
Int. J. Appl. Math. Comput. Sci., 2024, Vol. 34, No. 4, 617–629
DOI: 10.61822/amcs-2024-0041

ENHANCING MULTI–CLASS PREDICTION OF SKIN LESIONS WITH
FEATURE IMPORTANCE ASSESSMENT

AGNE PAULAUSKAITE-TARASEVICIENE a,* , KRISTINA SUTIENE b, NOJUS DIMSA c ,
SKAIDRA VALIUKEVICIENE d,e

aArtificial Intelligence Centre
Kaunas University of Technology

K. Barsausko g. 59, 51423 Kaunas, Lithuania
e-mail: agne.paulauskaite-taraseviciene@ktu.lt

bDepartment of Mathematical Modeling
Kaunas University of Technology

Studentu g. 50, 51368 Kaunas, Lithuania
e-mail: kristina.sutiene@ktu.lt

cFaculty of Informatics
Kaunas University of Technology

Studentu g. 50, 51368 Kaunas, Lithuania
e-mail: nojus.dimsa@ktu.edu

dDepartment of Skin and Venereal Diseases
Lithuanian University of Health Sciences

A. Mickeviciaus g. 9, 44307 Kaunas, Lithuania
e-mail: skaidra.valiukeviciene@kaunoklinikos.lt

eDepartment of Skin and Venereal Diseases
Hospital of Lithuanian University of Health Sciences ‘Kauno klinikos’

Eiveniu g. 2, 50161 Kaunas, Lithuania

Numerous image processing techniques have been developed for the identification of various types of skin lesions. In real-
world scenarios, the specific lesion type is often unknown in advance, leading to a multi-class prediction challenge. The
available evidence underscores the importance of employing a comprehensive array of diverse features and subsequently
identifying the most important ones as a crucial step in visual diagnostics. For this purpose, we addressed both binary and
five-class classification tasks using a small dataset, with skin lesions prevalent in Lithuania. The model was trained using a
rich set of 662 features, encompassing both conventional image features and graph-based ones, which were obtained from
the superpixel graph generated using Delaunay triangulation. We explored the influence of feature importance determined
by SHAP values, resulting in a weighted F1-score of 92.48% for the two-class classification and 71.21% for the five-class
prediction.
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1. Introduction

Skin cancer ranks among the most lethal forms of
cancer globally, contributing significantly to mortality
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rates worldwide. Early detection plays a pivotal
role in mitigating fatalities attributed to skin cancer.
However, the conventional diagnostic method (visual
inspection) is often not effective enough. To address this
challenge, artificial intelligence approaches have emerged
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as promising aids for dermatologists in achieving timely
and precise diagnoses of skin cancers. Progress in skin
cancer detection continues to be made systematically, with
various technologies and methodologies being developed
to improve accuracy and accessibility. Different machine
learning techniques including decision trees (Vikas Reddy
and Rama Parvathy, 2022), random forests (Damian
et al., 2022), support vector machines (Murugan et al.,
2019) or K-nearest neighbors (Abbes et al., 2021) are
being investigated, with the primary focus on essential
feature extraction. However, it is not surprising that
deep learning-based imaging techniques have become
increasingly prevalent in this field (Tembhurne et al.,
2023; Dildar et al., 2021) like in all other medical
imaging tasks. Recent studies have shown that deep
learning algorithms implemented into contemporary
smartphone cameras enable self-examinations of skin
lesions achieving a high sensitivity and specificity in
the classification of melanomas and melanocytic nevi
(Liutkus et al., 2023).

The computer-vision powered diagnosis of skin
cancer typically involves five steps: image acquisition,
preprocessing, segmentation, feature extraction, and
classification. Among these, segmentation (Araújo
et al., 2021; Ashraf et al., 2022; Oukil et al., 2021;
Surówka and Ogorzałek, 2022) and classification (Ali
et al., 2022; Aladhadh et al., 2022) tasks have attracted
close attention. However, achieving precise diagnosis
with image deep learning algorithms is challenging and
necessitates consideration of numerous factors. For
instance, artifacts like hairs, dark corners, water bubbles,
marker marks, ink marks, and ruler marks can result
in misclassification and inaccurate segmentation of skin
lesions. These tasks are therefore very sensitive to the size
and quality of the dataset.

