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Pneumonia is of deep concern in healthcare worldwide, being the most deadly infectious disease, especially among chil-
dren. Chest radiographs are crucial for detecting it. However, certain vulnerable groups exhibit heightened susceptibility,
emphasizing the critical nature of accurate diagnosis and timely intervention. This paper presents convolutional neural
network (CNN) models for the detection of pneumonia from chest X-rays images. Among 20 different CNN models, we
identified EfficientNet-B0 as the most accurate and efficient, boasting an impressive accuracy rate of 94.13%. Furthermore,
the precision, recall, and F-score metrics for this model stand at 93.50%, 92.99%, and 93.14%, respectively. This research
underscores the potential of CNNs to revolutionize pneumonia diagnosis.
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1. Introduction
Pneumonia, an infection targeting the delicate alveoli
nestled within the lungs, triggers inflammation and
swelling, complicating breathing. The emergence
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of pneumonia heralds a distressing escalation in
respiratory challenges. Its presence is characterized by
heightened sputum production amidst coughing bouts,
fever, breathlessness, chest discomfort, and diminished
appetite. Individuals with pre-existing respiratory
ailments face a greater vulnerability to severe illness,
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Fig. 1. Sample of normal and pneumonia images.

particularly accentuated during the winter months, when
pneumonia emerges as the leading cause of mortality.
Alarmingly, this condition claims the lives of over 15% of
children under the age of five, underscoring its significant
impact on public health (Rao et al., 2022).

Pneumococcal illness significantly affects
populations in developing and underdeveloped nations,
primarily due to inadequate healthcare resources and
a burgeoning patient demographic (Regunath and
Oba, 2021). The prevalence of community-acquired
pneumonia (CAP) worldwide varies, with estimates
ranging from 1.5% to 14% cases per 1000 person-years.
Geographic location, seasonal fluctuations, and
demographer yearly prevalence rate in the United
States are documented as 24.8% scenarios per 10,000
individuals, and there is an apparent association between
the rates of occurrence and advancing characteristics that
influence this variability.

The WHO recognizes pneumonia as the leading
infectious illness and ranks the seventh most common
cause of death worldwide. Figure 1 is a sample and
standard pneumonia images. It should be noted that
mortality rates among patients who require admission to
the intensive care unit can exceed 23%, highlighting the
grave consequences associated with this disease (Yang
et al., 2022). Hence, prompt treatment of pneumonia is
imperative.

Radiologists rely on chest radiographs for the
clinical diagnosis of lung disorders (Akbar et al.,
2023a). Chest X-rays are widely employed in medical
practice due to their swift turnaround, cost-effectiveness,
and satisfactory image clarity. However, despite
these advantages, radiological findings alone may
not definitively differentiate pneumonia from other

pulmonary conditions. Moreover, the challenge
extends beyond diagnosis. Hospitals and medical
institutions generate a vast volume of medical images
daily, necessitating radiologists to meticulously review
numerous images manually (Shah and Shah, 2022).

Deep learning algorithms present a promising
solution for helping doctors identify areas of the lungs
affected by pneumonia. Integrating deep learning into
medical imaging automation has garnered considerable
attention recently (Akbar et al., 2023b). Deep learning
models have consistently performed better than human
professionals in several IoT medical imaging scenarios,
including IoT healthcare privacy and security (Singh
and Tripathi, 2022; Hussain et al., 2024; Cheng et al.,
2024). Since the introduction of AlexNet in 2012,
deep learning models have made significant progress in
classifying images (Heravi et al., 2016; Kang et al., 2024).
ResNet and its modifications provide a robust foundation
for precise object recognition and localization. The
YOLO algorithm performs very quickly and accurately in
detecting objects (Redmon et al., 2016), while RetinaNet
is suitable for real-time applications of various types.
GANs, as noted Iqbal and Ali (2018), play a critical role
in unsupervised learning of the efficacy of CNN models
when there is little training data or when they are poor
quality.

Both issues are successfully resolved by
incorporating deep learning automation. The study
reported in this paper describes a potential method
for reliably identifying pneumonia using CNN models
trained on chest X-ray data. The key contributions of the
proposed method are as follows:

• The most effective CNN architecture for pneumonia
detection is identified. Among the models evaluated,
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the Efficient-B0 architecture emerged as the most
accurate and efficient, achieving an impressive
accuracy rate of 94.13%.

• The EfficientNet-B0 model also exhibited strong
performance in key metrics, with a precision of
93.50% a recall of 92.99%, and an F-score of
93.14%.

• Various CNN architectures for pneumonia detection
are explored and analyzed by training and evaluating
20 distinct CNN models on chest X-ray images to
classify cases as pneumonia or normal.

• Challenges and limitations in identifying pneumonia
are identified, as well as its significance within the
broader context of medical research and healthcare.

