 0.9317 0.9309 0.9286 0.9365 0.9386

5
KNN 0.8931 0.9009 0.9121 0.8996 0.8982 0.8980 0.8842 0.8910 0.8887 0.9223
RF 0.9086 0.9262 0.9054 0.8819 0.9294 0.9311 0.8827 0.9155 0.9095 0.8891
AB 0.8829 0.8851 0.8868 0.8880 0.8927 0.9228 0.8715 0.9097 0.9132 0.8889

6
KNN 0.6264 0.7716 0.7752 0.7248 0.7915 0.8068 0.6963 0.8050 0.7954 0.8108
RF 0.6283 0.7852 0.8303 0.7900 0.8446 0.7985 0.7789 0.8111 0.8089 0.8216
AB 0.5640 0.7793 0.8236 0.7839 0.7406 0.8328 0.8390 0.8319 0.8368 0.7608

7
KNN 0.7476 0.8446 0.8778 0.8247 0.8465 0.8390 0.7909 0.8378 0.8345 0.8540
RF 0.7989 0.8623 0.8826 0.8396 0.8737 0.8861 0.8397 0.8746 0.8779 0.8740
AB 0.7923 0.8424 0.8688 0.8359 0.8464 0.8823 0.8353 0.8458 0.8692 0.8576

8
KNN 0.9775 0.9865 0.9878 0.9842 0.9852 0.9867 0.9855 0.9866 0.9866 0.9929
RF 0.9870 0.9947 0.9797 0.9920 0.9935 0.9926 0.9824 0.9943 0.9930 0.9969
AB 0.9971 0.9978 0.9763 0.9942 0.9988 0.9981 0.9859 0.9947 0.9954 0.9995

9
KNN 0.5560 0.9450 0.8829 0.9232 0.9452 0.9786 0.9599 0.9769 0.9644 0.9809
RF 0.6620 0.9828 0.9153 0.9453 0.9773 0.9800 0.9603 0.9787 0.9736 0.9826
AB 0.5917 0.9404 0.9003 0.9298 0.9407 0.9821 0.9409 0.9780 0.9639 0.9817

10
KNN 0.5901 0.8931 0.8178 0.8353 0.8965 0.9563 0.8551 0.9590 0.9485 0.9644
RF 0.6245 0.9627 0.9036 0.8835 0.9667 0.9763 0.9678 0.9790 0.9735 0.9784
AB 0.6939 0.9036 0.9133 0.8825 0.9232 0.9609 0.9666 0.9712 0.9666 0.9762

11
KNN 0.7891 0.9694 0.9874 0.9605 0.9674 0.9851 0.9598 0.9770 0.9642 0.9705
RF 0.8861 0.9881 0.9908 0.9860 0.9933 0.9884 0.9889 0.9904 0.9781 0.9892
AB 0.8584 0.9874 0.9886 0.9856 0.9886 0.9897 0.9888 0.9897 0.9883 0.9898

12
KNN 0.7733 0.8754 0.8378 0.8884 0.9065 0.9072 0.9069 0.9047 0.9073 0.9335
RF 0.8414 0.8661 0.8334 0.9299 0.8832 0.9534 0.9514 0.9514 0.9539 0.9529
AB 0.8782 0.9164 0.8244 0.9532 0.9313 0.9624 0.9624 0.9624 0.9624 0.9497

13
KNN 0.7087 0.9556 0.9472 0.9546 0.9560 0.9333 0.9329 0.9330 0.9333 0.9349
RF 0.8262 0.9609 0.9449 0.9718 0.9616 0.9354 0.9342 0.9483 0.9364 0.9350
AB 0.8800 0.9763 0.9373 0.9716 0.9755 0.9560 0.9410 0.9437 0.9383 0.9347

14
KNN 0.7836 0.8456 0.8464 0.8358 0.8472 0.8642 0.8327 0.8687 0.8543 0.8731
RF 0.7926 0.8379 0.8598 0.8438 0.8664 0.8764 0.8455 0.8641 0.8921 0.8683
AB 0.8578 0.8597 0.8434 0.8269 0.8547 0.8656 0.8498 0.8659 0.8788 0.9000

