
Int. J. Appl. Math. Comput. Sci., 2024, Vol. 34, No. 3, 467–483
DOI: 10.61822/amcs-2024-0033

A SPIKING NEURAL NETWORK BASED ON THALAMO–CORTICAL
NEURONS FOR SELF–LEARNING AGENT APPLICATIONS

DAMIAN HUDEREK a, SZYMON SZCZĘSNY a,* , PAWEŁ PIETRZAK a, RAUL RATO b,
ŁUKASZ PRZYBOROWSKI a

aFaculty of Computing and Telecommunications
Poznań University of Technology

Piotrowo 3A, 61-138 Poznań, Poland
e-mail: szymon.szczesny@put.poznan.pl

bDepartment of Electrical and Computer Engineering
NOVA University of Lisbon

Quinta da Torre, 2829-516 Caparica, Portugal

The paper proposes a non-iterative training algorithm for a power efficient SNN classifier for applications in self-learning
systems. The approach uses mechanisms of preprocessing of signals from sensory neurons typical of a thalamus in a
diencephalon. The algorithm concept is based on a cusp catastrophe model and on training by routing. The algorithm
guarantees a zero dispersion of connection weight values across the entire network, which is particularly important in the
case of hardware implementation based on programmable logic devices. Due to non-iterative mechanisms inspired by
training methods for associative memories, the approach makes it possible to estimate the capacity of the network and
required hardware resources. The trained network shows resistance to the phenomenon of catastrophic forgetting. Low
complexity of the algorithm makes in-situ hardware training possible without using power-hungry accelerators. The paper
compares the complexities of hardware implementations of the algorithm with the classic STDP and conversion procedures.
The basic application of the algorithm is an autonomous agent equipped with a vision system and based on a classic FPGA
device.

Keywords: self-learning systems, classification, spiking neural networks, feature recognition, learning by routing.

1. Introduction
In addition to cloud solutions, where various artificial
intelligence (AI) methods are often used, edge computing
is becoming an increasingly common approach in the IoT
(Internet of things). Research proves that AI-based edge
accelerators make it possible to achieve comparable and
in many cases better performance in terms of power or
cost than traditional cloud servers (Liang et al., 2020).
In edge applications, various computer vision techniques
are widely used, especially neural networks (Raha et al.,
2021). However, nowadays, the development of neural
networks in this type of applications faces serious
limitations. Providing high precision deep networks,
implemented using the so-called 2nd generation neurons,
is difficult in mobile devices for several reasons. First of

*Corresponding author

all, deep networks are characterized by a large number
of parameters (e.g., Resnet152 (He et al., 2015) or VGG
(Leong et al., 2020)). The number of parameters in this
type of networks is tens of thousands of times greater than
that of DSP (digital signal processor) blocks dedicated to
their implementation in most FPGA (field programmable
gate array) edge devices. Secondly, applications in
mobile devices often require real-time processing, which
is especially difficult to obtain using limited resources in
the hardware layer. The hardware implementation of 2nd
generation networks in edge devices often requires using
dedicated IPCores CMOS (Szczęsny, 2017). Designing
them is a time-consuming task and prototyping is very
expensive. The alternative is 3rd generation networks, i.e.,
spiking neural networks (SNNs). They are used, among
others, in image analysis (Meftah et al., 2010), pattern
classification (Nazari et al., 2020) and sound processing

mailto:szymon.szczesny@put.poznan.pl

468 D. Huderek et al.

(Encke and Hemmert, 2018).
There are high hopes concerning spiking networks

due to better perception properties compared with 2nd
generation networks. This is confirmed by examples
of solving nonlinear problems using a single neuron
(Rowcliffe et al., 2006) or the possibility of real-time
processing of biological signals using only two-layer
SNNs (Szczęsny et al., 2021). They are also employed
in medical sciences for broadly understood modeling
of interactions in the nervous system (Bartłomiejczyk
et al., 2023). For all of the above reasons, research centers
an present biology-inspired neuroprocessors (Pisarev
et al., 2020; Mayr et al., 2019), and IT companies
are increasingly investing in their own neuroprocessors:
IBM—the True North processor (Cheng et al., 2017) or
Intel—the Loihi processor (Davies et al., 2018), which
already has a 2nd generation. There are other popular
architectures that are used, e.g., in image processing or
automotive industry: BrainScaleS, Neurogrid, SpiNNaker
and Akida.

Using dedicated neuromorphic hardware allows
reduction in power consumption of final implementations.
SNNs are several to several dozen times more energy
efficient compared with the currently popular CNNs
(convolutional neural networks) (Wu et al., 2022).
Despite this, new methods are still being sought to
improve the energy efficiency of these networks, e.g.,
through choosing the right architectures (Na et al., 2022),
learning with simultaneous power optimization (Neftci
et al., 2019) or tuning the learnable membrane time
constant (Fang et al., 2021). Additionally, a constant
challenge in the context of energy efficiency remains the
training of SNNs. Existing methods are highly iterative
in nature and some are very hyper-parameter-sensitive.
SNN iterative learning algorithms are also expensive
due to the time dependence between the signals in the
network. The learning time with iterative methods is long
due to the need to perform timed simulations at each step
of the learning algorithm. This is costly with standard
computer hardware even with parallel computing. The
heavily reduced computational resources of edge devices
are not dedicated to implementing such simulations. In
addition, the activation function of a spiking neuron is
nondifferentiable, which further increases the cost of
learning with, for example, backpropagation (SLAYER)
algorithms (Shrestha and Orchard, 2018). For these
reasons, training can be very complex. The most
important methods include (Li et al., 2020) gradient
descent methods, reinforcement learning methods,
STDP (spike-timing-dependent plasticity) methods and
ensemble learning methods.

Gradient descent cannot be used for SNNs out of
the box due to the nondifferentiable nature of such
models. However, multiple adaptation approaches have
been developed over the years (Li et al., 2020; Wu et al.,

2018b). These methods can yield comparable results
to deep neural networks but are computationally heavy
and limiting in terms of biologically plausible network
architectures. Reinforcement learning is also investigated
in terms of SNNs. For example, in the work of Ponghiran
et al. (2019) small spiking networks were trained with
success using Q-learning to play Atari games.

The existing approaches in this field are highly
iterative in nature. Of particular interest is the
STDP algorithm. It describes a mechanism for
strengthening/weakening synapses based on presynaptic
and postsynaptic spike timings. It falls under the category
of unsupervised learning algorithms, and there is evidence
that a similar mechanism is used in the brain (Markram
et al., 2012; Tazerart et al., 2019). Sometimes some
supervised learning algorithms are partially based on the
STDP mechanisms (Ponulak, 2008). However, the STDP
algorithm is not well developed yet and is difficult to use
for solving practical machine learning problems.

Most of all tuning of hyper-parameters can be
difficult and, if done incorrectly, it may render training
impossible. Apart from that, the need to compute layers’
responses in individual time steps makes the nature of the
algorithm to be highly iterative. Due to this fact, usage
of GPUs (graphics processing units) does not give the
same speed-up as in gradient descent methods for second
generation neural networks. Lastly, ensemble learning
methods also exist for spiking neural networks (Neculae,
2020; Hazan et al., 2018; Kozdon and Bentley, 2017).
These methods usually focus on training multiple models
in parallel and aggregating a unified response from them.
Depending on the hardware resources, these can provide
some performance gains due to distributed processing
(Kozdon and Bentley, 2017), but they still use regular
learning algorithms such as STDP to train single models
and thus suffer from the same shortcomings.

A separate problem is preparing a comprehensive
training set. For SNNs there are two choices: standard
machine learning datasets and neuromorphic datasets. A
great example of a standard machine learning dataset
is ImageNet (Deng et al., 2009)—a dataset used for
computer vision competition called ImageNet large scale
visual recognition challenge (ILSVRC). In the field of
deep learning, state-of-the-art-algorithms were presented
each year at this competition. Neuromorphic datasets
on the other hand, differ greatly from standard ones
as they are prepared in a way to mimic the stimuli
acquisition in the human brain. For computer vision,
these datasets are prepared using neuromorphic cameras
and reside in the form of event streams with added noise
(Li et al., 2017; Wu et al., 2018a). Examples of these
include N-MNIST and DVS-CIFAR-10. Neuromorphic
datasets may be a key to progressing the field of spiking
neural networks, but, unfortunately, they are very hard to
prepare as the preparation is largely manual and involves

A spiking neural network based on thalamo-cortical neurons . . . 469

scanning images with image sensors to generate events (Li
et al., 2017; Wu et al., 2018a). Because of that, there are
not many neuromorphic datasets publicly available.