2. Related work
Deep learning algorithms have significantly enhanced
image processing techniques across various domains,
including pathology, radiology, and mammography. In
numerous biomedical applications, these algorithms have
demonstrated capabilities that surpass human visual
assessment (Litjens et al., 2017). Recent technological
breakthroughs have enabled the automation of pneumonia
identification by analyzing chest X-rays. Several research
initiatives have used deep CNN models for accurate
and efficient pneumonia diagnosis. In the work of
(Račić et al., 2021), for pneumonia diagnosis, a deep
learning model was developed to analyze chest X-ray
images, yielding a 90% success rate. This model was
assembled without data augmentation, image filtering,
or segmentation tactics. Instead, data consistency was
achieved by deliberately using images of low quality.
Alqudah et al. (2021) developed an artificial intelligence
approach to identify and categorize pneumonia in chest
X-ray images. They proposed an AI strategy with
94% accuracy, using a CNN for improved feature
extraction. The model underwent training with subpar
images without using detection and filtering techniques to
enhance image quality.

In the works of Manickam et al. (2021), Chen
et al. (2024) and Shoaib et al. (2023), deep learning,
transfer learning and several optimized algorithms were
employed to detect pneumonia from chest X-rays. The
images were utilized to detect the infection and then
categorized as healthy or pneumonia-infected using a
U-Net architecture. The first models were trained
using selected ImageNet data. Evaluation techniques for
the CNN models VGG16, RetinaNet + Mask RCNN,
DenseNet169 + SVM, and Xception were modified from
previous iterations. The ResNet50 model, renowned for
its exceptional performance, attained 93% accuracy, 96%
recall, 88% precision, and an F-measure of 92%. The

model’s accuracy was worse without image filtering and
detection approaches, resulting in false positive diagnoses
and inappropriate treatment decisions.

In the 121-layer CheXNet model proposed by
Rajpurkar et al. (2017), 100,000 chest X-rays of 14
illnesses were used for training. The CheXNet model
was tested on 420 chest X-ray images and compared with
decisions made by professional radiologists. CheXNet
and other deep learning-based CNN models surpassed
radiologists in pneumonia detection.

Rajaraman et al. (2018) explored the effectiveness
of designing specific customized CNN architectures
for respective bacterial and viral pneumonia in 5232
community acquired paediatric chest radiographs. The
return on investment (ROI) for the sequential CNN,
residual CNN, VGG16, and inception CNN models was
evaluated using a unique visualization approach. The
modified VGG16 design performed more effectively than
earlier versions, yielding 96.2% accuracy in pneumonia
diagnosis and 93.6% in separating infections caused by
viruses and bacteria.

In order to categorise various forms of pneumonia,
Rahman et al. (2020) looked at 5247 chest X-ray images
from the Kaggle pneumonia dataset. The transfer learning
models used were AlexNet, ResNet18, Dense Net201,
and Squeeze Net. DenseNet201 drove other models
by comprehending distinctive pneumonia groups and
accurately determining the two etiological variations with
98% accuracy.

Alqudah et al. (2021) demonstrated that modified
CNNs could distinguish chest X-rays of patients with
bacterial pneumonia from those without it. Afterwards,
the support vector machine (SVM) and K-nearest
neighbors (KNN) algorithms were applied. Ten-fold
cross-validation generated a hybrid model that combined
CNN-KNN and CNN-SVM. Earlier hybrid models
achieved 94.03% accuracy, while the latter reached 93.9%
accuracy. Additionally, chest X-rays were analyzed using
deep learning to identify pneumonia. Through the use of
pre-processing techniques before using the ResNet50 v2
deep learning framework, pneumonia identification
accuracy was improved up to 96% according to Alsharif
et al. (2021).

Alquran et al. (2021) categorized chest X-rays into
three groups: pneumonia, COVID-19, and typical chest
X-ray films, with a precision of 93.1% attained by the use
of textural cues and conventional ML methods. According
to Rajasenbagam et al. (2021), deep learning approaches
effectively identified pneumonia infection. In image
testing, the suggested CNN yielded 99.34% accuracy
on a training dataset of 12,000 chest X-rays. The
suggested CNN outperformed AlexNet, VGG16Net, and
InceptionNet.
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Table 1. Comparing our version of EfficientNet-B0 with other methods.
Approach Models Accuracy
Neuro-heuristic methodology (Ke
et al., 2019)

A new neuro-heuristic methodology is proposed for
accurately identifying and categorizing the lung illnesses
using X-ray pictures.

79.06%

Various pre-trained (CNNs) (Rahman
et al., 2020)

Pneumonia was correctly diagnosed from chest
X-ray images using deep CNNs and transfer learning
algorithms.

93.3%

VGG16 (Jain et al., 2020) CNNs and transfer learning techniques for detecting
pneumonia in chest X-rays.

87.18%

VGG19 (Jain et al., 2020) Using CNNs and transfer learning techniques to detect
pneumonia in chest X-ray images

88.46%

CNN architectures, including SVM and
DenseNet-169 (Varshni et al., 2019)

Detection of pneumonia using CNNs for feature
extraction

80.02%

VGG16 and CNN (Liang and Zheng,
2020)

A paediatric pneumonia detection technique that
combines deep residual networks with transfer learning

74.2%

RetinaNet + Mask RCNN (Sirazitdinov
et al., 2019)

A huge library of chest X-rays is used to locate
pneumonia using a set of deep neural networks.