15
KNN 0.8728 0.9701 0.9836 0.9778 0.9842 0.9876 0.9863 0.9871 0.9873 0.9880
RF 0.9253 0.9832 0.9948 0.9906 0.9940 0.9911 0.9945 0.9903 0.9880 0.9906
AB 0.9126 0.9663 0.9922 0.9893 0.9864 0.9956 0.9950 0.9962 0.9835 0.9900

16
KNN 0.7454 0.8663 0.8784 0.8622 0.8699 0.8796 0.8793 0.8797 0.8797 0.9083
RF 0.8280 0.8927 0.8332 0.9254 0.8930 0.9368 0.9357 0.9377 0.9398 0.9409
AB 0.8424 0.9169 0.8214 0.9343 0.9177 0.9416 0.9414 0.9415 0.9412 0.9313

Utilizing the Gaussian distribution as label information
within the WGAN-GP framework, we generated new
examples for the minority class. The GWGAN-GP
algorithm was then integrated with three classifiers
(k-NN, RF, AB), and their performance was assessed
across 16 datasets using metrics such as recall, F1 score,
G-mean, and the AUC.

On the basis of classification experimental results
and statistical tests, we have the following conclusions.

(i) Compared with other GAN-based approaches, the
GWGAN-GP can separate the generated examples,
reduce the repetition of single-class data, and
avoid issues such as wasting resources, overlooking
important features, and exhibiting overly optimistic

304 Q. Zhou and B. Sun

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Results of the Wilcoxon signed-rank test.

performance on the test set.

(ii) When combined with different classifiers, the
GWGAN-GP performs well on performance metrics.

(iii) While the GWGAN-GP may not outperform other
oversampling methods on all classifiers, we observed
that the combination of the GWGAN-GP algorithm
with the kNN classifier significantly outperforms the
other oversampling approaches.

Despite the performance of our approach and its
ability to reduce duplication, finding the most appropriate
values for the mean and standard deviation of the
Gaussian distribution remains a challenge. Setting
too small parameters results in high duplication among
the generated examples, while setting them too large
significantly deviates from the overall distribution of the
real dataset. Although this paper employed the key
feature analysis technique, it may not be suitable for all
datasets, and parameter tuning is still necessary to find
appropriate values for the mean and standard deviation in

some datasets. In future research, it would be worthwhile
to explore improvements to the approach that enable it
to automatically generate the most suitable mean and
standard deviation based on the characteristics of the
dataset itself.

In addition, our proposed algorithm did not show
a significant improvement in classification performance
compared with the other oversampling approaches. One
reason for this is that the oversampling approaches
we selected had already been proven to be effective
(Kovács, 2019). We are considering further efforts
to enhance the algorithm’s classification performance,
especially when applied to specific datasets, to explore
the potential for greater improvement. The second
reason is that GAN-based oversampling approaches share
similar principles in data generation. The distinction
lies in our approaches’ ability to directly disperse
generated data, making it closer to the distribution of
real data. However, an excessive concentration of
duplicated data might lead to better classifier performance
(Napierala and Stefanowski, 2016). To mitigate

A Gaussian-based WGAN-GP oversampling approach . . . 305

this issue, we employed five-fold cross-validation.
This explains why our method did not outperform
other GAN-based oversampling approaches overall.
In summary, GAN-based oversampling approaches
demonstrate efficient capabilities in generating new
non-image examples, warranting further exploration and
application in real-world class imbalance problems.

Acknowledgment
This work was supported by the Natural Science
Foundation of Shandong Province (ZR2023MF098).

References
Arjovsky, M., Chintala, S. and Bottou, L. (2017). Wasserstein

generative adversarial networks, International Conference
on Machine Learning, Sydney, Australia, pp. 214–223.

Barua, S., Islam, M.M. and Murase, K. (2013). PROWSYN:
Proximity weighted synthetic oversampling technique for
imbalanced data set learning, Advances in Knowledge Dis-
covery and Data Mining: 17th Pacific-Asia Conference,
PAKDD 2013, Gold Coast, Australia, pp. 317–328.

Bourou, S., El Saer, A., Velivassaki, T.-H., Voulkidis, A. and
Zahariadis, T. (2021). A review of tabular data synthesis
using GANs on an IDS dataset, Information 12(09): 375.

Breiman, L. (2001). Random forests, Machine Learning
45(1): 5–32.

Breiman, L. (2017). Classification and Regression Trees,
Routledge, London.