Despite the complexity of training algorithms,
spiking networks are increasingly popular. As mentioned,
one of the areas of their usage is autonomous vehicles.
Spiking neural networks are used in the analysis of data
from dynamic vision sensors (Xuelei, 2023), LIDAR
sensors (Albert et al., 2021) or for energy-efficient control
(Raz et al., 2023). The literature describes applications
of SNN networks in a control task of unmanned aerial
vehicles (UAVs) (Stagsted et al., 2020), computation
and control in space (Pereira-Pires et al., 2019), and
in examples of obstacle detection using neuroprocessors
(Salt et al., 2020) or solutions based on the Loihi
processor for applications in the automotive industry
(Viale et al., 2021). On the other hand, most modern
concepts of using artificial intelligence in mobile vehicles
assume self-supervised learning (Cech et al., 2021;
Vosahlik et al., 2021). However, such solutions are
mainly based on 2nd generation deep networks, which
are expensive to implement. An additional problem
is managing training data (Zhao et al., 2021). Taking
into account the popularity of edge computing, the
effectiveness of SNNs, their growing popularity in mobile
vehicles and limitations of current autonomous systems
based on artificial intelligence, we propose an effective
SNN training algorithm dedicated to image processing in
edge devices.

Due to the potential application of SNNs in image
processing, the solution described in the paper is based
on the functionality of a thalamus, which is a part of
a diencephalon. The thalamus is responsible for the
initial evaluation of signals coming from all senses,
except for smell, and sending them to the cerebral
cortex (Torrico and Munakomi, 2020). One of the basic
functionalities of the thalamus is preprocessing signals
from retinal axons of ganglion cells (Oster et al., 2004).
Inhibition phenomena observed in the thalamus allow
thalamocortical operations to dynamically match ongoing
behavioral demands (Halassa and Acsády, 2016). One
of the basic anatomical features of the thalamus is the
presence of atypical inhibition-induced spiking neurons
(Hua et al., 2022), whose model and possibility of
application in the classification task are described in
more detail in this paper. Due to the potential use in
self-learning agent applications and usually highly limited
resources in the hardware layer of edge devices, we
define several key assumptions for the network routing
algorithm:

• pruning: limiting network complexity by reducing
the number of synaptic connections and decreasing
the dispersion of synaptic weight values to reduce the
usage of hardware resources during implementation;

• quantization: increasing network capacity to provide
more memory in the network, the size of which is
strongly limited by hardware resources;

• simplification: providing a simple noniterative
training algorithm for the network, with the
possibility to find synaptic connections. This
approach makes it possible to train new patterns in
an adaptive mobile system, as long as the complexity
of the training algorithm is low.

The paper is organized as follows. Section 2
describes models of neurons of the thalamus used in
the research. Section 3 presents an architecture of an
SNN based on the anatomy of the thalamus. Section 4
focuses on the network training algorithm using single
patterns and including the reduction in weight dispersion.
Section 5 presents the results of network operation tests
concerning the problem of classifying everyday objects
and compares the hardware complexity of the algorithm
with other iterative SNN learning algorithms. The
paper ends with the summary of research results and a
discussion on the areas of their application.

2. T-C and C-C model
The architecture of a neural network dedicated to image
processing is based on the activity of a diencephalon
responsible for quick processing of a large number
of signals (Lim and Golden, 2007). These include
ones related to the following functions: sensory (touch,
pain, temperature), taste, hearing, attention, motor skills,
emotions, partly hippocampal functions and, above all, the
visual functions. Section 2.1 describes models of neurons
which build the thalamus, which makes up most of the
gray matter in the diencephalon. Section 2.2 describes an
effective model of a neuron based on the cusp catastrophe,
used, for example, for modeling emotions and designing
neuro-fuzzy decision systems.

2.1. Thalamo-cortical (T-C) neuron model. In this
research we use the Izhikevich model (Izhikevich, 2004),
which, among many models of spiking neurons, is
characterized by low complexity and, at the same time,
high accuracy of mapping biological aspects of real-life
neurons (Abusnaina and Abdullah, 2014). This model is
described by Eqns. (1), (2), (3) consisting of membrane
potential u and membrane recovery v variables. Iapp is
the sum of synaptic currents flowing into the soma of the
neuron:

dv

dt
= 0.04v2 + 5v + 140− u+ Iapp, (1)

du

dt
= a(bv − u), (2)

470 D. Huderek et al.

0 500 1000 1500 2000
Time [ms]

-80

-60

-40

-20

0

20

40

60

80

Vo
lta

ge
 [

m
V
]

-80

-60

-40

-20

0

20

40

60

80

C
ur

re
nt

 [
pA

]

Tonic spiking T-C

Fig. 1. Response of a tonic spiking neuron (TS/T-C) to a trian-
gular excitation.

if v ≥ 30mV then
{

v ← c,
u← u+ d.

(3)

Dimensionless parameters a, b, c, d make it possible
to easily model one of the twenty types of neurons
defined by Izhikevich (2004). In the task of modeling
the activity of the thalamus, we used two models in
particular. The first one is the common tonic spiking
model obtained for the following set of parameters:
[a, b, c, d] = [0.02, 0.2,−65, 6]. Its response to the
triangular excitation is shown in Fig. 1.

The second model used is of the inhibition-induced
spiking type. As Izhikevich noted, a strange feature of
many neurons in the thalamus region is that they spike
when hyperpolarized by an inhibitory input (Izhikevich,
2004). The justification for this phenomenon is
deactivation of the calcium current, which leads to
tonic spiking during the injection of current into a
soma. The inhibition-induced spiking model is obtained
for the following set of parameters: [a, b, c, d] =
[−0.02,−1,−65, 8]. Its response to the triangular
excitation is shown in Fig. 2. Notice the decrease in
the frequency of spikes along with the increase in the
soma current, and thus the complementary nature of
operation of inhibition-induced neurons in relation to
tonic spiking neurons. It can be also noticed that the
activation of inhibition-induced spiking neurons requires
the application of almost twice as high currents to the
soma. Moreover, the frequency of generated spikes in
stimulated inhibition-induced neurons is higher than that
of spikes generated by tonic spiking neurons. Both

0 500 1000 1500 2000
Time [ms]

-80

-60

-40

-20

0

20

40

60

80

Vo
lta

ge
 [

m
V
]

-80

-60

-40

-20

0

20

40

60

80

C
ur

re
nt

 [
uA

]

Inhibition-induced spiking T-C

Fig. 2. Response of an inhibition-induced spiking (IIS/T-C)
neuron to a triangular excitation.

the larger currents flowing into the soma, the higher
frequency of spikes force the limitation of the number of
inhibition-induced neurons, e.g., by using them only in
one layer.

2.2. Cusp-catastrophe (C-C) neuron model. The
second type of neurons used in our research is a model
based on the cusp catastrophe (Chen et al., 2016),
which uses probability density functions to model sudden
changes. This model is used, among others, in social
behavior analysis and explanation of health outcomes
(Chen et al., 2014), behavioral pathology during the use
of psychoactive and addictive substances (Guastello et al.,
2008) and HIV prevention (Chen et al., 2013). Currently,
it is employed used in designing deep neural networks
(Daw and He, 2020) as one of the simplest models of
a catastrophe. In this paper we decide to use the cusp
catastrophe model due to the use of the pattern mapping
approach employing a sequence of synaptic connections
in the network and ignoring the influence of connection
weights. The sensitivity of the cusp catastrophe model to
sudden changes of input is used to model the propagation
of a nerve spike induced by the detection of features
characteristic for individual classes of patterns.

