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This study is devoted to the resilient control problem of a mobile sensor network with a Sybil attack and input delay. First, a
fixed-time observer is constructed to estimate the state exactly, which makes it possible to calculate the settling time. Then,
the delayed system is transformed into a delay-free system by introducing Artstein’s transformation, and a confidence
metric is used to tackle the Sybil attack problem, which requires no additional data storage beyond signals. Furthermore, a
novel distributed event-triggered fixed-time control scheme is proposed, and a triggering function is developed to generate
triggering events asynchronously. Using the presented triggering function, each sensor communicates in discrete time,
which is fully continuous-communication free. Several sufficient conditions are obtained, and a rigorous proof is given
using Lyapunov stability and fixed-time stability theories. Finally, simulation results are presented to demonstrate the
efficiency of the theoretical results such as the flocking context.
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1. Introduction
With past decades due to wide sensing, robustness,
mobility, mobile sensor networks are more admired
than other fields in the networks. A sensor network
consists of mobile sensor nodes where each node conducts
computation and communicates with neighbors (Liu
et al., 2022). In particular, the application areas
of mobile sensor networks are found in surveillance,
hazardous environment exploration, health monitoring,
natural disaster relief operations (Temene et al., 2022;
Kandris et al., 2020). Among the challenging problems of
mobile sensor networks, the ability to reach consensus has
attracted close attention. Effective consensus coordination
between sensor nodes requires trust, making them
particularly vulnerable to cyber-attacks. Meanwhile, the
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consensus can be easily disrupted by the presence of a
malicious node that gains an influence on the converged
value of the network as a whole.

Numerous theoretical studies on mobile sensor
networks in various scenarios have been reported in a
wide range of academic publications (Temene et al.,
2022; Kandris et al., 2020; Wang et al., 2024).
It should be pointed out that the following issues
may arise from the aforementioned consensus control
schemes. One challenge is that mobile sensors are
constrained by resources or costs, i.e., each sensor has
limited capabilities in communication, measurement, and
computing, necessitating a reduction in the frequency
of communication and computation to conserve these
resources. Despite these limitations, it is essential for each
sensor to accurately estimate its state (Zhou et al., 2020a;
Yang et al., 2023). For this issue, event-triggered control
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can be used to reduce the frequency of the communication
and computation, and a state observer can be naturally
employed to estimate the state exactly (Yang et al., 2021;
Li et al., 2021; Znidi and Nouri, 2024; Gong et al., 2023).
For additional resources on event-triggered control and
state observers, please refer to some recent works (Chen
et al., 2020; Jenabzadeh et al., 2024; Satish Patil and
Senthil Kumaran, 2024).

Another issue is that the dynamic characteristics
of the detection environment cause delays in the sensor
network. The network must quickly and accurately
locate the regions of interest with the highest values in
the distribution of quality parameters. For this issue,
finite/fixed-time control scheme can be used to guarantee
that each sensor quickly adjusts its state to adapt the
quality parameters. Several works were devoted to
the study of finite-time cooperative control methods for
sensor networks (Zhang et al., 2024) and fixed-time cases
(Liang et al., 2024). An essential point to note is that
the settling time of a finite-time control scheme depends
on the initial states of the sensor networks. Fixed-time
stability ensures that the settling time has an upper bound
independent of the initial state, which facilitates the design
of controllers to meet strict time requirements in practical
applications (Zhang et al., 2024).

Recently, some efforts have been made on fixed-time
event-triggered control for first-order systems and
fixed-time state observer (Liu et al., 2024). In the
aforementioned literature, each sensor calculates the
triggering condition through continuous communication,
which brings a paradox to the purpose of saving
communication resources. Fixed-time state observers
of Zhang and Duan (2018) were designed based on
a bi-limit homogeneous technique, which has proved
that the system is fixed-time stable by constructing
approximating homogeneous function, but could not
give the convergence time. Considering the time
delay, Lyapunov–Krasovskii and Lyapunov–Razumikhin
functions are usually applied for system stability analysis.
Unfortunately, these methods cannot be used to analyze
finite/fixed-time stability of time-delayed systems due
to the inability to construct corresponding Lyapunov
function (Moulay et al., 2008).

The third issue is that mobile sensor networks can be
easily hacked because optimal quality parameters require
shared data to be accurate and trustworthy (Sheng and
Li, 2008). A particularly challenging attack on this
premise is the so-called “Sybil attack” (Gil et al., 2017).
To address this issue, several countermeasures, such as
software-based attestation, radio resource testing, and
key cryptography, have been proposed to mitigate Sybil
attacks (Arshad et al., 2021; Vasudeva and Sood, 2018).
While these approaches reduce the likelihood of attacks,
they often incur higher overhead in terms of computation,
communication, and data, making them unsuitable for

distributed mobile systems due to their lack of scalability
(Yaacoub et al., 2022). The special needs of mobile sensor
networks are often distributed and dynamic, which makes
these methods difficult or impossible to implement. Gil et
al. (2017) attempted to deal with these constraints and the
key difference between their and our previous work is that
the solution to defend against a Sybil attack is to use the
physics of wireless signals without the need for expensive
cryptographic key-distribution.

Motivated by the above discussions, the primary
research motivation includes the following three aspects:
(i) few results about the event-triggered fixed-time
resilient control of mobile sensor networks with Sybil
attack and input delay are available now, (ii) the existing
works on event-triggered fixed-time control of mobile
sensor networks are not completely communication-free.
This contradicts the primary goal of event-triggered
control schemes, which is to conserve communication
resources. Finally, (iii) solutions to existing Sybil
attacks in mobile sensor networks typically involve high
overhead in terms of computation, communication, and
data, making a practical implementation challenging.

In view of the above three issues, this paper addresses
resilient control of the mobile sensor network with a
Sybil attack and time delay by employing a fixed-time
event-triggered control scheme and a confidence metric.
The main contributions of this paper can be summarized
as follows:

(i) A fixed-time observer is presented to estimate
each sensor’s state, where the settling time can be
estimated by subtly constructing a homogeneous
Lyapunov function.