Budach, L., Feuerpfeil, M., Ihde, N., Nathansen, A., Noack, N.,
Patzlaff, H., Naumann, F. and Harmouch, H. (2022). The
effects of data quality on machine learning performance,
arXiv: 2207.14529.

Chaabane, I., Guermazi, R. and Hammami, M. (2020).
Enhancing techniques for learning decision trees from
imbalanced data, Advances in Data Analysis and Classi-
fication 14(3): 1–69.

Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer,
W.P. (2002). SMOTE: Synthetic minority over-sampling
technique, Journal of Artificial Intelligence Research
16: 321–357.

Chen, J., Huang, H., Cohn, A.G., Zhang, D. and Zhou, M.
(2022). Machine learning-based classification of rock
discontinuity trace: SMOTE oversampling integrated with
GBT ensemble learning, International Journal of Mining
Science and Technology 32(2): 309–322.

Chen, J., Yan, Z., Lin, C., Yao, B. and Ge, H. (2023).
Aero-engine high speed bearing fault diagnosis for data
imbalance: A sample enhanced diagnostic method based
on pre-training WGAN-GP, Measurement 213(7): 112709.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern
classification, IEEE Transactions on Information Theory
13(1): 21–27.

Cui, J., Zong, L., Xie, J. and Tang, M. (2023). A novel
multi-module integrated intrusion detection system for
high-dimensional imbalanced data, Applied Intelligence
53(1): 272–288.

Derrac, J., Garcia, S., Sanchez, L. and Herrera, F. (2015). Keel
data-mining software tool: Data set repository, integration
of algorithms and experimental analysis framework,
Journal of Multiple-Valued Logic and Soft Computing
17(2–3): 255–287.

Douzas, G. and Bacao, F. (2018). Effective data generation
for imbalanced learning using conditional generative
adversarial networks, Expert Systems with Applications
91(1): 464–471.

Dua, D. and Graff, C. (2019). UCI Machine Learning Reposi-
tory, http://archive.ics.uci.edu/ml.

Fernández, A., Garcia, S., Herrera, F. and Chawla, N.V. (2018).
Smote for learning from imbalanced data: Progress and
challenges, marking the 15-year anniversary, Journal of
Artificial Intelligence Research 61: 863–905.

Freund, Y. and Schapire, R.E. (1997). A decision-theoretic
generalization of on-line learning and an application
to boosting, Journal of Computer and System Sciences
55(1): 119–139.

Garcı́a, S., Luengo, J. and Herrera, F. (2016). Tutorial on
practical tips of the most influential data preprocessing
algorithms in data mining, Knowledge-Based Systems
98(7): 1–29.

Gazzah, S. and Amara, N.E.B. (2008). New oversampling
approaches based on polynomial fitting for imbalanced
data sets, 2008 8th IAPR International Workshop on Doc-
ument Analysis Systems, Nara, Japan, pp. 677–684.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y.
(2014). Generative adversarial nets, Advances in Neural
Information Processing Systems 27: 2672–2680.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and
Courville, A.C. (2017). Improved training of Wasserstein
GANs, Advances in Neural Information Processing Sys-
tems 30: 5767–5777.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable
and feature selection, Journal of Machine Learning Re-
search 3(Mar): 1157–1182.

He, H. and Garcia, E.A. (2009). Learning from imbalanced data,
IEEE Transactions on Knowledge and Data Engineering
21(9): 1263–1284.

Hernandez, M., Epelde, G., Alberdi, A., Cilla, R. and
Rankin, D. (2022). Synthetic data generation for tabular
health records: A systematic review, Neurocomputing
493(27): 28–45.

James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An
Introduction to Statistical Learning: With Applications to
R, 2nd Edn, Springer, New York.

Janicka, M., Lango, M. and Stefanowski, J. (2019). Using
information on class interrelations to improve classification
of multiclass imbalanced data: A new resampling

http://archive.ics.uci.edu/ml

306 Q. Zhou and B. Sun

algorithm, International Journal of Applied Mathe-
matics and Computer Science 29(4): 769–781, DOI:
10.2478/amcs-2019-0057.

Japkowicz, N. (2003). Class imbalances: Are we focusing on the
right issue, Workshop on Learning from Imbalanced Data
Sets II, Washington, USA, p. 63.