75.8%

VGG16 and Xception (Ayan and
Ünver, 2019)

Chest X-ray images and deep learning are used to
diagnose pneumonia.

87%

Fully connected RCNN (Rahmat et al.,
2019)

A faster R-CNN for categorizing chest X-ray images 62%

MobileNet + AEO (Sahlol et al., 2020) A unique technique for identifying tuberculosis in chest
radiography involves optimizing deep neural network
properties using artificial ecosystems.

90.20%

CNN+SVM (Alqudah et al., 2021) An artificial intelligence-based approach for accurately
identifying and classifying pneumonia from chest
radiography images

94%

DCNN (Rahimzadeh and Attar, 2020) Xception and ResNet50V2 models are used in a modified
deep CNN to identify COVID-19 and pneumonia cases
from chest X-ray images.

91.4%

Transfer learning with deep learning
(Manickam et al., 2021)

The Xception and ResNet50V2 features are used in a
complicated, deep CNN to accurately detect COVID-19
and pneumonia patients from chest X-ray images.

93.06%

EfficientNet-B0 (Frederich et al., 2024) Exploring different CNNs architectures to automate
pneumonia detection on chest X-ray images.

94.13%

3. Methodology

This section covers recognizing and classifying
pneumonia in chest X-rays. For the purpose of
categorizing and detecting pneumonia, CNN architectures
were used in this study. A CNN is implemented for
finding irregularities in the gained chest X-ray data that
signal pneumonia. A block diagram for the suggested
methodology for various deep learning models is shown
in Fig. 2.

3.1. Dataset. This dataset contains 5,863 X-ray
images (JPEG), split into two groups: normal and with
pneumonia. Images were collected from radiography
exams on pediatric patients at the Guangzhou Medical
Centre, which takes approximately 5,863 radiographs
annually as part of standard clinical care. This research
utilizes the pneumonia dataset (Kermany et al., 2018) for
training, validating, and testing as detailed in Table 2.

3.2. Data preprocessing. In this step, we applied
augmentation using an ImageDataGenerator with
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Fig. 2. Block diagram of the proposed model.

Table 2. Dataset splitting for models used.
Train Pneumonia 3300 Normal 1147
Validation Pneumonia 583 Normal 202
Test Pneumonia 390 Normal 234

zooming, rotation, and shifting to avoid class imbalance
in the data. This enriches the dataset and aids model
generalization. Images are standardized to 224 × 224
pixels for consistency via rescaling. The augmented
training data are used to train CNN models for
classification and evaluation of the images. We
normalized the image intensities before supplying
the data as input for the models to train. Validation data
tune the model, and the test set is used to determine its
accuracy. This approach ensures effective training and
generalization for pneumonia classification from chest
X-rays.

3.3. Data augmentation. Machine learning and
computer vision use data augmentation to enhance
training datasets with modified versions of existing data.
By applying the model to a wider variety of data instances,
this procedure can help reduce overfitting, enhance model
resilience, and boost prediction accuracy (Chlap et al.,
2021). Standard data augmentation methods include
horizontal or vertical image flipping, image rotation, noise
addition, and adjustment of brightness or contrast levels.
The augmentation is applied to the training data set as
shown in Table 4.

3.4. Rectified linear unit (ReLU) layer. The ReLU
function belongs to the class of linear functions commonly
utilized as an activation function within convolutional
layers. The output is 1 for positive inputs and 0
for all other cases. ReLU has demonstrated superior
performance in neural network architectures compared to
alternative activation functions like sigmoid or hyperbolic
tangent, primarily due to its ability to alleviate the
vanishing gradient issue (Hara et al., 2015). The ReLU
function is

ReLU(x) = max(0, x),

Validation Loss = L(θmodel).
(1)

3.5. Early stopping. Cross-validation is a method
used during training to measure the difference between
training and validation errors, known as the generalization
gap, which begins to widen instead of narrowing. This
divergence typically indicates overfitting and can be
mitigated by reducing model complexity, augmenting
training data, applying regularization techniques, or
implementing dropout (Prechelt, 2002). However, a
pragmatic and practical approach to combat this issue is
to terminate training prematurely once the generalization
gap starts deteriorating (Prechelt, 2002). Specifically,

Early Stopping:

{
Stop training if L(θmodel) ≥ Lbest,

Update Lbest ← L(θmodel).

(2)

3.6. Sigmoid activation function. In binary
classification tasks, neural networks often utilize the
sigmoid activation function. This function effectively
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Table 4. Augmentation of the training dataset.
Rotation range 0.2
Zoom range 0.2
Height shift range 0.1
Width shift range 0.1

maps input values to a range between 0 and 1, enabling
the calculation of probabilities from the sigmoid curve.
Consequently, it is advantageous for binary prediction
applications (Lau and Lim, 2018). Moreover, the
smoothness and differentiability of the function enhance
optimization tactics during neural network training.
However, despite its widespread usage, the sigmoid
function does have limitations (Sharma et al., 2017).