(ii) Artstein’s transformation is introduced to analyze
finite/fixed-time stability of the time delay system.
An event-triggered the fixed-time control protocol
is constructed, which can effectively guarantee
convergence time. A novel threshold is defined,
and the triggering function is derived based on the
novel threshold, which does not require continuous
communication in both controller update and error
measurement.

(iii) By introducing a confidence metric, the weight
is developed to tackle the Sybil attack problem
of mobile sensor networks, which requires no
additional data storage beyond the signal.

The remainder of this paper is organized as follows.
In Section 2, we address preliminaries and problem
formulation. In Section 3, a fixed-time observer is first
provided, and then, a novel fixed-time control algorithm
is presented. Section 4 gives a simulation example. The
conclusions and future work are provided in Section 5.
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2. Preliminaries and problem formulation
2.1. Notation and graph theory. We consider the
problem of resilient cooperative control for mobile sensor
networks. The network can be described by a weighted
state-dependent graph G = {V, ζ, A}, where G is an
undirected graph ζ ⊆ {(i, j) , i, j ∈ V } is the edge set,
V = {1, 2, . . . , n} denotes a finite set of node indices
for n sensors. A = [aij ]n×n is the associated adjacency
matrix, where aii(t) = 0, and aij(t) > 0 is the
weight if (j, i) ∈ ζ or aij(t) = 0, otherwise. The
neighbor set of i is defined as Ni = {j ∈ V : aij > 0}.
Assume that a subset of nodes with indices denoted by
the set Ω, Ω ⊂ V , is malicious. The out-degree of
sensor i is defined as dout (i) = di =

∑n
j=1,j �=i aij ,

the degree matrix is D = diag {d1, d2, . . . , dn}. Then,
the Laplacian matrix L can be expressed by L =
D − A and L is symmetric. Define sigα (r) =

[sigα (r1) , . . . , sig
α (rn)]

T , sigα (ri) = |ri|αsgn (ri),
where sgn (·) is the signum function. In denotes the
identity matrix. ‖ · ‖ denotes the 2-norm, ⊗ denotes
the Kronecker product, R

n denotes the n-dimensional
Euclidean space.

2.2. Attack model and detecting malicious nodes.
The sensor network includes n sensor nodes which
are deployed in a region randomly. The sensor is
homogeneous (all sensors have unified hardware and
software facilities) and each node has a unique identity.
Nodes communicate with each other through a WiFi
antennas and the radio range of all nodes is the same.
Additionally, the sensor network is deployed in an
adversary environment; therefore, it might be captured by
the adversary. Nodes are not persistently tamper-resistant
against interference and if the adversary captures a node,
it can access its secret information and reprogram it.
One of the first dangerous attacks against mobile sensor
networks is the Sybil attack, leading to a further security
attack as a black hole and wormhole, as highlighted by
Murali and Jamalipour (2020). Therefore, we consider
one or more adversarial sensor nodes performing the Sybil
attack, where malicious nodes can be mobile.

Definition 1. By the Sybil attack we mean an attack
in which malicious nodes can control the value of one
or more spoofed nodes in the mobile sensor network by
sending false information with unique IDs (i ∈ Ω) to gain
a disproportionate influence in the network. The set V is
known but knowledge of which sensors are malicious is
not available. If a sensor is a malicious node such that
i ∈ Ω, then its moving position and velocity are denoted
by ri (t) , vi (t), respectively.

In order to measure directional signal profiles,
a method is developed by utilizing channel state
information of wireless information over each wireless

link (Gil et al., 2015; 2017). These profiles measure
the signal strength arriving from every direction and
signal profiles display two important properties: (i)
transmissions originating from the same physical node
have very similar profiles and (ii) energy can be measured
coming from the direct-line path between physical nodes.
Gil et al. (2017) quantify two properties, deriving a
confidence metric σi {i ∈ V } ∈ (0, 1) that approaches 1
for legitimate sensors and 0 otherwise.

Lemma 1. (Gil et al., 2017) Let V = Ω ∪ Ω̃ be a set of
nodes where Ω is the set of malicious node and Ω̃ is the
set of legitimate nodes. The identities of the nodes being
malicious is unknown. Let σmali and σlegit be the confi-
dence metrics of malicious, legitimate node, respectively.
The confidence metrics σmali, σlegit ∈ (0, 1) are bounded
by E [σmali] ≤ εmali, for each node in Ω and E [σlegit] ≥
1−εlegit, for each node in Ω, where εmali and εlegit are de-
termined by the signal-to-noise ratio (SNR) of the channel,
the number of malicious nodes, and channel constants.

Experimental evaluation of confidence metrics σi
shows that a threshold of σi < 0.5 performs well to
classify nodes as malicious.

2.3. Problem formulation. Consider a continuous
time model of n identical sensor nodes in an adversary
environment. Meanwhile, there is a time delay for
each sensor to the receive the neighbors’ information
and process after the receipt (Ni et al., 2017; Zhang
et al., 2019). The dynamics of the i-th sensor can be
described by

{
ṙi (t) = vi (t),
v̇i (t) = ui (t− τi),

(1)

where i ∈ {1, 2, . . . , n} is the ID of sensor node; ri (t) ∈
Xr ⊂ R

m, vi (t) ∈ Xv ⊂ R
m denote the position and

velocity, respectively; Xr and Xv stands for admissible
position set and velocity set, respectively; ui ∈ R

m refers
to the control input, and τi denotes the input delay. For
many practical cases, the whole state information of the
sensor is hard to obtain due to the physical or economical
restriction. Therefore, the observer design for a networked
sensor system is necessary.

The fixed-time resilient consensus is achieved if there
exists a fixed-time T such that

lim
t→T

‖ri(t)− rj(t)‖ = 0,

lim
t→T

‖vi(t)− vj(t)‖ = 0

and
‖ri(t)− rj(t)‖ = 0,

‖vi(t)− vj(t)‖ = 0
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when t ≥ T , i, j = 1, 2, . . . , n. The settling time T is
fixed and bounded, i.e., for any initial states, there is a
Tmax > 0 such that T ≤ Tmax.