Kaggle (2024), Datasets: Lower Back Pain, https://www.k
aggle.com/datasets/sammy123/lower-back
-pain-symptoms-dataset, and Telecom Churn, ht
tps://www.kaggle.com/datasets/mnassrib
/telecom-churn-datasets.

Kohavi, R. (1995). A study of cross-validation and bootstrap
for accuracy estimation and model selection, 14th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
Montreal, Canada, pp. 1137–1145.

Kovács, G. (2019). An empirical comparison and evaluation of
minority oversampling techniques on a large number
of imbalanced datasets, Applied Soft Computing
83(9): 105662.

Liu, X.-Y., Wu, J. and Zhou, Z.-H. (2008). Exploratory
undersampling for class-imbalance learning, IEEE Trans-
actions on Systems, Man, and Cybernetics B: Cybernetics
39(2): 539–550.

López, V., Fernández, A., Garcı́a, S., Palade, V. and Herrera, F.
(2013). An insight into classification with imbalanced data:
Empirical results and current trends on using data intrinsic
characteristics, Information Sciences 250(33): 113–141.

Mirza, M. and Osindero, S. (2014). Conditional generative
adversarial nets, arXiv: 1411.1784.

Miyato, T., Kataoka, T., Koyama, M. and Yoshida, Y. (2018).
Spectral normalization for generative adversarial networks,
arXiv: 1802.05957.

Moreo, A., Esuli, A. and Sebastiani, F. (2016). Distributional
random oversampling for imbalanced text classification,
Proceedings of the 39th International ACM SIGIR con-
ference on Research and Development in Information Re-
trieval, Pisa, Italy, pp. 805–808.

Napierala, K. and Stefanowski, J. (2016). Types of minority
class examples and their influence on learning classifiers
from imbalanced data, Journal of Intelligent Information
Systems 46: 563–597.

Nik, A.H.Z., Riegler, M.A., Halvorsen, P. and Storås, A.M.
(2023). Generation of synthetic tabular healthcare
data using generative adversarial networks, International
Conference on Multimedia Modeling, Bergen, Norway,
pp. 434–446.

Ohsaki, M., Wang, P., Matsuda, K., Katagiri, S., Watanabe, H.
and Ralescu, A. (2017). Confusion-matrix-based kernel
logistic regression for imbalanced data classification,
IEEE Transactions on Knowledge and Data Engineering
29(9): 1806–1819.

Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H.
and Kim, Y. (2018). Data synthesis based on generative
adversarial networks, Proceedings of the VLDB Endow-
ment 11(10): 1071–1083.

Park, S. and Park, H. (2021). Combined oversampling and
undersampling method based on slow-start algorithm for
imbalanced network traffic, Computing 103(3): 401–424.

Powers, D.M. (2020). Evaluation: From precision, recall
and f-measure to ROC, informedness, markedness and
correlation, arXiv: 2010.16061.

Ren, J., Wang, Y., Cheung, Y.-m., Gao, X.-Z. and Guo, X.
(2023). Grouping-based oversampling in kernel space
for imbalanced data classification, Pattern Recognition
133(1): 108992.

Sáez, J.A., Luengo, J., Stefanowski, J. and Herrera, F.
(2015). SMOTE–IPF: Addressing the noisy and borderline
examples problem in imbalanced classification by a
re-sampling method with filtering, Information Sciences
291(2): 184–203.

Sun, B., Zhou, Q., Wang, Z., Lan, P., Song, Y., Mu, S., Li, A.,
Chen, H. and Liu, P. (2023). Radial-based undersampling
approach with adaptive undersampling ratio determination,
Neurocomputing 553(39): 126544.

Sun, Y., Wong, A.K. and Kamel, M.S. (2009). Classification
of imbalanced data: A review, International Jour-
nal of Pattern Recognition and Artificial Intelligence
23(04): 687–719.

Wasserman, L. (2004). All of Statistics: A Concise Course in
Statistical Inference, Springer, New York.

Wold, S., Esbensen, K. and Geladi, P. (1987). Principal
component analysis, Chemometrics and Intelligent Labo-
ratory Systems 2(1–3): 37–52.

Woods, K.S., Doss, C.C., Bowyer, K.W., Solka, J.L., Priebe,
C.E. and Kegelmeyer Jr, W.P. (1993). Comparative
evaluation of pattern recognition techniques for detection
of microcalcifications in mammography, International
Journal of Pattern Recognition and Artificial Intelligence
7(06): 1417–1436.