Although there are over 20 open-access datasets
available, the lack of transparency in reporting metadata
for clinically essential characteristics constrains the
clinical utility of these images, particularly when they are
reused across datasets (Wen et al., 2022). Furthermore,
machine learning algorithms utilized for medical image
classification are recognized to perform inadequately
on images collected from populations independent of
those used for training (Navarrete-Dechent et al., 2018).
Nevertheless, the most popular open datasets such
as ISBI 2016 (Gutman et al., 2016) and ISBI 2017
(Codella et al., 2017), PH2 (Mendonca et al., 2013),
ISIC (2016-2020) challenge datasets (ISIM-ISIC, 2020),
BCN20000 (Combalia et al., 2019), and HAM10000
(Tschandl et al., 2018) provided in DICOM or JPEG
formats, offer computer vision researchers invaluable
resources for developing and evaluating algorithms
focused on skin cancer detection, classification, and
diagnosis, particularly emphasizing melanoma images.
Among other skin cancer types, including basal cell

carcinoma (BCC), squamous cell carcinoma (SCC), and
Merkel cell carcinoma (MCC), malignant melanoma is
extensively researched due to its potentially aggressive
nature and higher risk of metastasis compared with other
types of skin cancer. Many studies have achieved
high accuracy (> 90% ACC) in two-class detection
tasks involving benign and malignant lesions (melanoma)
(Hurtado and Reales, 2021). However, studies on
imbalanced small datasets for multi-class skin lesion
classification typically do not surpass 86% accuracy
(Alwakid et al., 2022; Rashid et al., 2019; Abdelhalim
et al., 2021).

The accuracy of diagnoses achieved by each of
AI-based approaches still lacks stability in results (as it
heavily depends on the data), with only dermoscopy being
commonly used by all dermatologists. Additionally, other
methods such as confocal laser scanning microscopy,
optical coherence tomography, 3D topography or
multispectral imaging can serve as optical techniques
for skin examination. Multispectral imaging entails
capturing skin images across multiple wavelengths of
light, unveiling diverse characteristics of skin lesions. Its
potential lies in enhancing the accuracy of skin cancer
diagnosis by furnishing supplementary information about
the lesions (Ilis, anu et al., 2023; Rey-Barroso et al., 2018).
While there is a significant potential for conducting
important studies on this type of images, there is currently
no representative dataset available, resulting in relatively
limited research being conducted.

In our study, we conducted a skin lesion detection,
addressing both binary and five-class prediction
challenges. All experiments were carried out using
a dataset provided by the Lithuanian University of
Health Sciences, focusing on skin lesions, namely
naevus, seborrheic keratosis, melanoma, dermatofibroma,
and lentigo malignant, most prevalent in the region of
Lithuania. Notably, various types of skin lesions exist,
and their prevalence depends on geographic location,
sun exposure habits, skin type, immunosuppression, etc.
However, a dataset used in the study was severely
imbalanced, making it inherently challenging to
discriminate between the various types of skin lesions.
Among many possible ways to conduct the research
(Zafar et al., 2023), we focus on the feature extraction and
their importance measuring for the skin lesion detection
by formulating a multi-class prediction model. More
specifically, the study aimed to evaluate the effectiveness
of graph-based features derived from a superpixel graph
generated using Delaunay triangulation, which were
combined together with the conventional image features.
A multi-class random forest (RF) was built to determine
the feature importance in terms of both Mean Decrease
Impurity (MDI) and SHapley Additive exPlanations
(SHAP) values, while the localisation of skin lesion
was conducted using YOLOv8 (Jocher et al., 2023).
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This choice was made due to a relatively small dataset
used in the study and promising results of ensemble
methods, when graph-based features were used (Annaby
et al., 2021; Oliveira et al., 2017). Delaunay triangulation
was employed due to its functionality to focus specifically
on the cancerous lesion while neglecting the surrounding
skin, as highlighted in the work by Sunarya et al. (2023).
To sum up the experimental results, in total 662 features
were extracted, among which 125 features represent the
vertex domain, 24 features represent the spectral domain,
and 513 are image conventional features. Based on
MDI and SHAP threshold values, the proposed solution
achieved a weighted F1 score of 92.48% for the two-class
problem and 71.21% for the five-class problem, which is
in line with many other studies published in this domain.