The practical application of the cusp catastrophe
model is discussed using the example of the classifier
problem. Figure 3(a) shows an example of a pattern,
whose features are decomposed in Fig. 3(c). Figure 3(b)
shows a noisy pattern, and the decomposition of its
features is shown in Fig. 3(d). The probability Ppattern

of recognizing the noisy pattern depends on the sum of
probabilities Pφ of recognizing individual features φ in

A spiking neural network based on thalamo-cortical neurons . . . 471

Fig. 3. Problem of classification based on the evaluation of fea-
tures: original pattern (a), noisy pattern (b), decomposi-
tion of features of the original pattern (c), decomposition
of features of the noisy pattern (d).

accordance with

Ppattern ∼
∑

Pφ∑
φ
, (4)

where the parameterφ is the index numbering the features.
The classifier operation defined as such, however, leads to
the need to provide the neural network with mechanisms
for estimating the probability of detecting features. Such
an approach also leads to a relatively large dispersion
of weights in the network, which are the basis of the
aforementioned estimation mechanism. Large dispersions
of weight values are disadvantageous due to the cost of
hardware implementation. As the dispersion increases,
the required amount of hardware resources needed to
represent network weights increases.

For example, weight implementation using an
FPGA technology requires the use of dedicated DSP
blocks, while zero-dispersion implementation does not.
Implementation of weights with a dispersion of 100
and with no DSP blocks requires about three times
as many LUTs (lookup tables) as the zero-dispersion
implementation. Meanwhile, the significance of a given
feature in defining the belonging of a pattern to a class
is not equivalent to the weight of this feature in the
analyzed image, i.e., the amount of data that represents
this feature. An example of an axiom is having the
wheels feature by the car pattern. In this case Feature 4
(wheels), characteristic for the pattern in Fig. 3, is of
greater significance than, for example, Feature 1 (roof),

but the weight, i.e., the number of pixels in the pattern, and
thus the number of synaptic connections in the classifier,
is exactly the opposite. The pattern in Fig. 3(d) cannot be
classified as car. The reason, however, is not the lack of
Feature 2 or the low weight of Features 1, 3 and 5, but
the lack of Feature 4. Such situations lead to a specific
non-equilibrium of the significance of features—some
features are preponderant in the classification process.
For this reason, Eqn. (4) cannot hold. The problem of
significance of features is one of the basic challenges
in creating classifiers. Its solutions are sometimes
very expensive to implement due to the need to grow
the network model (Chu et al., 2019) or to provide
mechanisms for removing feature interaction (Rajbahadur
et al., 2022). In order to effectively detect features by the
SNN implemented using edge solutions, it is necessary to
propose a simple feature weighing algorithm. The result
of the evaluation of features should constitute the basic
criterion, both in the process of pattern classification by
the trained network and in the earlier process of training
the network, as the basis for recognizing the pattern
presented at the network input as the new one, i.e., that
which can be remembered in the network.

In spiking neural networks, the membrane potential
of a neuron depends on both the activity of the neurons in
the previous layer, to which it is connected, and its current
state, e.g., the temporary phase of refraction. Therefore,
it is more efficient to sum the currents flowing into the
neuron, which depend less on its current state (whether
it is firing or not) and more on the activity of neurons in
the previous layer. In a spiking network stimulated by
current signals, the probability of detecting a given feature
φ is proportional to currents i(φ) representing the given
feature in the pattern according to

Pφ ∼
∑

i(φ). (5)

Without an additional mechanism of weighing
features, the claim about their different significance is
not fulfilled according to (5). Please bear in mind that
electromagnetic variables like currents or tensions can be
either positive or negative and that probabilities are always
positive while probability amplitudes can be positive,
negative or complex. The use of probability amplitudes
for describing an SNN is beyond the scope of this work
and will be addressed in a future paper.

For each feature φ it is possible to additionally
define current threshold ith, exceeding of which means
an unambiguous identification of the feature. The binary
understanding of the probability of detecting particular
features in such a model is defined by

Pφ(ith) =

{
1 if

∑
i(φ) ≥ ith,

0 if
∑

i(φ) < ith.
(6)

The feature φ is recognized or not depending on the value

472 D. Huderek et al.

of the sum of all currents generated in the network for the
given feature presented at the network input.

However, the adoption of such a simple classification
method is impossible, primarily due to the high sensitivity
of the classifier’s response, especially in the vicinity of the
threshold ith. A separate problem would be the selection
of training data to establish the threshold parameter, which
conflicts with the self-learning agent concept. Focusing
on the implementation of biological learning mechanisms,
we used the cusp catastrophe model (CCM) to identify
features.

The mathematical description of the cusp catastrophe
defines a model of a dynamic system according to (Chen
et al., 2016)

dz

dt
=

dV (z;α, β)

dz
, (7)

where
V (z;α, β) = αz +

1

2
βz2 − 1

4
z4. (8)

The model includes control factors α and β, which
determine output variable z. In the case of spiking
neurons, the parameter controlling the behavior of a
neuron is the total synaptic current flowing into the soma,
while the output variable is the frequency of changes in
the functional potential of the axon, i.e., the generation
of voltage impulses. For simplicity, we assume that the
model does not use the bifurcation parameter, i.e., β = 0.
The so-defined model of a spiking neuron based on the
CCM is described by Huderek et al. (2019). Figure 4
features characteristics of C-C spiking neurons based on
the CCM model for both types of T-C neurons used to
implement the thalamus model: tonic spiking (TS) and
inhibition-induced spiking (IIS).

In addition to the dual nature of both types of T-C
neurons (TS and IIS), attention is drawn to the hysteresis
between the values of currents ith1 and ith2. Due to its
presence, equations for the frequency of spikes f are met
depending on the sum of all synaptic currents

∑
i that

flow into the selected neuron: Eqn. (9) in the case of the
TS/C-C neuron, i.e., of the tonic spiking type (Huderek
et al., 2019) and Eqn. (10) in the case of the IIS/C-C
neuron, i.e., of the inhibition-induced spiking type,

fTS/CC(t)

=

⎧⎪⎪⎨
⎪⎪⎩

fC if
∑

i > ith2,
fC if

∑
i > ith1 ∧ f(t− 1) = fC ,

fA if
∑

i < ith2 ∧ f(t− 1) = fA,
fA if

∑
i < ith1,

(9)

fIIS/CC(t)

=

⎧⎪⎪⎨
⎪⎪⎩

fA if
∑

i < ith1,
fA if

∑
i < ith2 ∧ f(t− 1) = fA,

fC if
∑

i > ith1 ∧ f(t− 1) = fC ,
fC if

∑
i > ith2.

(10)

Fig. 4. Cusp catastrophe model for both types of neurons: tonic
spiking and inhibition-induced spiking (Huderek et al.,
2019).

The original neuron model defined by Eqns. (1)–(3)
was modified with the cusp catastrophe model described
by Eqns. (10) and (9). After this modification, time
responses of T-C neurons based on a C-C model for a
triangular synaptic current are presented in Fig. 5 for
the Tonic Spiking (TS/C-C) type and in Fig. 6 for the
Inhibition-Induced (IIS/C-C) type.

Using the cusp catastrophe model described above to
estimate the probability of pattern classification based on
features leads to a three-state model. Due to the hysteresis
of the C-C model, Eqn. (6), when using the model, takes
the following form:

Pφ(ith)

=

⎧⎨
⎩

1 if
∑

i(φ) ≥ ith2,

is unknown if ith1 ≤
∑

i(φ) < ith2,

0 if
∑

i(φ) < ith1.

(11)

This approach offers a large margin of error and
increases the probability of a correct classifier response. It
should be noted that the large margin of error is the main
advantage of using the CCM and the C-C neurons defined

A spiking neural network based on thalamo-cortical neurons . . . 473

0 500 1000 1500 2000
Time [ms]

-80

-60

-40

-20

0

20

40

60

80

Vo
lta

ge
 [

m
V
]

-80

-60

-40

-20

0

20

40

60

80

C
ur

re
nt

 [
uA

]

Tonic spiking C-C

ith2

ith1

Fig. 5. Response of a tonic spiking neuron (TS/C-C) based on a
C-C model to a triangular excitation.

with it. The classifier either returns the correct answer
(positive or negative) or no answer at all, suggesting the
possible practical application of a 3-valued logic in the
sense of Jan Łukasiewicz. Thanks to this, when using
the SNN classifier as a pattern memory in the application
of a self-learning agent, the hysteresis thresholds of
synaptic current ith1, ith2 of the model defined with
Eqn. (11) are activators for saving new patterns. The
basis for the decision to save a new pattern in the
classifier’s memory is the detection of a unique feature,
which activates the response of the C-C neuron. As
mentioned, the complexity of the problem of evaluating
the significance of features greatly exceeds the availability
of computational resources of edge computing. However,
the application of the three-state probability model leads
to a situation when the condition for saving the new
pattern in the classifier’s memory is determining the
uniqueness of features in relation to previously saved
patterns. Thresholds ith1, ith2 are not variables in the
learning process and are set to be identical for all features.