The sigmoid function can be defined as

σ(x) =
1

1 + e−x
. (3)

3.7. Optimization techniques. The choice of
optimization algorithm significantly impacts the
efficiency of training an ML model by minimizing
error rates. Typically, the effectiveness of an optimizer
is assessed based on its convergence speed and ability
to generalize well (Venter, 2010). Adam is an optimizer
that offers advantages across various metrics, building
on the strengths of both the adaptive gradient algorithm
(AdaGrad) and the root mean square propagation
(RMSProp), which are popular variations of stochastic
gradient descent (SGD) (Foulds, 2012). Adam aims
to enhance convergence speed and generalization
performance by computing distinctive adaptive learning
rates for various factors. However, recent researches has
unveiled scenarios where Adam may falter in converging
to an optimal solution under specific configurations
(Foulds, 2012).

The Adam optimization update is given by

mt = β1mt−1 + (1− β1)gt, (4)

vt = β2vt−1 + (1− β2)g
2
t , (5)

m̂t =
mt

1− βt
1

, (6)

v̂t =
vt

1− βt
2

, (7)

θt+1 = θt − α√
v̂t + ε

m̂t. (8)

In the Adam optimization algorithm, the moving
average of the gradients is updated according to (4). By
contrast, the moving average of the squared gradients is
updated as specified in (5). The bias-corrected estimates
for these moving averages are calculated using (6) and (7),
respectively. Finally, the parameter update is performed
according to (8).

3.8. Data regularization. Dropout is a commonly
used regularising method that assists in minimizing
overfitting in neural networks. Unlike other methods,
such as L1 and L2 regularization, which introduce penalty
terms to the cost function, dropout dynamically alters the
network’s architecture during each training iteration. This
involves randomly deactivating neurons in the network,
effectively creating an ensemble of neural networks for
each iteration. As a result, these diverse networks tend
to overfit in distinct manners, ultimately minimizing the
overall risk of overfitting. We implemented dropout with
a rate of 0.5 in all the models (Tian and Zhang, 2022).
Mathematical equations for dropout layers are described
in the following subsections.

3.8.1. L1 regularization (lasso). The L1 appropriate
regularization term, also known as the lasso penalty, is
defined as

L1 regularization = λ

p∑
j=1

|βj |. (9)

Here, λ represents the regularization parameter, p denotes
the number of features, and βj indicates the coefficient for
the j-th feature.

3.8.2. L2 regularization (ridge). The appropriate L2
regularization term, also known as the ridge penalty, is
defined as

L2 regularization = λ

p∑
j=1

β2
j . (10)

In this case, βj stands for the coefficient of the j-th
feature, while λ represents the regularization parameter
and the number of features.

3.9. Binary cross-entropy. Binary cross-entropy is a
common loss function in deep learning. The difference
between the true label and the expected probability
distribution is measured as 0 or 1 (Ruby and Yendapalli,
2020). Mathematically, the binary cross-entropy loss is
stated as follows:

Loss = −y log(p) + (1− y) log(1− p). (11)

In binary classification models, cross-entropy losses
should be minimized. The model penalizes false positives
and false negatives, meaning it penalizes forecasts of
positive labels when the actual labels are negative. In
situations where the costs of the two types of errors are
comparable, it makes sense to use this method (Ramos
et al., 2018). By minimizing the binary cross-entropy loss,
the model learns to make predictions that closely match
the true labels, leading to accurate binary classification
outcomes.
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3.10. Accuracy. The accuracy metric is commonly
used to evaluate binary classification tasks. Data
availability and valid predictions are compared to evaluate
the overall accuracy of predictions (Eusebi, 2013; Liao
et al., 2023). Mathematically, accuracy is defined as

accuracy =
TP + TN

TN + TP + FP + FN
. (12)

3.11. Recall. The recall metric quantifies the capability
of a model to point out all potential matches in a dataset.
It is the ability of correctly identifying all the positive
instances in relation to the overall positive population
through a particular model (Yacouby and Axman, 2020).
Mathematically, recall is defined as

recall =
TP

TP + FN
. (13)

3.12. Precision. An indicator of a model’s accuracy
and reliability is the precision of a statistical parameter
(Yacouby and Axman, 2020). Mathematically, it is
defined as

precision =
TP

TP + FP
. (14)

3.13. F1-score. F1-scores are mathematical measures
of accuracy and recall in classification models (Yacouby
and Axman, 2020). The F1-score is expressed
mathematically as

F1− score = 2× precision× recall
precision + recall

. (15)

3.14. Confusion matrix. Confusion matrices compare
a model’s predictions with the actual data patterns. These
comparisons are organized in a matrix. This matrix shows
the model’s performance (Townsend, 1971). Figure 3
illustrates an instance of a confusion matrix of our
different models through a dataset in which the problem
domain is addressed in this paper.