2. Methodology
2.1. Image-set description. The study utilizes images
extracted using the SIAscope apparatus provided by
Lithuanian Health Science University. The SIAscope
technology emits harmless radiation into the skin within
wavelengths of 400 to 950 nm, measuring the reflected
light at each wavelength. This process exploits the
distinct optical properties of different skin components,
which absorb and reflect light differently, favoring
certain wavelengths. From these spectral measurements,
SIAscope derives information about the location, quantity,
and distribution of melanin, collagen, and hemoglobin
(blood vessels) within the skin layers (Emery et al., 2010).
The dataset comprises 43 samples classified as class 0
(naevus), 36 samples as Class 1 (seborrheic keratosis),
219 samples as Class 2 (melanoma), 30 samples as
Class 3 (dermatofibroma), and 144 samples as Class 4
(lentigo malignant), totaling 472 specimens (see Fig. 1).
All images we received were complete with no obvious
artefacts inside. Each specimen comprises five images:
a 1544 × 1544 × 3 RGB melanin, a 708 × 708 × 1
grayscale melanin, a 708 × 708 × 3 hemoglobin, a 708
× 708 × 3 collagen, and a 708× 708 × 3 derma melanin
image.

This research focuses on exploring RGB images
based on pre-test experiments, which have indicated that
RGB images yield slightly better classification results
compared with other types. More specifically, YOLOv7
(Wang et al., 2022) and YOLOv8 (Jocher et al., 2023)
models were applied to localize the skin lesion as the
region of interest (see Table 1). Results in Table 1 suggests
that the best detection of localization of skin lesion is
observed for RGB images. Therefore, the multi-class skin
lesion classification model was employed only for RGB
images.

2.2. Skin lesion classification model. The general
idea of multi-class skin lesion detection model is depicted

Table 1. Mean average precision (mAP) for object detection re-
sults using YOLOv7 and YOLOv8.

YOLOv7 YOLOv8
Image type mAP50 mAP50-

95
mAP50 mAP50-

95
RGB
melanin

0.7825 0.5705 0.8891 0.6012

Grayscale
melanin

0.6214 0.3812 0.7740 0.5269

Hemoglobin 0.4984 0.3274 0.8231 0.5081

Collagen 0.4003 0.2239 0.7114 0.4225

Derma
melanin

0.3357 0.3011 0.4746 0.4046

Averaged
image

0.6769 0.4637 0.8093 0.5851

in Fig. 2. For every input dermoscopic image (see
Section 2.1), the corresponding binary mask was utilized
to eliminate the background. This preprocessing step
ensures that the focus remains solely on the region of
interest, which is the skin lesion itself. Subsequently, all
images were resized to dimension of 750×750. Following
this, the superpixel graph representation of an image was
constructed (see Section 2.2.1). The conventional features
from pixel information and graph-based features were
extracted (see Section 2.2.2). Then, feature selection was
employed, which relied on both MDI- and SHAP-based
threshold values (see Sections 2.2.3 and 2.2.4). Those
features were fed into the random forest multi-class
classifier to predict the skin lesion type. The settings used
in the experiments are as follows: number of estimators
= 100, min sample split = 2, min sample leaf = 1, max
features=

√
d, bootstrap = true, split quality measured

by the Gini index.
Due to the significantly unbalanced dataset, we

conducted the experiment by adjusting the proportions of
training and testing samples, initially starting from 90%
for training and 10% for testing, and then changing them
every five percent to 60% and 40%, respectively. We
observed that the best results were obtained with sample
proportions of 70% and 30%, 65% and 35%, and 60% and
40% for training and testing. Given the highest accuracy
obtained, the experimental results were provided in the
paper using the 60% and 40% proportion.

The result of the classification model is the predicted
type of skin lesion. For a binary classification model,
Melanoma and lentigo malignant were attributed to
Class 1 as being malignant, while naevus, seborrheic
keratosis, and dermatofibroma were assigned to Class 0
as being benign. In the multi-class prediction model,
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(a) naevus (b) seborrheic keratosis (c) melanoma (d) dermatofibroma (e) lentigo malignant

Fig. 1. Sample images for all five classes.
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Fig. 2. Multi-class skin lesion classification model.

there are five distinct classes corresponding to each type
of lesion.

2.2.1. Superpixel graph representation of skin le-
sion images. In the study, the superpixels were created
following the idea proposed by Annaby et al. (2021). The
pseudo-algorithm, which includes the steps of clustering
and triangulation to generate a superpixel graph is
represented as Algorithm 1.