3. Thalamo-based architecture
The basis of the organization of neurons in individual
layers of the SNN demonstrated in this paper is a
phenomenon of lateral inhibition (Zhou et al., 2022). It is
one of the basic mechanisms of the functioning of nervous
systems based on inhibiting the activity of adjacent
neurons by stimulated neurons. This phenomenon is very
desirable, because it leads to a selective response of the
neural network, e.g., to selective, i.e., accurate mapping
of stimulated nociceptors (pain receptors) (Quevedo et al.,
2017). Here, too, the cusp catastrophe model is used as

0 500 1000 1500 2000
Time [ms]

-80

-60

-40

-20

0

20

40

60

80

Vo
lta

ge
 [

m
V
]

-80

-60

-40

-20

0

20

40

60

80

C
ur

re
nt

 [
uA

]

Inhibition-induced spiking C-C

ith2

ith1

Fig. 6. Response of an inhibition-induced spiking neuron
(IIS/C-C) based on a C-C model to a triangular excita-
tion.

a tool for modeling mental behavior, e.g., in the context
of assessing suicidal behaviors induced by exposure to
complex factors, including pain (de Beurs et al., 2020).
Both the functioning of nervous systems based on the
lateral inhibition phenomenon, and the cusp catastrophe
model assumes the production of a complex response in
reply to a minor input function. In the discussed network
both mechanisms are modeled using the aforementioned
C-C neurons, the characteristics of which are shown in
Figs. 5 and 6. Unlike the classical characteristics of IIS
and TS neurons seen in Figs. 1 and 2, C-C models have
a large margin of error. This is an important feature of
the architecture, which makes it possible to apply learning
methods without optimizing network parameters using
iterative algorithms. The architecture of the SNN takes
into account stimulating successive layers stimulated by
signals generated for attributes (and not whole features)
of the image. These signals act as stimuli to C-C neurons.

Regardless of the cusp catastrophe model, the tonic
spiking and inhibition-induced spiking neurons are used
in the network. As mentioned, this is inspired by
the presence of both types of neurons in the thalamus,
which acts as a preprocessor of stimuli before sending
them to the cerebral cortex. The network has three
layers according to the previously described network
division: the decomposition layer, dividing the pattern
into properties (attributes which do not directly define
features), the feature layer, for cumulating properties into
features and the output layer, cumulating features into
groups of features, typical for each pattern.

In the process of network routing, dense connections
were abandoned in favor of the feature aggregation

474 D. Huderek et al.

Fig. 7. Network architecture.

architecture in specific neurons. The details of this
algorithm are described in Section 4. At this stage,
however, it is worth mentioning that the average number
of connections per neuron is more than 100 times smaller
than for a typical dense connected network. Moreover,
each first layer neuron is only connected to one second
layer neuron. Such a strong reduction of connections
can be treated as a pre-learning pruning and leads to
homeostasis guaranteed by strong competition of neurons
in approaches using lateral inhibition and the STDP
learning method.

The basis for building a network responding to
pattern attributes is to estimate the maximum number
of synaptic connections for which the spiking neuron
selectively classifies the origin of the stimulus. In other
words, it is the maximum number of synapses to which
a neuron responds when the signal changes at one of
the synapses. It would be very difficult to achieve high
selectivity based on C-C neurons alone. Limitations
defined in Section 1, in particular the low dispersion
of weights, additionally make it difficult to obtain high
selectivity.

We solved this problem by using T-C neurons in the
feature layer and in the output layer, i.e., neurons with
spiking frequency dependent on the input current. This
makes it possible to completely eliminate the dispersion
of weights, i.e., to guarantee identical weights in all
synapses in the entire network. This significantly reduces
the cost of a hardware implementation of the network.
Ultimately, it has been verified that the maximum number
of neuron synapses in the decomposition layer for
which the presented neuron models respond selectively
when presenting an attribute on one of the synapses
was determined experimentally and equals 70. The
maximum number of connections per neuron is the basis
for grouping network input signals. The grouping of
information is the task of the second layer, i.e. the feature
one. The task of the third layer, i.e., the output one, is to
sum up information about the detected features. As in the
case of the decomposition layer, T-C neurons are used in
the other two layers due to the large amount of information
coming from the previous layers.

A simplified diagram of the network is shown in
Fig. 7. However, a detailed description of the network
routing algorithm is provided in Section 4.

4. Learning by routing

Iterative SNN learning algorithms such as the STDP one
are too expensive for applications in a self-learning agent.
SNNs learned with the STDP algorithm are characterized
by much larger sizes than, for example, networks learned
with conversion algorithms, and the STDP algorithm
itself is characterized by a much larger batch processing
time (Pietrzak et al., 2023). Iterative algorithms make it
possible to obtain competitive parameters of classifiers,
but in-situ training of the classifier cannot be done using
a mobile GPU/FPGA-based system in real time. It
is possible to implement STDP rules in hardware with
the use of neuromorphic equipment (e.g., SpiNNaker
(Diehl and Cook, 2014)); however, these solutions are
very expensive and still not very popular. A limitation
of classical algorithms is also the inability to train the
existing network with new classes without a significant
reconstruction of the network architecture.

A common drawback of learning multi-class
problems using the STDP algorithm is the catastrophic
forgetting phenomenon. This is a typical behavior of the
classifier, which forgets previously learned patterns in the
process of learning new patterns (Allred and Roy, 2020).
For the above reasons, we proposed effective learning
by a routing algorithm. The mechanism for creating
a network described below is based on routing neurons
based on image data, which leads to determining the
network size and the architecture of connections between
neurons in the network. We used an unsupervised method
of self-learning, inspired by the methods of training
associative memories such as Hebb’s rule or analytical
weight determination using the pseudo-inverse matrix.

Another difference in regard to STDP is using only
strong connections. Iterative methods use mechanisms of
strengthening or weakening synaptic connections, which
leads to a class representation using weight values.
However, it is also a source of dispersion of weight
values. In our algorithm the perception is embedded
in the connections themselves and not in the weights of
these connections, which is the effect of the mechanism
of efficient creation of strong binary connections with a
low implementation cost. The network training scheme
using M patterns represented by an image is shown in
Fig. 8. Additionally, Algorithm 1 presents stages of
the learning process in the form of a pseudocode. The
required preprocessing of the image is its conversion to
grayscale. That conversion does not affect quality as it is
a popular approach in the widely described event-based
vision processing (Gallego et al., 2022). Additionally,
a recommended but not obligatory process is histogram
equalization. Each M pattern is composed of i pixels
(p1..i). In the first step of the routing algorithm, patterns
are mapped to connections of a T-C+C-C neuron pair: one
tonic spiking and one inhibition-induced spiking neuron

A spiking neural network based on thalamo-cortical neurons . . . 475

with a cusp catastrophe mechanism for each pixel p in the
pattern.

With these neurons, the spikes are sent to the feature
layer, which maps the pattern’s attributes on a catastrophic
curve. Each attribute, depending on its position on the
curve, is classified as active (the signal is transmitted
by the tonic spiking C-C neuron) or inactive (the signal
is transmitted by the inhibition-induced spiking C-C
neuron). This classification is described in Algorithm 1
in Lines 4–10. Due to the dual characteristics of TS and
IIS neurons and the hysteresis used in the C-C model, in
each case only one neuron in a pair of neurons activates
spiking. Whether or not the attribute will activate neurons
of the next layer depends on exceeding the i-th hysteresis
threshold. The next layer, the feature layer, aggregates
attributes that make up features. Sample responses of
a pair of C-C neurons for extreme values, i.e., with a
maximum synaptic current (equivalent of the white pixel)
and a minimum synaptic current (equivalent of the black
pixel), are shown in Fig. 9.