4. Model description
4.1. CNN architecture. A CNN model consists
of four layers: convolution, flattening, pooling, and
fully connected (Alzubaidi et al., 2021; Jeczmionek and
Kowalski, 2023). These four layers the discussed in the
following subsections.

4.1.1. Convolutional layer (CONV). The CONV
layer is a fundamental building component of CNNs,
translating images into matrix representations from which
convolution operations are carried out using a collection
of adjustable parameters that can be learned. This study
used a 3 × 3 filter, kernel, and mask to extract feature

maps from the input matrix, leading to a significant
decrease in the image size for further processing. Despite
the possibility of an information loss during convolution
procedures, the CONV layer preserves vital components
of image regions within feature maps. The input
matrix undergoes many filters, resulting in a hierarchical
arrangement of feature maps. The feature map layer is
subsequently subjected to grouping, flattening, and fully
linked layers, resulting in the complete CNN architecture
(Albawi et al., 2017).

4.1.2. Pooling layer. The pooling layer plays a
vital role in downsizing representations by employing
subsampling techniques over each activation map, thus
reducing dimensions. This reduction not only maintains
object integrity, but also alleviates computational
complexity. This study utilizes two subsampling
techniques: average pooling and maximal pooling.
Max-pooling is a discrete approach that involves scanning
the feature map using a 2 × 2 window and selecting
the maximum value within the frame to emphasize
important features. In contrast, average pooling, akin
to max-pooling, computes the mean of the data inside
the window. Compared with maximum-pooling, this
strategy preserves more information from the image (Sun
et al., 2017).

4.1.3. Flattening and fully-connected layer. The
procedure included in the flattening and a completely
linked layer is as follows: The aggregated feature map,
obtained from previous layers, transforms the features into
a single column. This step prepares the features to be
fed into the neural network. Afterwards, the compressed
feature map is inputted into the fully linked layer. Within
the fully connected layer, inputs are forward propagated
through the network, weight calculations are made, and
predictions are generated. Based on these predictions,
a cost function is computed to evaluate the network’s
performance (Basha et al., 2020).

4.2. Convolutional neural networks (CNNs). A
CNN employs deep learning techniques for recognising
images and videos. CNNs classify input data based
on meaningful characteristics. Layers are typically
convolutional, activation, pooling, and completely
linked in CNNs. Convolutional layers use filters to
extract features from input data, activation layers add
non-linearity, pooling layers minimize spatial dimensions,
and fully connected layers produce final classification
predictions. CNNs are trained using big labeled datasets.
Optimization approaches such as stochastic gradient
descent modify the network weights to minimize the
discrepancy between the expected and actual labels. Once
trained, CNNs can make predictions based on previously
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Fig. 3. Confusion matrices of our CNN models.

unidentified data. This study uses a CNN with twelve
layers to achieve an accuracy of 87.82%, a precision of
89.31%, a recall of 84.87%, and an F-score of 86.33%
(Albawi et al., 2017). Furthermore, Table 5 presents a
comparison with other models.

4.3. Dense convolutional network (DenseNet). A
DenseNet enhances deep learning networks by including
shorter connections across layers, thereby reducing
training time, and increasing depth layers interconnecting
CNN. There are links between adjacent layers, such as the
first and second layers, second and third layers, and so on.
As a consequence, most of the information is sent across
network layers. Each layer gets information from the
previous layer to retain the feed-forward nature. Unlike
ResNet it concatenates features, rather than sums them.
Thus, the feature maps from all preceding convolutional
blocks have been incorporated into the i-th layer. The
next layers, denoted as I-i, get the feature maps generated

by this layer. This network differs from conventional
deep learning designs in that it has a total of I(I +
1)/2 connections. The proposed method requires fewer
parameters than the CNN, eliminating the need to learn
redundant feature mappings (Zhou et al., 2022).

DenseNet needs fewer parameters than standard
CNNs since it does not train duplicate feature maps
(Rahman et al., 2020). The layers of DenseNet are
characterized by their narrow width, consisting of just 12
filters, which results in a reduced yet enriched collection
of feature maps. We investigated pneumonia classification
using DenseNet variations: DenseNet121, DenseNet169
(Akbar et al., 2023c), and DenseNet201. DenseNet121
demonstrated the highest accuracy of 87.34%, with a
precision of 87.03%, a recall of 85.68%, and an F-score
of 86.26%. Following it closely, DenseNet achieved an
accuracy of 85.74%, with a precision, a recall, and an
F-score of 85.40%, 83.80%, and 84.46%, respectively.
DenseNet201 also performed well, achieving an accuracy



688 W. Akbar et al.

of 85.58%, with a precision, a recall, and an F-score of
84.58%, 84.70%, and 84.64%, respectively. However,
DenseNet169 exhibited slightly lower performance, with
80.13% accuracy, 81.06% precision, 82.99% recall,
and 79.96% F-score. Overall, DenseNet121 emerged
as the best approach for pneumonia classification,
closely followed by DenseNet and DenseNet201, while
DenseNet169 showed slightly inferior performance. The
performance of different models is shown in Table 5.