More specifically, first, to reduce the complexity of
image processing, individual pixels were clustered into
groups that are called superpixels. For this purpose,
the simple linear iterative clustering (SLIC) algorithm
could be employed (Achanta et al., 2010). Second, the
technique proposed by Sharma et al. (2004) is used to
decrease the number of superpixels to some specified
value P , as the SLIC algorithm can result in varying
numbers of superpixels for different images. In contrast
to Annaby et al. (2021), Delaunay triangulation was
employed in the generation of the graph. It enables
the model to concentrate specifically on the cancerous

Algorithm 1. Superpixel graph generation.
Step 1. Load the image I and resize to 750×750 px
Step 2. Load the mask M in grayscale and resize to
750×750 px
Step 3. S ← SLIC(I , M , σ, k) on the image with the
mask to get segments, where k defines the number of
clusters and σ denotes a width of Gaussian smoothing
kernel
Step 4. Initialize an array A to store the graph vertex
pixels of each segment s ∈ S

For each unique segment s ∈ S:
Select valid pixels Ps = s ∩M , where Ps �= ∅
Determine a border Bs of Ps

Calculate the distance Ds = ||Ps −Bs||2
Select the pixels P d

s , where Ds ≥ n units,
where n = 20

If P d
s �= ∅ then A = append(As), where

As is a randomly selected pixel from P d
s

Step 5. G← DelaunayTriangulation(A)

lesion while disregarding the surrounding skin (Sunarya
et al., 2023). When generating graphs using Delaunay
triangulation, each point, representing the superpixel,
corresponds to a vertex in the graph, and each edge in the
triangulation corresponds to an edge in the graph. In the
end, we get a complete superpixel graph where every pair
of distinct vertices is connected by a unique edge. The
examples of generated superpixel graphs for all types of
skin lesions are displayed in Fig. 3.

2.2.2. Feature extraction. Two main groups of
features were extracted and later fed into the prediction
model.

The first group consists of structural graph features
that include time-domain features and frequency-domain
features. Time-domain features define both local and
global graph aspects that, in general, assess the graph
complexity. In line with work (Annaby et al., 2021),
5 global features and 6 local features were computed,
which results in a total of 5 + 6 × P feature values,
where P = 20. Frequency-domain features were obtained



Enhancing multi-class prediction of skin lesions with feature importance assessment 621

using the graph Fourier transform, which is based on the
eigendecomposition of the graph Laplacian

L = UΛUT , (1)

where L = D − A, A is the graph adjacency
matrix, D is the diagonal degree matrix, Λ is the
diagonal matrix of eigenvalues, and the columns of U
are the eigenvectors. More specifically, the eigenvectors
imply the orthonormal Fourier basis for signals, while
the corresponding eigenvalues define graph frequencies.
Together with additional characteristics from the graph
Fourier transform such as energy, power, entropy, and
amplitude, a feature vector of 24 frequency-domain
features were obtained.

The other group of features used in training the
prediction model consists of conventional image features
that are computed from pixel information. Those
features typically define color, texture and geometric
features. Following Oliveira et al. (2018), 513 features
in total were determined, among which 9 geometric
variation features, 180 texture features generated using
the gray level co-occurrence matrix (GLCM) method, 240
Haar-like features, 12 Hausdorff-based features, and 72
features from color spaces such as RGB, KSV, CIELAB,
and CIELUV. All features extracted are summarized in
Table 2.

2.2.3. Feature selection based on the mean decrease
in impurity. Feature importance by default is computed
as the mean and standard deviation of accumulation of the
impurity decrease within each tree (Li et al., 2019).

Let denote by MDI(f) the mean decrease impurity
of feature f . It assesses the importance of each feature
by summing up the number of splits (across all trees) that
involve the feature, adjusted based on the proportion of
samples it divides. More specifically,

MDI(f)

=
1

T

T∑

t=1

∑

i∈Nt

p(i|t)(1−
K∑

k=1

p(k|i)2)I(f = fi), (2)

where T is the number of trees, Nt is the set of nodes in
tree t, p(i|t) is the proportion of samples reaching node
i in tree t, K is the number of classes, p(k|i) is the
proportion of samples of class k at node i, fi is the feature
used to split node i, and I(·) is the indicator function.

The computed values of MDI(f) are used to set
the MDI-based thresholds in order to determine the
importance of features for training the classification
model.