We expect to derive weights with the properties
that the influence of legitimate sensors on neighbors
approaches 1, while the influence of malicious sensors
on neighbors approaches 0. Note that this paper focuses
on the resilient control of sensor networks suffering from
Sybil attacks, rather than the optimization of the network
topology. Therefore, we adopt the following reasonable
assumption (Gil et al., 2017; 2019).

Assumption 1. The undirected graph is sufficiently
connected such that it would remain connected even if
malicious sensors were removed. Meanwhile, the wireless
channel weights aij are independent for each link (j, i).

2.4. Some useful definition and lemmas. Consider
the following differential equation:

ẋ = f (t, x) , x ∈ R
n, (2)

where f (t, x) : R+ × R
n → R

n is a nonlinear function
which may be discontinuous, the solutions of (2) are
understood in the sense of Filippov (2013). Suppose that
the origin is an equilibrium point of system (2).

Lemma 2. (Polyakov, 2011) Assume that there exists
a continuous radially unbounded function V : R

n →
R+ ∪ {0} such that V (x) = 0 ⇒ x = 0, V̇ (x (t)) ≤
−(αV p (x (t)) + βV q (x (t)))

k for some α, β, p, q, k >
0, pk < 1, qk > 1 and for any solution x (t); Then the
origin of system (2) is globally fixed-time stable with the
settling time

T ≤ 1

αk (1− pk)
+

1

βk (qk − 1)
.

If k = 1, the origin of system (2) is globally fixed-time
stable with settling time T bounded by

T ≤ Tmax :=
1

α (1− p)
+

1

β (q − 1)
,

where α, β > 0, 0 < p < 1 and q > 1.

Lemma 3. (Zhou et al., 2020b) If the undirected graph
is connected, then the Laplacian matrix L is symmetric. If
λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of L, then λ1 =
0 and λ2 > 0. Denote by a the algebraic connectivity. If
1Tx = 0, x �= 0, then

a = λ2 = min
xTLx

xTx

and
xTL2x ≥ axTLx.

Lemma 4. (Zhou et al., 2020b) For any nonnegative real
numbers x1, x2, . . . , xn, the following inequalities hold:

(
n∑

i=1

xi

)p

≤
n∑

i=1

xpi ≤ n1−p

(
n∑

i=1

xi

)p

,

where p ∈ (0, 1], and
(

n∑

i=1

xi

)q

≥
n∑

i=1

xqi ≥ n1−q

(
n∑

i=1

xi

)q

,

where q ≥ 1.

3. Main results
In this section, we construct (i) a fixed-time observer
to estimate information exactly, (ii) the weights of the
network, and (iii) a distributed event-triggered control
protocol such that a consensus of the sensor network can
be achieved.

3.1. Design of a fixed-time observer. For the
considered sensor network (1), a fixed-time observer is
constructed to accurately estimate information, which is
specified as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ς̇i = κi − c1sig
α1 (ςi − ri)

−c2sigα2 (ςi − ri) ,

κ̇i = ui(t− τi)− d1sig
α̃1 (ςi − ri)

−d2sigα̃2 (ςi − ri) ,

(3)

where ςi, κi are the estimates of ri, vi, respectively,
c1, c2, d1, d2 are positive constants such that α1 ∈
(0.5, 1), α2 ∈ (1.5, 2), α̃1 = 2α1 − 1, α̃2 = α2 +α1 − 1.
α1 ∈ (0.5, 1), α2 ∈ (1.5, 2) ensure that α̃1 ∈ (0, 1),
α̃2 ∈ (1, 2), which further guarantees that the observer
(3) is fixed time stable. Meanwhile, α1 ∈ (0.5, 1),
α2 ∈ (1.5, 2) ensure that 0 < ρ1 < 1, 1 < ρ2 < 2,
for additional stable time estimation with homogeneous
theory.

Theorem 1. Consider the sensor network (1) suffering
from a Sybil attack. The observer (3) can estimate the
information in fixed time with the settling time bounded
by

T1 ≤ 1

di1 (1− ρ1)
+

1

di2 (ρ2 − 1)
,

where

di1 = − max
{xi:Vi1(xi)=1}

LfVi1 (xi) ,

di2 = − max
{xi:Vi1(xi)=1}

LgVi1 (xi) ,

ρ1 = α2
1 −

3

2
α1 +

3

2
∈
[
15

16
, 1

)

,

ρ2 = 1 + (2α1 − 1) (α2 − 1) ∈ (1, 2) ,
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Vi1 (t) denotes the Lyapunov function to be designed later,
LfVi1 (xi), LgVi1 (xi) are Lie derivatives.

Proof. Define the estimate errors ηri (t) = ςi (t) − ri (t)
and ηvi (t) = κi (t)− vi (t), Then we can obtain that
{
η̇ri = ηvi − c1sig

α1 (ηri)− c2sig
α2 (ηri) ,

η̇vi = −d1sigα̃1 (ηri)− d2sig
α̃2 (ηri) .

(4)

Consider the Lyapunov function candidate as

Vi1 (t) = xTi

((
χ+ 4ε2 −2ε
−2ε 1

)

⊗ Im

)

xi, (5)

where

xi =
[(
sig1/α̃1 (ηri)

)T
,
(
sig1/α1α̃1 (ηvi)

)T ]T
,

χ, ε > 0. It follows that Vi1 (t) ≥ 0 and Vi1 (t) = 0 if and
only if xi = 02m.