In the subsequent stages of the learning algorithm,
a subnetwork is created for each pattern M1..k. For
each pattern composed of i pixels, such a subnet consists
of three layers. The first one is comprised of pairs
of T-C+C-C neurons for each pixel of the pattern (in
Fig. 8 these neurons are marked with symbol N). This
part of the subnet is a component of the decomposition
layer. For each M pattern, a matrix of subnet responses
is generated based on neuron responses from each pair
of N neurons. Based on this matrix, the structure
of the second layer of the subnet consisting of T-C
neurons is determined (in Fig. 8 these neurons are
marked with the symbol F and are part of the feature
layer). At this stage of the routing process, each F
neuron has synapses connecting it with neurons of the
decomposition layer which activated themselves for the
given pattern. Thus, making connections is similar to
learning rules by strengthening, but the network routing
algorithm is not an iterative algorithm. According
to the previous assumptions concerning selectivity, the
maximum number of synaptic connections Fmax in one
neuron equals 70. The attribute aggregation algorithm
selects successive neurons from the feature layer, provided
that the maximum number of synaptic connections was
reached in the neurons used so far. Creation of the second
layer is described in Algorithm 1 in Lines 11–13.

In a situation where pattern classes have common
features, their representation in the network is not
duplicated (Algorithm 1, Lines 14–19). A given feature is
represented by a constant number of neurons, even if the
feature is common for different classes. This approach
makes it possible to limit the network growth in the
case of training subsequent classes, which increases the
classifier’s memory capacity.

The last stage of subnet routing for individual

patterns is the selection of neurons from the output layer
in which there is one neuron (Ok) collecting information
from all neurons in the feature layer, which are active
in the case of presentation of the training pattern Mi.
Therefore, the last layer of the subnet for each pattern
contains a single neuron from the output layer. The
previously mentioned limitation of the maximum number
of synaptic connections for this neuron does not exist
anymore. The learning process ends with a clearing
mechanism which clears the first layer of the network by
removing unused neurons (Algorithm 1, Lines 30 to 34).

According to the previously adopted assumptions
concerning low implementation costs, all synapses in the
entire network, regardless of which layers they connect,
have the same weight value equal to 0.0001.

The final stage of training is cleaning the network.
This can be referred to as post-learning pruning. At
this stage, unused neurons of the first layer are removed.
Cleaning also checks that the created subnets represent
common features. Such a situation occurs when patterns
have the same attribute groups. The reduction in the
network size is based on using one neuron in the feature
layer for the same attribute groups. The cleaning process
reduces the size of the previously trained network. The
effectiveness of reduction depends on the number of
classes (K). The cleaning process removes unconnected
neurons from the first layer. The total number of neurons
after the cleaning process is

n′ = n× (1 − 1.81−K), (12)

where n is the total number of neurons before the process.
Let us summarize the most important advantages

of the presented algorithm. In contrast to iterative
methods, our approach makes it possible to analytically
route the network, similarly to methods used in classic
associative memories. Thanks to this, it is possible
to apply the algorithm in autonomous mobile devices
with their strongly limited computing power, not enough
to implement complex, biologically-inspired algorithms
such as STDP. Our algorithm offers the possibility
of training new patterns without having to retrain the
entire network with previously remembered patterns.
The algorithm is therefore resistant to the catastrophic
forgetting problem. Similarly, new patterns representing
already remembered classes can be used to train the
network, i.e., to add connections to existing subnets.
We offered a two-stage pruning of the network: before
training at the connection creation stage and after training
at the stage of eliminating redundant connections. Due to
limited hardware resources of mobile systems, we propose
a complete elimination of the weighting mechanism—all
weights in the entire network have the same value. Despite
the omission of the weight mechanism, the network has a
large capacity, which is presented in detail in Section 5.

476 D. Huderek et al.

p1 p2 p3

FMAX

pipi-2 pi-1

Pattern

p1

p2

p3

pi

Network input

N1 F1 O1

Fj

j=i/FMAX

N2i-1

N2i

w11

w12

w21

w22

w31

w32

N3

N5

N6

N4

N2

wi1

wi2
Ok

Network architecture

First layer
(Decomposition)

Second layer
(Feature)

Third layer
(Output)

T-C+C-C neurons T-C neurons T-C neurons

p3

Fig. 8. Network routing diagram.

N1

N2

pW

wW1

wW2

wB1

wB2

N1

N2

pB

Fig. 9. Answer of a pair of neurons for each pixel of the image.

5. Experiments
To test how the network performs in a standalone agent
application, we used the Caltech dataset 256 (Griffin
et al., 2007) containing examples of everyday objects.
The photos were pre-processed: resized to the size of
70 × 70 pixels, the histogram equalized and converted to
grayscale. The task of the network was to classify objects
of the dataset. The network has an input size of 4900, and
in the input layer at the beginning of the training algorithm
there are 9800 neurons. Figure 10 presents example

training patterns belonging to five different classes. Next
to the patterns we show voltage signals generated at the
network outputs. These signals are analyzed over a period
of time T of 40 ms.

The traditional coding methods up to the first impulse
turned out to be ineffective due to the network producing
responses over a longer time horizon. Therefore, the
coding method finally used is the average time of
inactivity of the output tina, understood as the average
distance ti−1,i between impulses i − 1 and i in the
analyzed time window according to

tina =
1

i

∑
i

ti−1,i. (13)

and Fig. 11.
The number of generated and analyzed impulses

varies for different classes, but the neuron representing
a given class is the most active, i.e., it has the shortest
average inactivity time.

After training, without cleaning, the network has
an architecture of 9800 − 350 − 5 neurons in given
layers, and after the cleaning it is 9615 − 350 − 5. The
architecture of the network changes but the number of
connections remains the same. The average number of
connections per neuron in the discussed network is 1.89.
For a typical dense connections architecture, this value
would be 253.97 with the same size of the input image.
For the trained network, we used coding according to
Eqn. (13). Figures 12–16 present example results of
network operation for the test set created from the Caltech
dataset.

The accuracy of the network at this stage of learning
equals 87% and the precision for individual classes is for:

A spiking neural network based on thalamo-cortical neurons . . . 477

Fig. 10. Network training patterns.

Fig. 11. Coding used in analyzing the activity of the classifier
outputs.

Bonsai: 1, Brain: 0.9, Screw: 0.73, Sneaker: 1, Tricycle:
0.86.

Additionally, we conducted an analysis of network
growth depending on the number of classes remembered
by the network. The result of this analysis is
shown in Fig. 17. The graph presents the size
of the network determined in the simulation for real
classification problems. The analysis presents the process
of remembering subsequent classes, starting with a single
one. The starting point on the graph (i.e., the number
of neurons in the network for a single class) is the same
for each set due to two features of the network creation
algorithm: the cleaning of unused neurons in the first layer
and aggregation of features common to different classes.
Adding more classes to the network memory results in
a slowing increase in the network complexity. This is
caused by the operation of the mechanism of finding
common features for classes and their non-duplication.

Due to the use of a training algorithm similar
to associative memory learning methods, the network
capacity can be determined depending on the number of
neurons. The minimum number of neurons Smin needed
to remember K classes of patterns of size x, with Fmax

connections per neuron in the hidden layer results from

Smin = x×
(
1 +

K

2 · Fmax

)
+K. (14)

This is an impossible case, assuming that only x
neurons were used in the hidden layer. This is a situation
where each subsequent learning pattern differs by 50%
from each previous grade. A difference below this
threshold would mean presenting the next training pattern
instead of the pattern representing the new class.

In turn, the maximum number of neurons results
from

Smax = x×
(
2 +

K

Fmax

)
+K. (15)

This case assumes that twice as many neurons are
used in the input layer, and the classes have no common
features at all. For this situation, each successive class
requires the use of x×K/Fmax neurons in the feature
layer. This case is also impossible.