4.4. Visual geometry group VGG/VGG16/19. VGG,
which is the abbreviation for the visual geometry group,
is a CNN structure characterized by several layers. In
this sense, “deep” refers to the level of complexity shown
by the models, which is determined by the number of
layers they possess. VGG-16 and VGG-19 are composed
of 16 and 19 convolutional layers, respectively. They
serve as the foundation for revolutionary VGG-based
object identification models. In addition to outperforming
baselines on various tasks and datasets beyond ImageNet,
the VGG Net is being developed as a deep neural network.
In addition, it remains one of the most prevalent patterns
for image recognition today (Pérez-Pérez et al., 2021).
The name “VGG16” refers to 16 layers that make up the
deep neural network architecture having over 138 million
parameters, demonstrating its massive size.

Its impressive design remains noteworthy even in
contemporary contexts due to its scale. However, the
simplicity of the VGGNet16 surface makes it appealing.
Just by looking at it, all its architecture becomes apparent.
After a series of convolution layers, a pooling layer
reduces the image’s height and width dimensions. We
have roughly 64 options regarding the filter numbers we
can use when conducting our research, which we can
expand to around 128 and 256. The VGG16 architecture
shows 512 filters in the final stages. The VGG19 model,
often known as VGGNet-19, comprises 19 layers. The
model’s weight layers are denoted by the numbers 16
and 19, which correspond to the convolutional layers.
VGG-19 contains three more convolutional layers than
VGG-16.

The study used cutting-edge deep-learning models,
including VGG, VGG16, and VGG19, to diagnose
pneumonia cases from radiographs with promising
results. The VGG model outperformed all other models
in this family, with an accuracy of 90.22%, a high
precision of 89.23%, a recall of 90.64%, and an F-score
of 89.77%. The results of different models are shown
in Table 5. These results highlight the potential of deep
learning methods to support clinical decision making,
especially when using medical imaging analysis to
diagnose pneumonia (Benaissa et al., 2022).

4.5. MobileNetV2 . Google developed MobileNet-V2
(Sandler et al., 2018) as the second version of

MobileNet-V1. In MobileNet-V2, an inverted residual
structure is the backbone for feature extraction, making
it a better module. As such, MobileNetV2 exhibits
state-of-the-art performance in tasks involving item
detection and semantic segmentation. Specifically
engineered for utilization in mobile and embedded devices
constrained by computational resources, MobileNetV2
represents a significant advancement in efficient model
design. It relies on “factorized convolutions,” which
reduce the amount of parameters and computations in
the network. This makes MobileNetV2 faster and
more efficient than many other CNNs, while still
performing well on image classification and object
identification tasks (Adedoja et al., 2022). The research
identified pneumonia using variants of MobileNet and
MobileNetV2. MobileNet achieved 90.22% accuracy,
with precision, recall, and F-score at 89.23%, 90.64%, and
89.77%, respectively. However, MobileNetV2 showed
slightly worse performance, with an accuracy of 84.46%,
a precision of 83.93%, a recall of 86.11%, and an F-score
of 84.10%, as depicted in Table 5. These findings suggest
that MobileNet outperformed MobileNetV2 in terms of
efficiency and overall classification metrics for pneumonia
detection.

4.6. Ensemble. An ensemble model is an ML model
that is made up of several smaller models. Ensemble
modeling is based on the independent training of multiple
smaller models, which are then combined to produce a
final prediction. By decreasing overfitting and enhancing
generalization, the model’s overall performance is
intended to be improved. Using various modeling
algorithms or training data sets, ensemble modeling
entails building a variety of algorithms for predicting
outputs. One final prediction is generated for the
unseen data once the ensemble model has combined the
predictions of each base model. The ensemble model’s
goal is to lower forecast generalisation inaccuracy. When
the ensemble approach is applied, the model’s prediction
error is reduced as long as the basis models are diverse
and independent. A prediction is made using the
wisdom of crowds. The ensemble model functions and
behaves like a single model even though it comprises
several foundation models. Ensemble modeling is
widely used in practical data mining solutions (Sagi and
Rokach, 2018). An ensemble model was successfully
applied to a dataset comprising radiographic images from
pediatric patients at the Guangzhou Medical Centre with
92.95% accuracy, 92.91% precision, 91.97% recall, and
an F-score of 92.40%, as shown in Table 5. The
model demonstrates robust performance in identifying
patterns and characteristics within these medical images.
Such advancements promise to enhance medical decision
making and ultimately improve patient outcomes in
healthcare settings.
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Table 5. Performance of various pre-trained and CNN models.
Sr. no. Models Accuracy Precision Recall F-score