Consider the system
{
η̇ri = ηvi − c1sig

α1 (ηri) ,

η̇vi = −d1sigα̃1 (ηri) ,
(6)

with the vector field f . From Definition 3 (Hong et al.,
2002), (6) is homogeneous of degree α1 − 1 with respect
to (1, . . . , 1, α1, . . . , α1). By Bhat and Bernstein (2005),
Vi1 (t) is homogeneous of degree 2

2α1−1 with respect to
(1, . . . , 1, α1, . . . , α1). Taking the Lie derivative of Vi1 (t)
along with f yields

LfVi1 =
2
(
χ+ 4ε2

)

α̃1

m∑

j=1

ηvijsig
2

α̃1
−1

(ηrij)

− 4ε

α̃1

m∑

j=1

|ηvij |
1

α1α̃1
+1|ηrij |

1
α̃1

−1

− 2c1
(
χ+ 4ε2

)

α̃1

m∑

j=1

|ηrij |
2

α̃1
−1+α1

+
4εc1
α̃1

m∑

j=1

sig
1

α̃1
−1+α1 (ηrij) sig

1
α1α̃1 (ηvij)

+
4εd1
α1α̃1

m∑

j=1

|ηrij |
1

α̃1
+α̃1 |ηvij |

1
α1α̃1

−1

− 2d1
α1α̃1

m∑

j=1

sigα̃1 (ηrij) sig
2

α1α̃1
−1 (ηvij).

(7)

It can be easily obtained that LfVi1 is
homogeneous of degree 2

2α1−1 + α1 − 1 with
respect to (1, . . . , 1, α1, . . . , α1). Noting that

2
2α1−1 > 1 > − (α1 − 1) and the degree of LfVi1
is equal to the degree of Vi1 (t) plus the degree of system
(6), it follows from Theorem 6.2 of Bhat and Bernstein
(2005) that the Lie derivative LfVi1 is continuous and

negative definite. Then, it follows from Theorem 7.1 of
Bhat and Bernstein (2005) that

LfVi1 ≤ −di1(Vi1 (t))ρ1 ,

where

ρ1 = α2
1 −

3

2
α1 +

3

2
∈
[
15

16
, 1

)

,

di1 = − max
{xi:Vi1(xi)=1}

LfVi1 (xi) .

Obviously, di1 is positive since LfVi1 is negative definite.
Then, we consider the following system:

{
η̇ri = −c2sigα2 (ηri) ,

η̇vi = −d2sigα̃2 (ηri) ,
(8)

with the vector field g. Similarly, we obtain that
(8) is homogeneous of degree α2 − 1 with respect to
(1, . . . , 1, α1, . . . , α1). Similarly, taking Lie derivative of
Vi1 (t) along with g yields

LgVi1 =
4c2ε

α̃1

m∑

j=1

sig
1

α̃1
−1+α2 (ηrij) sig

1
α1α̃1 (ηvij)

− 2c2
(
χ+ 4ε2

)

α̃1

m∑

j=1

|ηrij |
2

α̃1
−1+α2

+
4εd2
α1α̃1

m∑

j=1

|ηrij |
1

α̃1
+α̃2 |ηvij |

1
α1α̃1

−1

− 2d2
α1α̃1

m∑

j=1

sigα̃2 (ηrij) sig
2

α1α̃1
−1 (ηvij).

(9)

Then, LgVi1 is homogeneous of degree 2
2α1−1 +

α2 − 1 with respect to (1, . . . , 1, α1, . . . , α). Noting that
2

2α1−1 > 1 > − (α2 − 1) and the degree ofLgVi1 is equal
to the degree of Vi1 (t) plus the degree of system (8), it
follows from Theorem 6.2 of Bhat and Bernstein (2005)
that the Lie derivative LgVi1 is continuous and negative
definite. Then we have

LgVi1 ≤ −di2(Vi1 (t))ρ2 ,

where

ρ2 = 1 + (2α1 − 1) (α2 − 1) ∈ (1, 2) ,

di2 = − max
{xi:Vi1(xi)=1}

LgVi1 (xi) .

Obviously, di2 are positive due to LgVi1 is negative
definite.

Consider

xi =
[(
sig1/α̃1 (ηri)

)T
,
(
sig1/α1α̃1 (ηvi)

)T ]T
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with the system (4). Taking the derivative of xi with
respect to t yields

ẋi

=

(
1

α̃1
η̇ri1|ηri1|

1
α̃1

−1
, · · · , 1

α̃1
η̇rim|ηrim| 1

α̃1
−1
,

1

α1α̃1
η̇vi1|ηvi1|

1
α1α̃1

−1
, · · · ,

1

α1α̃1
η̇vim|ηvim| 1

α1α̃1
−1

)T

,

where

η̇rij = ηvij − c1sig
α1 (ηrij)− c2sig

α2 (ηrij) ,

η̇vij = −d1sigα̃1 (ηrij)− d2sig
α̃2 (ηrij) ,

j = 1, 2, . . . ,m. Taking the derivative of Vi1 (t) with
respect to time, we have

V̇i1 (t) = 2xTi

((
χ+ 4ε2 −2ε
−2ε 1

)

⊗ Im

)

ẋi

= LfVi1 (xi) + LgVi1 (xi)

≤ −di1(Vi1 (t))ρ1 − di2(Vi1 (t))
ρ2 .

(10)

Thus, based on Lemma 2, the error system (4)
is fixed-time stable and the settling time is bounded
by T1 ≤ 1

di1(1−ρ1)
+ 1

di2(ρ2−1) . Then, one has
ςi (t) = ri (t) , κi (t) = vi (t) when t > T1. We can
conclude that the fixed-time observer (3) can estimate the
sensors’ information within a bounded settling time. This
completes the proof. �

Remark 1. The design of the fixed-time observer
is similar to the finite-time observers provided by Fu
and Yu (2018) as well as Hua et al. (2017). This
observer can estimate the velocity within the settling
time T1 regardless of the initial states, while previous
results only used bi-limit homogeneity to prove that the
observer is fixed-time stable, but did not give the settling
time (Huang and Jia, 2018; Tian et al., 2017; Zhang and
Duan, 2018). For many practical cases, the convergence
time is required, and the observer (3) can easily satisfy
the settling-time requirement while the previous observers
(Huang and Jia, 2018; Tian et al., 2017; Zhang and
Duan, 2018) cannot give time indicators.