2.2.4. Feature selection via SHAP values. The
feature importance and selection was determined based on
the sum of absolute SHAP values for feature k defined as

Table 2. Main groups of extracted features.
Group Features
Graph nodes local efficiency, local clustering

coefficient, nodal strength, nodal
betweenness centrality, closeness
centrality, eccentricity

Entire graph characteristic path length, global
efficiency, global clustering
coefficient, density, global
assortativity

Frequency
domain

vector of graph Fourier transform,
energy, power, entropy, amplitude

Geometrical
features

area, perimeter, equivalent diameter,
compactness, circularity, solidity,
rectangularity, aspect ratio,
eccentricity

Color spaces mean of pixel values, variance of
pixel values, standard deviation of
pixel values

Channels of
color space

mean of image pixel values
in channel, variance of image,
pixel values in channel, standard
deviation of image pixel values in
channel, min of image pixel values
in channel, max of image pixel
values in channel, skew of image
pixel values in channel, Hausdorff
dimension

GLCM
features

contrast, dissimilarity, homogeneity,
energy, correlation, variance, sum
entropy, sum average, difference
variance, difference entropy,
maximal correlation coefficient,
information measure of correlation

Haar wavelet energy, entropy

shapSumk =
∑

i

∑

j

|sijk|. (3)

Thus, shapSumk is the sum of absolute SHAP values
sijk for feature k across all samples and outputs. For
a particular feature k and model f , the SHAP value is
computing using the formula

sk(f)

=
∑

S⊆K\k

|S|!(|K| − |S| − 1)!

|K|! [f(S ∪ k)− f(S)], (4)

where K is the set of all features, S is a subset of K that
does not include feature k, |S| is the number of elements
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in S, |K| is the total number of features, f(S ∪ k) is the
output of the model with features in S and feature k, f(S)
is the output of the model with features in S only.

2.3. Performance metrics. This subsection introduces
the metrics used to determined the performance of the
skin lesion prediction model, which is a multi-class
classification model in the study.

Suppose that y defines the true label, while ŷ is the
predicted label. The accuracy metrics is given as

Accuracy =
1

n

n∑

i=1

I (yi = ŷi), (5)

where I is the indicator function that returns 1 if yi equals
ŷi and 0 otherwise, n is the total number of predictions.

In general, the F1-score metric is the preferred choice
in situations involving imbalanced class distribution, as it
offers a balanced assessment that considers both precision
and recall (Type I and Type II errors). In contrast
to binary classification, a multi-class model produces
individual F1-scores for each class. Therefore, the
weighted F1-score is computed using the formula

F1weighted−score =
n∑

i=1

Ni

N
· 2·

TPi

TPi+FPi
· TPi

TPi+FNi

TPi

TPi+FPi
+ TPi

TPi+FNi

, (6)

where wi is the weight of the i-th label (the number of
samples from the i-th label divided by the total number of
samples), Ni is the number of samples from the i-th label,
and N is the total number of samples. As could be seen
from this formula, the weighted F1-score is the average
taking into account the proportion for each label in the
sample.

3. Experimental results
Figure 3 displays the examples of constructed superpixel
graphs for all types of skin lesions considered in the paper.
It could be seen that vertices of the superpixel graph tend
to cluster closely together in darker regions of skin lesion,
as opposed to brighter ones.

3.1. Binary skin lesion classification. Table 3
presents 5-fold cross validation results of a binary skin
lesion classification in terms of accuracy and weighted
F1-score. Having in mind that the image set is
comparatively small, the model performance results are
in line with our expectations. It may be concluded that
the highest accuracy and the best weighted F1-score were
obtained by selecting features based on the threshold
applied for shapSum values. However, the performance
metrics declined in situations where either all features
were employed or features were selected based on the
threshold established for MDI values.

Figure 4 shows the discriminatory power of the
binary classification model for various shapSum-based
thresholds. The model is more prone to making errors
when predicting Class 1, but the overall accuracy is
comparatively high. Notably, the best performance was
achieved for shapSum thresholds close to 1, which is
better than setting a lower value for the bound of SHAP
values. Figure 5 suggests that the use of MDI values
for feature selection with larger thresholds negatively
influences the prediction results, as the discrimination
between two classes is worse. On the other hand,
setting the threshold of MDI comparatively low allows to
employ more information in training model, however, still
not enough in comparison to the results observed when
shapSum-based thresholds were set for selecting features.