Both of the above functions are linear and divergent.
This means that, as the number of classes increases,
the width of the range between Smax and Smin, which
includes the actual dependence, increases linearly. The
actual number of neurons needed to remember K classes
depends on the type of classes. However, it can be
assumed that, for complex problems, i.e., for a large
number of classes, the number of classes that can be stored
in memory is

K =
1

2
(Smax + Smin). (16)

On the basis of tests of networks with sizes of
10k–500k neurons, we found that the network capacity
can be estimated by the formula

K = 103× S

x
− 138, (17)

regardless of the training set. This dependency is valid
for problems with the complexity of at least several dozen
classes.

Finally, let us consider the complexity of the
hardware implementation of the described algorithm.
Table 1 summarizes the complexity of the network itself
trained with various algorithms and using the Caltech
dataset. The comparison is made for a five-class
classifier. We focused on three main algorithms:
STDP (supervised spike timing-dependent plasticity),
event-based backpropagation SSTDP (supervised spike
timing-dependent plasticity), which is characterized by
a high efficiency of training classifiers (Pietrzak et al.,
2023), and ANN-SNN conversion, which is distinguished
by a strong reduction in the complexity of the network
architecture. The comparison shows the number of
neurons, the number of synapses and the dispersion of
synaptic connection weights.

As can be seen, our implementation has more
neurons and fewer connections. To show how this

478 D. Huderek et al.

Fig. 12. Results of network classification for “Bonsai” patterns.

Fig. 13. Results of network classification for “Brain” patterns.

Fig. 14. Results of network classification for “Screw” patterns.

Fig. 15. Results of network classification for “Sneaker” patterns.

Fig. 16. Results of network classification for “Tricycle” patterns.

A spiking neural network based on thalamo-cortical neurons . . . 479

1 2 3 4 5 6 7 8 9 10 11
Number of classess

4000

5000

6000

7000

8000

9000

10000

11000
N

um
be

r o
f n

eu
ro

ns

Fig. 17. Network growth analysis.

Table 1. Network architecture complexity for different learning algorithms.
STDP SSTDP ANN-SNN conv Our

Number of neurons 6 250 T-C 115 T-C 15 T-C 9 768 C-C, 353 T-C
Number of synapses 69 687 500 490 500 49 050 24 780
Weights dispersion [0, 741] [−5.71, 10.488] [−10, 10] 0

affects the complexity of the hardware implementation,
we made implementations using reconfigurable logic
devices (FPGA). The analysis was made for the Xilinx 7
family equipped with 6-input LUTs. We considered two
synthesis scenarios: using LUT blocks and dedicated
DSP (digital signal processing) blocks to implement
multiplication operations, and using only LUT blocks,
i.e., implementing multiplications with their help. The
results of the comparison are presented in Table 2.
The individual rows of the table present the demand of
the entire network for specific blocks. Note that our
implementation in all cases is characterized by less use of
hardware resources. Only in the case of using DSP blocks
the LUT utilization was more than three times higher
compared with the conversion algorithm. At the same
time, the use of DSP blocks is over nine times smaller.
The key parameter of FPGA accelerators, however, are
DSP blocks, which affect the price of accelerators.

It should also be emphasized that the network
implementation using the conversion algorithm is highly
inefficient due to the naive way of generating the structure
from a classical network and the use of frequency

coding. This type of coding requires much more steps
in the classifier simulation. The slow operation of the
network after the conversion will be compounded by
the slow hardware implementation. FPGA accelerators
are usually equipped with several hundred DSP blocks.
Only systems costing tens of thousands of dollars (e.g.,
Virtex 7) are equipped with about 5,000 DSP blocks.
Higher use of DSP blocks requires employing memory to
temporarily store the results. This further slows down the
ANN-SNN conv implementation, where most DSP blocks
are required.

6. Conclusion
In this work, we proposed an algorithm for training
spiking neural networks dedicated to implementation in
autonomous systems. The approach is strongly focused
on reducing the complexity of both the learning algorithm
and the final network. The presented solution, unlike other
learning algorithms, is a noniterative approach, which
enables in-situ learning, i.e., using an edge device. The
advantages of the approach also include a strong reduction
in the complexity of the SNN network itself through

480 D. Huderek et al.

Table 2. Hardware complexity of networks trained with different algorithms.
Training algorithm STDP SSTDP ANN-SNN conv Our

Using LUT and DSP blocks
Number of LUT blocks 2 301 212.5k 16 206.77k 1 621.55k 5 177.32k
Number of DSP blocks 139 381.25k 981.11k 98.12k 10.12k

Using only LUT blocks
Number of LUT blocks 21 885 043.75k 154 064.6k 15 408.5k 7 838.1k

the use of pre-learning and post-learning pruning and
quantization of weights. Thanks to the approach modeled
on associative memories, it is possible to estimate the
required hardware resources for teaching subsequent
classes. All these treatments translate into both lower
energy costs of the final device and a larger capacity of
the classifier itself. Additionally, the learned network is
resistant to catastrophic forgetting.

References
Abusnaina, A. and Abdullah, R. (2014). Spiking neuron models:

A review, International Journal of Digital Content Tech-
nology and its Applications 8(3): 14–21.

Albert, Shalumov1, R., Halaly1, Elishai, E. and Tsur
(2021). Lidar-driven spiking neural network for collision
avoidance in autonomous driving, Bioinspiration &
Biomimetics 16(6): 066016.

Allred, J. and Roy, K. (2020). Controlled forgetting: Targeted
stimulation and dopaminergic plasticity modulation for
unsupervised lifelong learning in spiking neural networks,
Frontiers in Neuroscience 14: 1–16, Article no. 7.

Bartłomiejczyk, P., Trujillo, F.L. and Signerska-Rynkowska,
J. (2023). Spike patterns and chaos in a map-based
neuron model, International Journal of Applied Math-
ematics and Computer Science 33(3): 395–408, DOI:
10.34768/amcs-2023-0028.

Cech, J., Hanis, T., Kononisky, A., Rurtle, T., Svancar,
J. and Twardzik, T. (2021). Self-supervised learning
of camera-based drivable surface roughness, 2021 IEEE
Intelligent Vehicles Symposium (IV), Nagoya, Japan,
pp. 1319–1325.

Chen, D.-G., Chen, X. and Zhang, K. (2016). An exploratory
statistical cusp catastrophe model, 2016 IEEE Interna-
tional Conference on Data Science and Advanced Analyt-
ics (DSAA), Montreal, Canada, pp. 100–109.

Chen, D.-G., Lin, F., Chen, X., Tang, W. and Kitzman, H.
(2014). Cusp catastrophe model a nonlinear model for
health outcomes in nursing research, Nursing Research
63(3): 211–220.

Chen, X., Stanton, B., Chen, D.-G. and Li, X. (2013). Intention
to use condom, cusp modeling, and evaluation of an HIV
prevention intervention trial, Nonlinear Dynamics, Psy-
chology, and Life Sciences 17(3): 385–403.

Cheng, H.-P., Wen, W., Wu, C., Li, S., Li, H.H. and Chen, Y.
(2017). Understanding the design of IBM neurosynaptic

system and its tradeoffs: A user perspective, Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE
2017), Lausanne, Switzerland, pp. 139–144.

Chu, L., Raghavendra, R., Srivatsa, M., Preece, A. and
Harborne, D. (2019). Feature importance identification
through bottleneck reconstruction, 2019 IEEE Interna-
tional Conference on Cognitive Computing (ICCC), Milan,
Italy, pp. 64–66.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y.,
Choday, S.H., Dimou, G., Joshi, P., Imam, N., Jain, S.,
Liao, Y., Lin, C.-K., Lines, A., Liu, R., Mathaikutty, D.,
McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng,
Y.-H., Wild, A., Yang, Y. and Wang, H. (2018). Loihi: A
neuromorphic manycore processor with on-chip learning,
IEEE Micro 38(1): 82–99.

Daw, R. and He, Z. (2020). Deep neural network in
cusp catastrophe model, arXiv: 2004.02359, DOI:
10.48550/arXiv.2004.02359.

de Beurs, D., Bockting, C., Kerkhof, A., Scheepers, F.,
O’Connor, R. and van de Leemput, I. (2020). A
network perspective on suicidal behavior: Understanding
suicidality as a complex system, Suicide and Life-
Threatening Behavior 51(1): 115–126.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei,
L. (2009). ImageNet: A large-scale hierarchical image
database, 2009 IEEE Conference on Computer Vision and
Pattern Recognition, Miami, USA, pp. 248–255.