3.2. Event-triggered fixed-time control scheme.
To tackle the time delay, we introduce Artstein’s
transformation, which takes advantage of the invertible
transformation to transform the delayed system (1) into
a delay-free system.
{
eri = ri +

∫ 0
−τi

(−τi − s)ui (t+ s) ds

evi = vi +
∫ 0
−τi

ui (t+ s) ds
(11)

After Artstein’s transformation, we have
ėri = vi − τiui (t), ėvi = ui (t). Defining new variables
eςi = eri + τievi, eκi = evi, we have the delay-free
system. Meanwhile, introducing the state observer (3), we
can obtain that ςi = ri, κi = vi within T1. To mitigate the
unnecessary communication, a distributed event-triggered
control algorithm is proposed as

ui (t) = −ψi (t)− sig(ψi (t))
p − sig(ψi (t))

q
, (12)

where

ψi (t) = β

n∑

j=1

aij

(
eςi
(
tiki

)− eςj

(
tjkj

))

+ γ

n∑

j=1

aij

(
eκi
(
tiki

)− eκj

(
tjkj

))
,

β, γ > 0, p ∈ (0, 1), q ∈ (1, 2), t ∈ [tiki
, tiki+1

)
,

tiki
is the latest event-triggered time of sensor i, kj

Δ
=

argmins
{
t− tjs

∣
∣t ≥ tjs, s ∈ N

}
, i.e., tjkj

is the latest
event-triggered time of sensor j.

Remark 2. The proposed control algorithm (12) is
derived from the control algorithms presented by Huang
and Jia (2018), Tian et al. (2017) or Zhang and Duan
(2018). The control algorithms in these references
are specifically designed to apply bi-limit homogeneous
systems theory. While bi-limit homogeneity can
demonstrate that sensor networks are fixed-time stable, it
does not provide the settling time, making it unsuitable
for scenarios with strict convergence time requirements.
To address this limitation, we enhance the control
algorithms by Huang and Jia (2018), Tian et al. (2017)
as well as Zhang and Duan (2018) by incorporating an
event-triggered control strategy. Based on the proposed
control algorithm, we skillfully construct a Lyapunov
function and derive the settling time.

During the time interval
[
tiki
, tiki+1

)
, define

ϕςi (t) = eςi
(
tiki

)− eςi (t) ,

ϕκi (t) = eκi
(
tiki

)− eκi (t) ,

ϕς
i =

n∑

j=1

aij (ϕςi − ϕςj) ,

ϕκ
i =

n∑

j=1

aij (ϕκi − ϕκj) ,

yi (t) =

n∑

j=1

aij (eςi (t)− eςj (t)) ,

wi (t) =

n∑

j=1

aij (eκi (t)− eκj (t)) ,



Event-triggered fixed-time resilient control for mobile sensor networks . . . 135

yi
(
tiki

)
=

n∑

j=1

aij

(
eςi
(
tiki

)− eςj

(
tjkj

))
,

wi

(
tiki

)
=

n∑

j=1

aij

(
eκi
(
tiki

)− eκj

(
tjkj

))
.

Then we have

ψi (t) = βyi
(
tiki

)
+ γwi

(
tiki

)

= βyi (t) + γwi (t) + βϕς
i + γϕκ

i .

Define

ϕς =
[
ϕT
ς1, . . . , ϕ

T
ςn

]T
,

ϕκ =
[
ϕT
κ1, . . . , ϕ

T
κn

]T
,

ϕς =
[
ϕςT
1 , . . . , ϕςT

n

]T
,

ϕκ =
[
ϕκT
1 , . . . , ϕκT

n

]T
,

y =
[
yT1 , . . . , y

T
n

]T
,

w =
[
wT

1 , · · · , wT
n

]T
.

We have ϕς = (L⊗ Im)ϕς , ϕκ = (L⊗ Im)ϕκ, y =
(L⊗ Im) eς , w = (L⊗ Im) eκ.

A novel distributed triggering function is specified as

gi (t) = − δ
n∑

j=1

aij

∥
∥βyi

(
tiki

)
+ γwi

(
tiki

)∥
∥

+ 2 ‖βϕςi + γϕκi‖ ,
(13)

where δ is a positive constant to be determined. The
triggering sequence is defined iteratively as tiki+1 =

inf
{
t > tiki

, gi (t) > 0
}

.

Remark 3. In order to connect the Lyapunov
function with its derivative, we must establish
the connection between ϕςi, ϕκi and yi, wi.
First, the triggering function is designed as
gi (t) = ‖L‖ ‖βϕςi + γϕκi‖ − δ ‖βyi (t) + γwi (t)‖,
which necessitates ongoing communication to acquire
neighbor information. To address this issue, we
propose a new threshold δ

∥
∥βyi

(
tiki

)
+ γwi

(
tiki

)∥
∥

and define the triggering function as gi (t) =
‖L‖ ‖βϕςi + γϕκi‖ − δ

∥
∥βyi

(
tiki

)
+ γwi

(
tiki

)∥
∥. In

order to achieve distribution of the event-triggered control
scheme, we introduce a novel triggering function (13).

To achieve resilient control of the mobile sensor
network suffering from a Sybil attack, the weights are set
according to confidence metrics σi and Lemma 1.

aij

=

⎧
⎨

⎩

1(
1+e−50(σi−0.5)

)(
1+e−50(σj−0.5)

) , j ∈ Ni, i �= j,

0, i = j.
(14)

By introducing the confidence metric σi, the
influence of malicious nodes on neighbors approaches
zero.

Theorem 2. Consider the sensor network (1) suffer-
ing from a Sybil attack. Assume that the graph for the n
sensors is sufficiently connected. With the fixed-time ob-
server (3) and the proposed weight (14), the distributed
event-triggered consensus algorithm (12) and triggering
function (13) can make the sensor network (1) fixed-time
stable if the parameters are selected as

a >
β

γ2
,

δ < min

{
aγ2 − β

3aγ2 − β
,

√

(mn)
p−1

,

√

(mn)
1−q

}

.

Furthermore, the settling time is bounded by

1

di1 (1− ρ1)
+

1

di2 (ρ2 − 1)

+
2

(
1− δ(mn)

1−p
2

)(
aθ
√
ξ/λ
)p+1

(1− p)

+
2

(
(mn)

1−q
2 − δ

)(
aθ
√
ξ/λ
)q+1

(q − 1)

+ max {τi} ,

where a is the algebraic connectivity.