Next, we investigate how the model performance is
sensitive to changes in the threshold value (see Figs. 6 and
7). It could be seen that weighted F1-score varies slightly
for different shapSum values, which we consider as an
advantage. On the contrary, weighted F1-score is very
sensitivity to the adjustments of MDI-based thresholds,
potentially affecting the stability of model performance.

3.2. 5-Class skin lesion prediction. Table 4
summarizes the 5-fold cross validation results of 5-class
skin lesion prediction in terms of accuracy and weighted
F1-score. In comparison with binary classification of skin
lesion (see Table 3), the performance metrics are getting
worse, which is not surprising, as the prediction difficulty
grows with an increase in the number of classes. From
Table 4, it is evident that the highest accuracy and highest
weighted F1-score were achieved through the selection of
features via SHAP values. Particularly noteworthy is the
substantial improvement in the weighted F1-score when
features were chosen using SHAP values compared with
the scenario where all features were used. It is conceivable
that, due to redundancy or an overly extensive list of
features, performance in predictions is getting worse.

In Fig. 8, the diagonal elements indicate a very good
performance of the developed model in predicting the
type of skin lesion. Notably, the model performs best
in predicting Class 2, which is a melanoma. However,
the model encounters challenges when predicting Class 1,
which is mainly confused with Class 2 and less often with
Class 3. The adjustment of the upper limit of SHAP values
suggests that the setting of an excessively high threshold
may not be optimal. More specifically, when the threshold
is too high, only a small number of features meet the
criteria, which is not enough to predict the type of skin
lesion.

Figure 9 suggests that in the case when the features
were selected using the threshold based on the MDI
value the misclassification of diagnosis had a tendency to
increase when compared with results observed in Fig. 8.
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Table 3. 5-Fold cross validation results for a binary case.
Performance metric All

features
MDI-based
features

SHAP-based
features

F1-score 0.9225 0.9478 0.9667
Weighted F1-score 0.8312 0.8530 0.9248

Table 4. 5-Fold cross validation results for 5-class prediction.
Performance metric All

features
MDI-based
features

SHAP-based
features

F1-score 0.6818 0.6970 0.7213
Weighted F1-score 0.6366 0.6818 0.7121

Fig. 3. Generated Delaunay triangulation of the graph for instances of each class.

Fig. 4. Confusion matrices of binary classification using various
shapSum-based thresholds: SHAP values ≥ 0.6690 (a),
SHAP values ≥ 1.0028 (b), SHAP values ≥ 1.5259 (c),
SHAP values ≥ 3.128 (d).

Fig. 5. Confusion matrices of binary classification using various
MDI-based thresholds: MDI values ≥ 0.003 (a), MDI
values ≥ 0.004 (b), MDI values ≥ 0.005 (c), MDI values
≥ 0.01 (d).
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Fig. 6. Weighted F1-scores of 2-class classification using vari-
ous shapSum based thresholds.
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Fig. 7. Weighted F1-scores of 2-class classification using vari-
ous MDI-based thresholds.

Setting an excessively large threshold for MDI makes the
predictions less accurate, which may be influenced by an
excessively low number of features needed for a good
model performance.

Similarly to the case of binary classification, we
explore the model stability in terms of weighted F1-score
against the change in the threshold for shapSum values
(see Fig. 10) and MDI values (see Fig. 11). The same
tendency could be seen here as well, i.e., the weighted
F1-score exhibits a higher degree of sensitivity to the
change in the MDI value than in the scenario when
shapSum values were used.

Table 5 displays the impact of superpixel
graph-based features used in training both binary
prediction and 5-class prediction models. The importance
of features was determined by shape-based thresholds
only. As shown in the table, the model performance
significantly benefits from the the use of graph-based

Fig. 8. Confusion matrices for a 5-class classification task us-
ing various shapSum-based thresholds: SHAP values
≥ 0.6690 (a), SHAP values ≥ 1.0028 (b), SHAP values
≥ 1.5259 (c), SHAP values ≥ 3.128 (d).
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Fig. 9. Confusion matrices for a 5-class classification task using
various MDI-based thresholds: MDI values ≥ 0.003 (a),
MDI values ≥ 0.004 (b), MDI values ≥ 0.005 (c), MDI
values ≥ 0.01 (d).
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Fig. 10. Weighted F1-scores of 5-class classification using var-
ious shapSum -based thresholds.
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Fig. 11. Weighted F1-scores of 5-class classification using var-
ious MDI-based thresholds.

features, as the accuracy was improved by 1.11 (binary)
and 1.13 (multi-class), while the weighted F1-score
changed by 1.10 and 1.16, respectively.