Diehl, P. and Cook, M. (2014). Efficient implementation of
STDP rules on spinnaker neuromorphic hardware, Pro-
ceedings of the International Joint Conference on Neural
Networks, Beijing, China, pp. 4288–4295.

Encke, J. and Hemmert, W. (2018). Extraction of inter-aural time
differences using a spiking neuron network model of the
medial superior olive, Frontiers in Neuroscience 12: 1–12,
Article no. 140.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T. and
Tian, Y. (2021). Incorporating learnable membrane time
constant to enhance learning of spiking neural networks,
2021 IEEE/CVF International Conference on Computer
Vision (ICCV), Montreal, Canada, pp. 2641–2651.

Gallego, G., Delbrück, T., Orchard, G., Bartolozzi, C., Taba,
B., Censi, A., Leutenegger, S., Davison, A.J., Conradt, J.,
Daniilidis, K. and Scaramuzza, D. (2022). Event-based
vision: A survey, IEEE Transactions on Pattern Analysis
and Machine Intelligence 44(1): 154–180.

A spiking neural network based on thalamo-cortical neurons . . . 481

Algorithm 1. Creating the network architecture.
Require: training patterns tP ; maximal number of

connections to feature mCTF ; hysteresis level hL;
Ensure: network first layer (decomposition layer) fL;

network second layer (features layer) sL; network
third layer (output layer) tL;

1: for n = 1 to count(tP) do
2: aTP = tP (n) /actual training pattern
3: iV = toVector(aTP) /input vector

Decomposition layer output:
4: for m = 1 to count(iV) do
5: if iV (m) > hL then
6: dLO = 1
7: else
8: dLO = 0
9: end if

10: end for
Feature layer structure:

11: for j = 1 to count(dLO == 1)/mCTF do
12: fLS(j) = dLO((j − 1)×mCTFj ×mCTF)
13: end for

Check if feature already exist:
14: for k = 1 to count(fLS) do
15: if sL.NotExist(fLS(k)) then
16: sL.Add(fLS(k))
17: end if
18: end for
19: tL(n) = fLS
20: end for

Assign features to correct patterns:
21: for i = 1 to count(tP) do
22: for n = 1 to count(sLN) do
23: if tP (i).Exist(sLN(n)) then
24: tP (i)+ = 1
25: else
26: tP (i)+ = 0
27: end if
28: end for
29: end for

Clear first layer:
30: for i =count(fL) do
31: if sL.NotExist(fL(i)) then
32: fl.Remove(fL(i))
33: end if
34: end for
35: return [fL, sL, tL]

Griffin, G., Holub, A. and Perona, P. (2007). Caltech-256 object
category dataset, CalTech Report, California Institute of
Technology, Pasadena, DOI: 10.22002/D1.20087.

Guastello, S., Aruka, Y., Doyle, M. and Smerz, K. (2008).
Cross-cultural generalizability of a cusp catastrophe model
for binge drinking among college students, Nonlinear Dy-
namics, Psychology, and Life Sciences 12(4): 397–407.

Halassa, M.M. and Acsády, L. (2016). Thalamic inhibition:
Diverse sources, diverse scales, Trends in Neurosciences
39(10): 680–693.

Hazan, H., Saunders, D., Sanghavi, D. T., Siegelmann, H.
and Kozma, R. (2018). Unsupervised learning with
self-organizing spiking neural networks, 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN), Rio
de Janeiro, Brazil, pp. 1–6.

He, K., Zhang, X., Ren, S. and Sun, J. (2015). Deep residual
learning for image recognition, CoRR: abs/1512.03385.

Hua, Y., Loomba, S., Pawlak, V., Voit, K.-M., Laserstein,
P., Boergens, K.M., Wallace, D.J., Kerr, J.N. and
Helmstaedter, M. (2022). Connectomic analysis of
thalamus-driven disinhibition in cortical layer 4, Cell Re-
ports 41(2): 111476.

Huderek, D., Szczęsny, S. and Rato, R. (2019). Spiking neural
network based on cusp catastrophe theory, Foundations of
Computing and Decision Sciences 44(3): 273–284.

Izhikevich, E. (2004). Which model to use for cortical
spiking neurons?, IEEE Transactions on Neural Networks
15(5): 1063–1070.

Kozdon, K. and Bentley, P. (2017). Wide learning: Using an
ensemble of biologically-plausible spiking neural networks
for unsupervised parallel classification of spatio-temporal
patterns, 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), Honolulu, USA, pp. 1–8.

Leong, M., Prasad, D., Lee, Y. and Lin, F. (2020). Semi-CNN
architecture for effective spatio-temporal learning in action
recognition, Applied Sciences 10(2): 557.

Li, G., Deng, L., Chua, Y., Li, P., Neftci, E.O. and Li, H. (2020).
Editorial: Spiking neural network learning, benchmarking,
programming and executing, Frontiers in Neuroscience 14:
1–4, Article no. 276.

Li, H., Liu, H., Ji, X., Li, G. and Shi, L. (2017). CIFAR10-DVS:
An event-stream dataset for object classification, Frontiers
in Neuroscience 11: 1–10, Article no. 309.

Liang, Q., Shenoy, P. and Irwin, D. (2020). AI on the
edge: Characterizing AI-based IoT applications using
specialized edge architectures, 2020 IEEE International
Symposium on Workload Characterization (IISWC), Bei-
jing, China, pp. 145–156.

Lim, Y. and Golden, J.A. (2007). Patterning the developing
diencephalon, Brain Research Reviews 53(1): 17–26.

Markram, H., Gerstner, W. and Sjöström, P.J. (2012).
Spike-timing-dependent plasticity: A comprehensive
overview, Frontiers in Synaptic Neuroscience 4: 1–3,
Article no. 2.

Mayr, C., Hoeppner, S. and Furber, S. (2019). Spinnaker
2: A 10 million core processor system for brain
simulation and machine learning, arXiv: 1911.02385,
DOI: 10.48550/arXiv.1911.02385.

Meftah, B., Lezoray, O., Lecluse, M. and Benyettou, A. (2010).
Cell microscopic segmentation with spiking neuron
networks, in K. Diamantaras et al. (Eds), Artificial Neu-
ral Networks—ICANN 2010, Springer, Berlin/Heidelberg,
pp. 117–126.

482 D. Huderek et al.

Na, B., Mok, J., Park, S., Lee, D., Choe, H. and Yoon,
S. (2022). AutoSNN: Towards energy-efficient spiking
neural networks, 39th International Conference on Ma-
chine Learning, Baltimore, USA.

Nazari, S., Amiri, M., Faez, K. and Van Hulle, M.M. (2020).
Information transmitted from bioinspired neuron–astrocyte
network improves cortical spiking network’s pattern
recognition performance, IEEE Transactions on Neural
Networks and Learning Systems 31(2): 464–474.

Neculae, G. (2020). Ensemble Learning for Spiking Neural Net-
works, PhD thesis, University of Manchester, Manchester.

Neftci, E.O., Mostafa, H. and Zenke, F. (2019). Surrogate
gradient learning in spiking neural networks: Bringing
the power of gradient-based optimization to spiking neural
networks, IEEE Signal Processing Magazine 36(6): 51–63.

Oster, S., Deiner, M., Birgbauer, E. and Sretavan, D.
(2004). Ganglion cell axon pathfinding in the retina and
optic nerve, Seminars in Cell & Developmental Biology
15(1): 125–136.

Pereira-Pires, J.E., Ferreira, J. and Rato, R. (2019).
Spike based computing: A novel hardware to
compute and control with spikes in space, ESA
contract nº 4000117067/16/NL/MH/gm, Final
Report, European Space Agency, Paris, DOI:
10.13140/RG.2.2.22848.97286.

Pietrzak, P., Szczęsny, S., Huderek, D. and Przyborowski, L.
(2023). Overview of spiking neural network learning
approaches and their computational complexities, Sensors
23(6): 3037.