Proof. The proof is divided into three steps:
(i) constructing a relationship between error and state
according to the triggering function; (ii) proving that
the sensor network can achieve asymptotic stability and
(iii) proving that fixed-time stability can be achieved by
establishing a relationship between the Lyapunov function
and its derivative.

From Theorem 1, the observer (3) can estimate the
sensor state within T1. Then we have

ς̇i (t) = κi (t) ,

κ̇i (t) = ui (t) .

Define

ẽςi = eςi − ēς = eςi − 1

n

n∑

j=1

eςj

and

ẽκi = eκi − ēκ = eκi − 1

n

n∑

j=1

eκj .

Let
ẽς =

[
ẽTς1, . . . , ẽ

T
ςn

]T
,

ẽκ =
[
ẽTκ1, . . . , ẽ

T
κn

]T
.
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Then

ẽς =

[(

In − 1

n
1n×n

)

⊗ Im

]

eς ,

ẽκ =

[(

In − 1

n
1n×n

)

⊗ Im

]

eκ.

Further

y = (L⊗ Im) eς = (L⊗ Im) ẽς ,

w = (L⊗ Im) eκ = (L⊗ Im) ẽκ.

Consider the Lyapunov function V2 (t)

V2 =
1

2

(
ẽς
ẽκ

)T ((
2βγL2 βL
βL γL

)

⊗ Im

)(
ẽς
ẽκ

)

.

(15)
With a > β/γ2, one has V2 (t) ≥ 0 and V2 (t) = 0 if and
only if ‖ς̃‖ = 0, ‖κ̃‖ = 0. The derivative of V2 (t) with
respect to time is

V̇2 (t)

≤ −β2yT y −
(

γ2 − β

a

)

wTw

− (β2yTϕς + βγwTϕς + βγyTϕκ + γ2wTϕκ
)

− (βy + γw)
T
sig(βy + γw + βϕς + γϕκ)

p

− (βy + γw)
T
sig(βy + γw + βϕς + γϕκ)

q
.

(16)

The Laplacian matrix L is symmetric and

n∑

j=1

|lij | = 2

n∑

j=1

aij .

Using Lemma 3 and the triggering function (13), we get

‖βϕς (t) + γϕκ (t)‖

=

√
√
√
√

n∑

i=1

∥
∥
∥

n∑

j=1

lij (βϕςj (t) + γϕκj (t))
∥
∥
∥

2

≤
√
√
√
√

n∑

i=1

( n∑

j=1

|lij |2
) n∑

j=1

‖βϕςj (t) + γϕκj (t)‖2

=

√
√
√
√

n∑

i=1

( n∑

j=1

|lji|2
)
‖βϕςi (t) + γϕκi (t)‖2

≤
√
√
√
√

n∑

i=1

(
2

n∑

j=1

aij

)2
‖βϕςi (t) + γϕκi (t)‖2

≤
√
√
√
√δ2

n∑

i=1

∥
∥βyi

(
tiki

)
+ γwi

(
tiki

)∥
∥2

=δ ‖ψ (t)‖ ,

(17)

where ψ =
[
ψT
1 , ψ

T
2 , . . . , ψ

T
n

]T . It follows that
‖ψ (t)‖ ≤ ‖βy (t) + γw (t)‖ + ‖βϕς (t) + γϕκ (t)‖ ≤
‖βy (t) + γw (t)‖ + δ ‖ψ (t)‖. Further, we have ‖ψ‖ ≤
1

1−δ ‖βy + γw‖. Then, we can obtain

− (β2yTϕς + βγwTϕς + βγyTϕκ + γ2wTϕκ
)

≤ ‖βy (t) + γw (t)‖ ‖βϕς (t) + γϕκ (t)‖
≤ δ

1− δ
‖βy + γw‖2

≤ 2δ

1− δ

(
β2yT y + γ2wTw

)
.

(18)

Using Lemma 3, it follows from ψ = βy + γw +
βϕς + γϕκ that

− (βy + γw)
T
sigp (βy + γw + βϕς + γϕκ)

= (βϕς + γϕκ)
T
sigp (ψ (t))

− (ψ (t))T sigp (ψ (t))

≤ ‖βϕς + γϕκ‖ ‖sigp (ψ (t))‖

−
n∑

i=1

m∑

j=1

|ψij (t)|p+1

≤ δ ‖ψ (t)‖
√
√
√
√

n∑

i=1

m∑

j=1

(|ψij (t)|p)2

−
n∑

i=1

m∑

j=1

|ψij (t)|p+1

≤ δ(mn)
1−p
2 ‖ψ (t)‖p+1 −

n∑

i=1

‖ψi (t)‖p+1

≤ −
(
1− δ(mn)

1−p
2

)
‖ψ (t)‖p+1

.

(19)

Similarly, from Lemma 3 it follows that

− (βy + γw)
T
sig(βy + γw + βϕς + γϕκ)

q

≤ −
(
(mn)

1−q
2 − δ

)
‖ψ (t)‖q+1. (20)

Combining (14), (16) (17) and (18) yields

V̇2 (t) ≤− β2

(

1− 2δ

1− δ

)

yT y

−
(

γ2 − β

a
− 2δγ2

1− δ

)

wTw

−
(
1− δ(mn)

1−p
2

)
‖ψ (t)‖p+1

−
(
(mn)

1−q
2 − δ

)
‖ψ (t)‖q+1.

(21)

From

δ < min

{
aγ2 − β

3aγ2 − β
,

√

(mn)
p−1

,

√

(mn)
1−q

}

,
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a > β/γ2, we deduce that V̇2 (t) < 0, which implies
that (ẽς , ẽκ)

T asymptotically converges to
(
0Tmn, 0

T
mn

)T .
Further, the following analysis shows that the equilibrium
point

(
0Tmn, 0

T
mn

)T
is fixed-time stable.