In addition, the experiments carried out by varying
the percentages of the testing and training samples showed
that the best results were obtained with a testing sample
between 25% and 40% for the 5-class classification task
irrespective of the choice of criteria for the threshold
(SHAP or MDI) for feature selection.

Although the field of computer-aided systems for
skin lesion diagnosis is rapidly advancing with extensive
research utilizing diverse machine learning methods,
including deep learning architectures (Bibi et al., 2023;
Aldhyani et al., 2022; Shetty et al., 2022; Khan et al.,
2022) direct comparison with other studies is limited
due to the unique nature of our non-public dataset. We
can, however, draw comparisons with studies utilizing
datasets with similar characteristics, including the number
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Table 5. Impact of features set based on SHAP-based thresholds for the model performance.
Binary classification 5-Class classification
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Accuracy 0.8439 0.9375 0.6390 0.7213
F1 0.8437 0.9666 0.6271 0.7120
Weighted F1 0.8405 0.9248 0.6133 0.7121
Recall 0.8182 0.9687 0.6379 0.7213
Precision 0.8710 0.9645 0.6168 0.7030
Specificity 0.8788 0.9375 0.9076 0.8501

of classes, types of skin lesions, as well as the number
of instances. Based on the most recent comprehensive
review paper by Kassem et al. (2021), our binary
classification accuracy aligns with previously reported
ranges from 73.8% to 99.9%, while in the case of
multi-class (5 classes) the accuracy value is at least 66.2%.
These findings suggest that more data are needed in those
classes where there are few instances and which perform
the worst in terms of classification. Furthermore, further
research should be carried out to investigate methods that
can improve the classification performance.

4. Conclusions
This study delved into the realm of binary and multi-class
classification of skin lesions. As the diverse set of
features play an important role in the training machine
learning model, the particular emphasis was placed on
identifying essential features by establishing thresholds
based on both MDI and SHAP values. In total, a set
of 662 features was generated, which was composed of
513 image conventional and 149 graph-based features
derived from superpixel graph constructed by Delaunay
triangulation.

In general, the use of a threshold to determine feature
importance and their contributions to classifier training
played an essential role. First, employing all features
resulted in lower accuracy and weighted F1-scores,
indicating potential redundancy or an excessively large
set of features. Second, feature selection based on
the shapSum-based threshold outperformed the mean
decrease in the impurity based threshold, which is true
in the case of both binary and multi-class prediction
models. Third, the performance metrics deteriorated
considerably after the switch from a binary to a 5-class
prediction model, which is not surprising, as the
prediction difficulty enlarged remarkably. Fourth, it is
evident that performance metrics, namely the weighted
F1-score, was more sensitive to changes in the threshold

of the MDI-based value than SHAP values, suggesting a
greater stability of model performance when SHAP values
were used for feature selection. And, finally, graph-based
features played a substantial role in enhancing the
prediction model, as evidenced by an improvement of at
least 1.10 in accuracy and weighted F1-score.

The direct comparison with other studies is limited
due to the unique nature of our non-public dataset. We
can, however, draw comparisons with studies utilizing
datasets with similar characteristics, including the number
of classes, types of skin lesions, as well as the number
of instances. Based on the most recent comprehensive
review paper (Aloupogianni et al., 2022), our binary
classification accuracy aligns with previously reported
ranges from 73.8% to 99.9%, while in the case of
multi-class classification (5 classes) the accuracy value is
at least 66.2%. These findings suggest that more data are
needed in those classes, particularly those that performed
poorly in terms of performance measures.

Further investigation can focus on the calibration
of SHAP threshold values and the development of
graphical explanations of feature importance through
Explainable AI (XAI) methodologies, by merging SHAP
values with deep learning models. Such a model
enables the calculation of input importance relative to a
reference by backpropagating contribution scores through
the neural network and offers computational efficiency
through an approximation to Shapley values. With
such an approach, we can provide not only precise
classification or segmentation models but also ensure
valuable and trustworthy assistance for dermatologists.
Further research also need to be carried out in order to
fully automate the diagnosis of skin lesions, particularly,
focusing on the removal of artefacts such as hair,
veins, surgical markings, light reflections, etc. This
adds additional complexity to this task, which requires
an separate research (Winkler et al., 2019). This difficulty
is also experienced due to the various types of images
available.
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