Pisarev, A., Busygin, A., Udovichenko, S.Y. and Maevsky,
O. (2020). A biomorphic neuroprocessor based on
a composite memristor-diode crossbar, Microelectronics
Journal 102: 104827, DOI: 10.1016/j.mejo.2020.104827.

Ponghiran, W., Srinivasan, G. and Roy, K. (2019).
Reinforcement learning with low-complexity liquid
state machines, Frontiers in Neuroscience 13: 1–14,
Article no. 883.

Ponulak, F. (2008). Analysis of the ReSuMe learning process for
spiking neural networks, International Journal of Applied
Mathematics and Computer Science 18(2): 117–127, DOI:
10.2478/v10006-008-0011-1.

Quevedo, A., Mørch, C., Andersen, O. and Coghill, R. (2017).
Lateral inhibition during nociceptive processing, PAIN
158(6): 1046–1052.

Raha, A., Kim, S.K., Mathaikutty, D.A., Venkataramanan, G.,
Mohapatra, D., Sung, R., Brick, C. and Chinya, G.N.
(2021). Design considerations for edge neural network
accelerators: An industry perspective, 2021 34th Interna-
tional Conference on VLSI Design/2021 20th International
Conference on Embedded Systems (VLSID), Guwahati, In-
dia, pp. 328–333.

Rajbahadur, G.K., Wang, S., Oliva, G.A., Kamei, Y. and Hassan,
A.E. (2022). The impact of feature importance methods on
the interpretation of defect classifiers, IEEE Transactions
on Software Engineering 48(7): 2245–2261.

Raz, Halaly, Elishai, E. and Tsur (2023). Autonomous
driving controllers with neuromorphic spiking neural
networks, Front Neurorobot 17: 1234962, DOI:
10.3389/fnbot.2023.1234962.

Rowcliffe, P., Feng, J. and Buxton, H. (2006). Spiking
perceptrons, IEEE Transactions on Neural Networks
17(3): 803–807.

Salt, L., Howard, D., Indiveri, G. and Sandamirskaya, Y.
(2020). Parameter optimization and learning in a spiking
neural network for UAV obstacle avoidance targeting
neuromorphic processors, IEEE Transactions on Neural
Networks and Learning Systems 31(9): 3305–3318.

Shrestha, Sumit, B. and Orchard, G. (2018). Slayer: Spike layer
error reassignment in time, 32nd Conference on Neural In-
formation Processing Systems (NeurIPS 2018), Montreal,
Canada.

Stagsted, R., Vitale, A., Binz, J., Renner, A., Larsen, L.B. and
Sandamirskaya, Y. (2020). Towards neuromorphic control:
A spiking neural network based PID controller for UAV,
Robotics: Science and Systems 2020, Corvalis, USA, pp.
1–8, DOI: 10.5167/uzh-200415.

Szczęsny, S. (2017). 0.3 V 2.5 nW per channel current-mode
CMOS perceptron for biomedical signal processing in
amperometry, IEEE Sensors Journal 17(17): 5399–5409.

Szczęsny, S., Huderek, D. and Przyborowski, L. (2021). Spiking
neural network with linear computational complexity for
waveform analysis in amperometry, Sensors 21(9): 3276.

Tazerart, S., Mitchell, D.E., Miranda-Rottmann, S. and Araya,
R. (2019). A spike-timing-dependent plasticity rule for
single, clustered and distributed dendritic spines, bioRxiv:
397323, https://www.biorxiv.org/content/e
arly/2019/01/27/397323.

Torrico, T. and Munakomi, S. (2020). Neuroanatomy, Thalamus,
National Library of Medicine, Bethesda, https://www
.ncbi.nlm.nih.gov/books/NBK542184/.

Viale, A., Marchisio, A., Martina, M., Masera, G. and
Shafique, M. (2021). CARSNN: An efficient spiking
neural network for event-based autonomous cars on the
Loihi neuromorphic research processor, 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN),
Shenzhen, China, pp. 1–10.

Vosahlik, D., Cech, J., Hanis, T., Konopisky, A., Rurtle, T.,
Svancar, J. and Twardzik, T. (2021). Self-supervised
learning of camera-based drivable surface friction, 2021
IEEE International Intelligent Transportation Systems
Conference (ITSC), Indianapolis, USA, pp. 2773–2780.

Wu, D., Yi, X. and Huang, X. (2022). A little energy goes a long
way: Build an energy-efficient, accurate spiking neural
network from convolutional neural network, Frontiers in
Neuroscience 16: 1–11, Article no. 759900.

Wu, Y., Deng, L., Li, G., Zhu, J. and Shi, L. (2018a). Direct
training for spiking neural networks: Faster, larger, better,
3rd AAAI Conference on Artificial Intelligence (AAAI-19),
Honolulu, USA, pp. 1311–1318.

https://www.biorxiv.org/content/early/2019/01/27/397323
https://www.biorxiv.org/content/early/2019/01/27/397323
https://www.ncbi.nlm.nih.gov/books/NBK542184/
https://www.ncbi.nlm.nih.gov/books/NBK542184/

A spiking neural network based on thalamo-cortical neurons . . . 483

Wu, Y., Deng, L., Li, G., Zhu, J. and Shi, L. (2018b).
Spatio-temporal backpropagation for training
high-performance spiking neural networks, Frontiers
in Neuroscience 12: 1–12, Article no. 331.

Xuelei, C. (2023). Autonomous driving using spiking neural
networks on dynamic vision sensor data: A case study
of traffic light change detection, arXiv: 2311.09225, DOI:
10.48550/arXiv.2311.09225.

Zhao, J., Fang, J., Ye, Z. and Zhang, L. (2021). Large
scale autonomous driving scenarios clustering with
self-supervised feature extraction, 2021 IEEE Intelligent
Vehicles Symposium (IV), Nagoya, Japan, pp. 473–480.

Zhou, J., Dai, J. and Weng, S. (2022). Effect of adjacent
lateral inhibition on light and electric-stimulated synaptic
transistors, IEEE Electron Device Letters 43(4): 573–575.

Damian Huderek graduated in automatic con-
trol and robotics from the Faculty of Computer
Science of the Poznań University of Technology
with an MS degree in 2017. Then, he began
doctoral studies in the field of computer science
there. His main research interests include bio-
inspired neural networks and their application,
programming and PCB design.

Szymon Szczęsny graduated in 2008 in automa-
tion and management from the Faculty of Com-
puting and Management of the Poznan University
of Technology. In 2013 he received his PhD in
computer science there. He is mainly interested
in bio-inspired electronics, computational neuro-
science and processing bio-medical signals. He
also works on tasks of automating processes of
designing layouts of current-mode circuits, pre-
diction of defects in processes of topography fab-

rication and algorithms for synthesizing analog circuits by using hard-
ware description languages.

Paweł Pietrzak received his MS degree in com-
puter science from the Faculty of Computing and
Telecommunications of the Poznań University of
Technology in 2020. In the same year he became
a PhD student there and started working full time
as a machine learning engineer in the field of
medical imaging software. His main interests in-
clude artificial intelligence, computer vision and
embedded systems.

Raul Rato is a professor responsible for sig-
nal analysis at the NOVA School of Science and
Technology. With a career spanning over three
decades, he has contributed to the field with nu-
merous papers. Doctor Rato’s research centers
on harnessing signals as sub-symbolic vehicles
for computational tasks. Presently, his pioneering
work explores the direct utilization of signals as
carriers of information in computing, bypassing
the need for analog-to-digital conversion. This

innovative approach holds the promise of revolutionizing physical-level
communication security and enabling wave-based computing at hyper
frequencies.

Łukasz Przyborowski graduated in mechatron-
ics from the Faculty of Mechanical Engineering
and Management of the Poznań University of
Technology in 2014. In 2017 he received his MS
degree in computer science from the Faculty of
Computer Science of that same university, where
he started PhD studies in 2019 in the field of ar-
tificial neural networks based on pulsed neurons.
He is interested in programming and now profes-
sionally programs web applications.

Received: 6 November 2023
Revised: 29 April 2024
Accepted: 9 June 2024

	Introduction
	T-C and C-C model
	Thalamo-cortical (T-C) neuron model
	Cusp-catastrophe (C-C) neuron model

	Thalamo-based architecture
	Learning by routing
	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