Before a consensus is achieved, we have ‖ẽς‖ �=
0, ‖ẽκ‖ �= 0 and ‖ψ‖ > 0. During the time interval[
tiki
, tiki+1

)
, ψi (t) = βyi

(
tiki

)
+ γwi

(
tiki

)
= βyi (t) +

γwi (t) + βϕς
i + γϕκ

i is constant; if ψi (t) = 0m, then
ψi (t) = βyi

(
tiki

)
+ γwi

(
tiki

)
= 0m, ėκi (t) = 0m,

ẇi (t) = 0m, ϕ̇κ
i (t) = 0m. Assume that at least one

of yi
(
tiki

)
and wi

(
tiki

)
is not 0m. Further, ψ̇i (t) =

βẏi
(
tiki

)
+ γẇi

(
tiki

)
= βwi (t) + βϕκ

i (t) + γẇi (t) +
γϕ̇κ

i (t) = 0m.
It follows that wi

(
tiki

)
= wi (t) + ϕκ

i (t) = 0m and
βyi
(
tiki

)
= −γwi

(
tiki

)
= 0m, which contradicts with

that at least one of yi
(
tiki

)
and zi

(
tiki

)
is not 0m.

Therefore, if ψi (t) = 0m, then we have that
yi
(
tiki

)
= wi

(
tiki

)
= 0m, i = 1, 2, . . . , n. Let

εi (t) =
(
βyTi
(
tiki

)
, γwT

i

(
tiki

))T
.

Then ψi (t) =
(
1 1

) ⊗ Imεi (t). Before a consensus
is achieved, it follows that

ψT (t)ψ (t)

≥ ξ

n∑

i=1

(
β2
∥
∥yi
(
tiki

)∥
∥2 + γ2

∥
∥wi

(
tiki

)∥
∥2
)
,

where

ξ = min
ε(t)

‖ε(t)‖

(
ε (t)

‖ε (t)‖
)T (

1 1
1 1

)

⊗Imn

(
ε (t)

‖ε (t)‖
)

> 0,

ε (t) =
[
εT1 (t) , εT2 (t) , . . . , εTn (t)

]T
.

We have proved that (ẽς , ẽκ)
T will asymptotically

converge to
(
0Tmn, 0

T
mn

)T . It is easy to see that ‖y‖,
‖w‖ asymptotically converge to 0 with ‖y‖ ≤ ‖L‖ ‖ẽς‖,
‖w‖ ≤ ‖L‖ ‖ẽκ‖. Further, we have

∥
∥yi
(
tiki

)∥
∥ ≥∥

∥yi (t)
∥
∥ and

∥
∥wi

(
tiki

)∥
∥ ≥ ∥∥wi (t)

∥
∥ during each interval

[
tiki
, tiki+1

)
. Then, we have

(
1− δ(mn)

1−p
2

)
‖ψ (t)‖p+1

V2(t)
p+1
2

≥
(
1− δ(mn)

1−p
2

)
‖ψ (t)‖p+1

λ
p+1
2

∥
∥ẽTς ẽς + ẽTκ ẽκ

∥
∥

p+1
2

≥
ap+1

(
1− δ(mn)

1−p
2

) ∥
∥
∥ξθ2

n∑

i=1

(
yTi yi + wT

i wi

)∥∥
∥

p+1
2

λ
p+1
2 ‖yT y + wTw‖ p+1

2

=
(
1− δ(mn)

1−p
2

)(
aθ
√
ξ/λ
)p+1

,

(22)

where θ = min {β, γ} and λ is the maximum eigenvalue
of the matrix (

αβL2 αL/2
αL/2 βL/2

)

.

Similarly, we get

(
(mn)

1−q
2 − δ

)
‖ψ (t)‖q+1

V2(t)
q+1
2

≥
(
(mn)

1−q
2 − δ

)(
aθ
√
ξ/λ
)q+1

.

Thus, substituting (22) into (21) yields

V̇2 (t) +
(
1− c(mn)

1−p
2

)(
aθ
√
ξ/λ
)p+1

V2(t)
p+1
2

+
(
(mn)

1−q
2 − c

)(
aθ
√
ξ/λ
)q+1

V2(t)
q+1
2 ≤ 0.(23)

Based on Lemma 2,

(
ẽTς , ẽ

T
κ

)T

will converge to
(
0Tmn, 0

T
mn

)T

with the settling time T ≤ T1 + T2, where T2 is bounded
by

T2 ≤ 2
(
1− δ(mn)

1−p
2

)(
aθ
√
ξ/λ
)p+1

(1− p)

+
2

(
(mn)

1−q
2 − δ

)(
aθ
√
ξ/λ
)q+1

(q − 1)
.

(24)

As a result,

lim
t→T1+T2

ẽς = 0nm,

lim
t→T1+T2

ẽκ = 0nm

and
ς̃ = 0nm, κ̃ = 0nm

when t ≥ T1 + T2, which implies eς1 = · · · = eςn = ēς ,
eκ1 = · · · = eκn = ēκ. It follows from (11) and Lemma 4
that
∫ 0
−τi

ui (t+ s) ds will asymptotically converge to 0m
when t ≥ T1+T2+max {τi}, which results in r1 = r2 =
· · · = rn and v1 = v2 = · · · = vn. Then, we can conclude
that the proposed control scheme can solve the fixed-time
consensus problem of the mobile sensor network.

Before a consensus is achieved, by Theorem 2
there exists a positive constant � such that∥
∥βyi

(
tiki

)
+ γwi

(
tiki

)∥
∥ ≥ � > 0. When the triggering

condition is satisfied, an event is generated and the
measurement errors

∥
∥ϕςi

(
tiki

)∥
∥ ,
∥
∥ϕκi

(
tiki

)∥
∥ are reset

to zero. Let sv = sup {‖eκ1‖ , ‖eκ2‖ , . . . , ‖eκn‖} and
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sv̇ = sup {‖ėκ1‖ , ‖ėκ2‖ , . . . , ‖ėκn‖}. During the time
interval

[
tiki
, tiki+1

)
, we have

‖ϕςi (t)‖ ≤ ∥∥
∫ t

tiki

ϕ̇ςi (s) ds
∥
∥

≤
∫ t

tiki

‖ϕ̇ςi (s)‖ds

=

∫ t

tiki

‖eκi (s)‖ds

≤ sv
(
t− tiki

)

and

‖ϕκi (t)‖ ≤ ∥∥
∫ t

tiki

ϕ̇κi (s) ds
∥
∥ ≤
∫ t

tiki

‖ϕ̇κi (s)‖ds

=

∫ t

tiki

‖ėκi (s)‖ ds ≤ sv̇
(
t− tiki

)
.