1 CNN 87.82% 89.31% 84.87% 86.33%
2 Mobile Net 90.22% 89.23% 90.64% 89.77%
3 Mobile NetV2 84.46% 83.93% 86.11% 84.10%
4 VGG 90.22% 89.23% 90.64% 89.77%
5 VGG16 88.46% 87.42% 88.89% 87.95%
6 VGG19 87.34% 86.60% 86.28% 86.44%
7 Dense Net 85.74% 85.40% 83.80% 84.46%
8 Densenet121 87.34% 87.03% 85.68% 86.26%
9 Densenet169 80.13% 81.06% 82.99% 79.96%

10 Desnet201 85.58% 84.58% 84.70% 84.64%
11 Ensemble 92.95% 92.91% 91.97% 92.40%
12 NASNet Mobile 81.73% 80.47% 81.45% 80.85%
13 Efficient Net 90.71% 91.58% 88.63% 89.76%
14 EfficientNet-B0 94.13% 93.50% 92.99% 93.14%
15 Efficient NetB1 91.03% 90.05% 91.62% 90.63%
16 Efficient NetB3 87.66% 90.63% 83.97% 85.85%
17 Efficient NetB4 91.19% 90.95% 90.13% 90.51%
18 Efficient NetB5 91.71% 89.91% 90.43% 91.15%
19 Efficient NetB6 91.35% 90.58% 91.11% 90.83%
20 Efficient Net B7 87.34% 87.03% 85.68% 86.26%

4.7. NASNet-Mobile. NasNet Mobile is a neural
network architecture created by the Google Brain team
for image categorization. It is meant to be lightweight
and efficient, making it ideal for mobile and embedded
applications. NasNet Mobile achieves high accuracy
on the ImageNet dataset with few parameters and a
low computational cost. It is also amenable to running
on mobile devices in real-time with a high degree of
accuracy. The NasNet Mobile model was used to detect
pneumonia cases within the dataset (Tan et al., 2019). The
resulting accuracy was 81.73%, indicating the model’s
great performance in classify pneumonia and normal
cases in chest X-ray. Moreover, the NasNet Mobile
model yielded 80.47% precision, 81.45% recall, and
an F-score of 80.85%, as shown in Table 5 suggesting
its effectiveness in accurately identifying pneumonia in
pediatric patients.

4.8. EfficientNet models. EfficientNet is a CNN
specifically created by Google Research for image
categorization. It is designed to be more precise in
terms of parameters, computing cost, and accuracy
than prior designs like ResNet and Inception. To scale
up CNN models, EfficientNet employs a compound
scaling technique. The approach concurrently
increases the model’s resolution, depth, and width.
The scaling approach employs a predetermined set
of computational resources to achieve an optimal
balance of accuracy and efficiency. EfficientNet
produced superior accuracy on the ImageNet dataset

while being more efficient than previous models with
comparable accuracy. It offers many applications,
including object detection, image segmentation, and
video classification (Marques et al., 2020). Notably,
each variant demonstrated robust performance metrics,
reflecting their efficacy in identifying pneumonia cases.
Among these, EfficientNet-B0 showcased the highest
accuracy (94.13%) and precision (93.50%), as shown
in Table 5 underlining its capability in accurately
discerning pneumonia instances from the radiographs.
Additionally, other variants like EfficientNet-B1 to B6
also exhibited commendable accuracy, precision, recall,
and F-score values, further emphasizing the versatility
and effectiveness of the EfficientNet architecture in
medical image analysis tasks.

5. Results and discussion
The results presented in Table 5 comprehensively
compare the training and testing accuracies achieved
by various CNNs employed in classification problems.
Among the twenty different models for classification
evaluated, EfficientNet-B0 consistently outperforms the
other models, demonstrating superior performance in both
the training and testing phases. Notably, EfficientNet-B0
achieves an impressive accuracy of 94.13%, with
precision, recall, and F-score metrics further reinforcing
its effectiveness, with scores of 93.50%, 92.99%, and
93.14%, respectively. These results underscore the
efficacy of EfficientNet-B0 in accurately classifying input
data, highlighting its potential as a robust and reliable
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model for pneumonia detection and classification tasks.
In applications such as medical image interpretation,

pretrained models have shown excellent performance.
CNNs can be used to learn from large data sets such
efficiently. Researchers can improve the generalization
efficacy of models for certain tasks like pneumonia
diagnosis by fine-tuning them on smaller, domain-specific
datasets. As shown in Table 5, EfficientNet-Bo attains
superior accuracy, precision, and recall compared to
models trained from scratch. Their success underscores
the importance of transfer learning in medical image
analysis tasks, where access to large-scale annotated
datasets may be limited. The relationship between
model complexity and performance is critical in machine
learning, particularly in medical image analysis tasks like
pneumonia classification. Table 3 compares the proposed
approach and existing works.