Xie, Y. and Zhang, T. (2018). Imbalanced learning for
fault diagnosis problem of rotating machinery based on
generative adversarial networks, 2018 37th Chinese Con-
trol Conference (CCC), Wuhan, China, pp. 6017–6022.

Xu, L., Skoularidou, M., Cuesta-Infante, A. and
Veeramachaneni, K. (2019). Modeling tabular data
using conditional GAN, Advances in Neural Information
Processing Systems 32: 7335–7345.

Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O. and Li, H.
(2017). High-resolution image inpainting using multi-scale
neural patch synthesis, Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, Hon-
olulu, USA, pp. 6721–6729.

Zhang, M., Wan, X., Gang, L., Lv, X., Wu, Z. and Liu, Z.
(2021). An automated driving strategy generating method
based on WGAIL–DDPG, International Journal of Ap-
plied Mathematics and Computer Science 31(3): 461–470,
DOI: 10.34768/amcs-2021-0031.

Zhang, Y., Liu, Y., Wang, Y. and Yang, J. (2023). An ensemble
oversampling method for imbalanced classification with
prior knowledge via generative adversarial network,
Chemometrics and Intelligent Laboratory Systems
235(4): 104775.

https://www.kaggle.com/datasets/sammy123/lower-back-pain-symptoms-dataset
https://www.kaggle.com/datasets/sammy123/lower-back-pain-symptoms-dataset
https://www.kaggle.com/datasets/sammy123/lower-back-pain-symptoms-dataset
https://www.kaggle.com/datasets/mnassrib/telecom-churn-datasets
https://www.kaggle.com/datasets/mnassrib/telecom-churn-datasets
https://www.kaggle.com/datasets/mnassrib/telecom-churn-datasets

A Gaussian-based WGAN-GP oversampling approach . . . 307

Zhao, Y., Li, H., Bissyandé, T.F., Klein, J. and Grundy,
J. (2021). On the impact of sample duplication in
machine-learning-based android malware detection, ACM
Transactions on Software Engineering and Methodology
30(3): 1–38.

Zhao, Z., Kunar, A., Birke, R. and Chen, L.Y. (2021).
CTAB-GAN: Effective table data synthesizing, Asian Con-
ference on Machine Learning, pp. 97–112, (virtual).

Zheng, M., Li, T., Zhu, R., Tang, Y., Tang, M., Lin, L.
and Ma, Z. (2020a). Conditional wasserstein generative
adversarial network-gradient penalty-based approach to
alleviating imbalanced data classification, Information Sci-
ences 512(7): 1009–1023.

Zheng, W. and Zhao, H. (2020b). Cost-sensitive hierarchical
classification for imbalance classes, Applied Intelligence
50(8): 2328–2338.

Zhu, B., Pan, X., vanden Broucke, S. and Xiao, J.
(2022). A GAN-based hybrid sampling method for
imbalanced customer classification, Information Sciences
609(28): 1397–1411.

Qian Zhou received her master’s degree in computer science and tech-
nology from Shandong Normal University in 2014. She now works as an
assistant professor in the Department of Computer Science and Technol-
ogy at Shandong Agricultural University. Her research interests include
machine learning and data mining, and she has published several inter-
national papers in this field.

Bo Sun received his PhD degree in computer science and technology
from the Nanjing University of Aeronautics and Astronautics in 2016.
He now works as an associate professor in the Department of Computer
Science and Technology at Shandong Agricultural University. His re-
search interests include machine learning and artificial neural networks,
and he has published several high quality journal papers in this field.

Received: 31 July 2023
Revised: 12 December 2023
Re-revised: 16 February 2024
Accepted: 21 February 2024

	Introduction
	Related works
	GAN
	Three GAN-based approaches (WGAN, WGAN-GP and CWGAN-GP)

	Proposed oversampling approach (GWGAN-GP)
	Experimental study
	Imbalanced datasets used
	Generator and discriminator configuration
	Details of classification algorithms
	Performance evaluation metrics used

	Experimental results and analysis
	Data distribution after oversampling
	Obtained experimental results measured using recalls
	Obtained experimental results measured using F1 scores
	Obtained experimental results measured using G-means
	Obtained experimental results measured using AUCs
	Algorithm comparison using statistical analysis

	Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