Further,

‖βϕςi (t) + γϕκi (t)‖ ≤ (βsv + γsv̇)
(
t− tiki

)
.

It follows from the triggering function (13) that an event
is triggered if gi (t) > 0, which implies

δ
n∑

j=1

aij

∥
∥βyi

(
tiki

)
+ γwi

(
tiki

)∥
∥ < 2 ‖βϕςi + γϕκi‖

≤ 2 (βsv + γsv̇)
(
tiki+1 − tiki

)
.

Then, at each event-triggered instant tiki+1, we can obtain
that

tiki+1 − tiki
>

(δ�)

2 (βsv + γsv̇)
n∑

j=1

aij

> 0.

Further, we can conclude that the proposed
event-triggered control scheme can exclude the Zeno
behavior for mobile sensor networks. This completes the
proof. �

Remark 4. From the conditions of Theorem 2, the
control parameter γ can be set on the basis of γ >

√
β/a.

Increasing the parameter β will increase the convergence
rate, while increasing the parameter γ will reduce the
convergence rate for the fixed β. Thus, γ is better selected
over (√

β

a
, 1 +

√
β

a

)

.

Meanwhile, decreasing p and increasing q will improve
the convergence rate. But, according to

δ < min

{√

(mn)
p−1

,

√

(mn)
1−q

}

,

Fig. 1. Topology of the sensor network, where Sensor 5 is a ma-
licious node.

the selection of p, q should avoid δ being too small. p
is usually selected in (0.5, 1) and q is usually selected in
(1, 1.5).

Remark 5. The major difficulties of this paper can be
summarized as follows:

(i) The control schemes by Huang and Jia (2018),
Tian et al. (2017) or Zhang and Duan (2018) all
have a specific structure designed to apply bi-limit
homogeneous systems theory, but they lack the
capability to estimate the settling time. Estimating
the settling time is crucial for ensuring fixed-time
stability.

(ii) As suggested by Guo and Chen (2020), the ongoing
topic is continuous communication. To prevent
constant communication and updates entirely, this
paper introduces a novel event-triggered function
threshold, a rather challenging task.

4. Simulation results
To confirm the validity of the main results, we utilize
the proposed control scheme to deal with the flocking
problem of environmental monitoring in R

2. We present
simulation for a sensor network of six legitimate sensor
nodes and one malicious node using WiFi signals to
communicate. The sensor topology is an undirected
sufficiently connected graph (see Fig. 1). Based on
Theorem 1, we design the observer with α1 = 0.8,
α̃1 = 0.6, α2 = 1.55, α̃2 = 1.35, c1 = d1 = 5,
c2 = d2 = 3. We choose controller parameters as
p = 0.8, q = 1.2, β = 0.15, γ = 0.1, δ = 0.22.
Time delays are chosen as τi = 0.1s. This simulation
applies the Sybil attack detection algorithm by Gil et al.
(2017) to calculate the confidence metric σi. Further, the
weights obtained according to (14). The initial positions
are randomly generated in the region [−10, 10]×[−10, 10]
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Fig. 2. Position trajectories under the controller (12) and the observer (3).
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Fig. 3. Velocity trajectories under the controller (12) and the observer (3).

and the velocities are randomly generated in the interval
[−2.5, 2.5].

By using the fixed-time observer (3), the confidence
metrics weights (14) and the event-triggered control
algorithm (12), we implement the simulations and plot
the time responses of the position and velocity trajectories
in Figs. 2 and 3, respectively. It can be seen that the
position and velocity of legitimate nodes on the X and Y
axes converge rapidly from their respective initial states to
the same states, which satisfies t < T1 + T2 +max {τi}
of Theorem 2. The malicious node moves in a deceptive

state and has little impact on other nodes in the network.
Figures 2 and 3 show the result of implementing our
resilient control protocol in a flocking with time delay
context where legitimate sensors must achieve an average
heading value.

The observer’s output state errors eri =
‖ςi − ri‖ , evi = ‖κi − vi‖ are shown in Fig. 4. It
follows that each observer’s output state errors rapidly
converge to zero on the x and y axes. The simulation
results demonstrate that the observer (3) can accurately
estimate each node’s states. The triggering events are
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Fig. 4. Time evolution of the observer output state error on the x and y axes: eri = ‖ςi − ri‖ , evi = ‖κi − vi‖.
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Fig. 5. Triggering events by using the triggering function (13).

shown in Fig. 5. It can be seen that the triggering events of
legitimate nodes are asynchronous and the Zeno behavior
does not take place.

5. Conclusion
In this paper, we presented a novel control scheme for
resilient consensus in sensor networks against the Sybil
attack. We proposed a fixed-time observer to estimate
the state and constructed a novel homogeneous Lyapunov
function to estimate the settling time. By introducing

Artstein’s transformation, we transformed the delayed
system into a delay-free system. A novel threshold
is defined, and the triggering function is derived based
on the novel threshold. An event-triggered resilient
control scheme was employed not only to mitigate the
effects of malicious nodes but also avoid continuous
communication. With the constructed triggering function,
the Zeno behavior was excluded. The validity of the
proposed method is proved by the ingenious construction
of inequalities. Simulation validated the analysis,
wherein the sensor network converges to the average
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of the legitimate node values and avoids continuous
communication.

It is worth noting that the settling time given by
Theorem 2 is relatively large compared with simulations.
Recently, as noted by Liu et al. (2024) and Zhao et al.
(2016), settling time estimation has attracted increasing
interest. Accurate settling time estimation methods have
significant influence on the application of the fixed-time
consensus. Future topics will focus on resilient optimized
control for sensor networks with settling time estimation.
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