Although increased model complexity often leads
to improved performance, this comes at the cost
of computational resources and interpretability. In
our study, we explored this trade-off by comparing
the performance of DenseNet and EfficientNet, two
pretrained models known for their different levels of
complexity. DenseNet, with its densely connected layers,
offers a highly expressive model architecture capable of
capturing intricate patterns in the data. On the other hand,
EfficientNet uses an innovative compound scaling strategy
to maximize model depth, breadth, and resolution,
yielding outstanding results with fewer parameters. Our
findings reveal that EfficientNet achieves comparable
results with a significantly lower computational overhead.
This highlights the importance of balancing model
complexity and performance, considering factors like
computational cost, interpretability, and scalability in
real-world applications.

While our work shows promising results in
pneumonia identification utilizing deep learning models
and data augmentation strategies, certain limitations
should be considered. Firstly, the generalizability
of our findings may be constrained by the relatively
small size and imbalanced nature of the dataset,
which primarily comprises chest X-ray images from a
single institution. Increasing the dataset’s diversity in
demographics and imaging methods may improve the
model’s resilience and suitability in various healthcare
environments. Moreover, although data augmentation
helps mitigate the limitations of limited data availability,
it may introduce biases or distortions that affect
the model’s performance, highlighting the need for
careful validation and monitoring of augmented datasets.
The interpretability of deep learning models remains
challenging, as they operate as complex black-box
systems, making it challenging to comprehend the
fundamental assumptions underlying their projections.

To improve model interpretability and promote

provider confidence, future research should concentrate
on creating explainable AI strategies and fostering trust
among healthcare providers. Furthermore, deploying
AI-based diagnostic tools in clinical practice requires
rigorous evaluation of their real-world performance,
including prospective validation studies and assessing
their impact on clinical outcomes and workflow efficiency.
Addressing these constraints and embracing continuous
advances in AI and medical imaging technologies
will open the path for the further development and
deployment of creative solutions to improve patient care
and pneumonia diagnosis in the future.

6. Comparative analysis of classification
results

An assessment was conducted to compare the
classification outcomes and determine the accuracy
as shown in Table 1 of the suggested strategy in
detecting and categorizing pneumonia. The findings
are summarized in Table 5. The table shows that the
suggested approach outperforms numerous current
approaches in terms of performance. Figure 4 shows the
line plots for training and validation accuracy and losses
for various models. Notably, we intend to enhance all
models’ efficiency in future research by meticulously
fine-tuning hyperparameters and variables. Table 3
compares the proposed approach and existing works.
Moreover, this fine-tuning approach could be extended
to facilitate early identification of pneumonia and
COVID-19, thereby aiding physicians in more accurate
disease diagnoses.

7. Conclusions
The automation of pneumonia detection using chest
X-rays and CT scans has made remarkable progress
in recent years, particularly with the advent of
deep-learning algorithms. Base deep learning model
architectures have changed significantly during the last
four years. COVID-19 has emerged as the most
crucial worldwide problem for saving human life.
Several healthcare institutions are working hard to find
appropriate solutions. However, artificial intelligence
applications in computer-assisted diagnosis (CAD) has
demonstrated its value and efficacy in resolving a range
of medical problems. Because of several forms of
pneumonia, such as viral, bacterial, tubercular, and
COVID-19, a system for multi-class classification was
required since present methods provide less reliable
solutions.

In this study, we trained twenty alternative CNN
models on the pneumonia dataset. The Efficient Net-B0
model surpassed all other models with an accuracy of
94.13%, a precision of 93.50%, a recall of 92.99%,
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Fig. 4. Training and validation results (Part 1).
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Fig. 5. Training and validation results (Part 2).
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Fig. 6. Training and validation results (Part 3).
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Fig. 7. Training and validation results (Part 4).
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and an F-score of 93.14%. These results highlight
the potential of advanced neural network models to
revolutionize pneumonia diagnosis through enhanced
accuracy and efficiency. Given the significant burden
of pneumonia worldwide, particularly among vulnerable
populations, this research offers a compelling solution
to improve early detection and timely intervention.
Furthermore, the findings illustrated that the outcomes of
the proposed study surpassed those of other architectures
in accuracy, indicating superior overall performance
compared to existing research. The efficacy could be
enhanced by increasing the dataset size and incorporating
additional pretrained architectures. Consequently, deep
learning approaches exhibited notably superior treatment
quality and accuracy results compared with conventional
methods.

8. Limitations and future work
Our research does not identify the specific location of
pneumonia in chest X-rays or provide any information
about the duration of the disease in the patient’s chest.
Increasing datasets for pneumonia diagnosis using CNNs
will improve model robustness. Optimizing network
architectures and hyperparameters can enhance accuracy
and efficiency. Multi-class classification abilities will
enable variation of pneumonia types and harshness
stages. Furthermore, upcoming exploration aims to
identify the specific location of pneumonia in chest
X-rays and estimate the period of the disease in patients.
We recommend further exploring and validating the
EfficientNet-B0 model on larger, more diverse datasets to
assess its generalizability and robustness. Additionally,
investigating the model’s interpretability and exploring
ways to integrate it into clinical workflows would be
valuable next steps. In short, this work presents a
promising step forward in leveraging the power of deep
learning to combat the global challenge of pneumonia.
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