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This paper proposes a new and effective bias mitigation method called targeted data augmentation (TDA). Since removing
biases is often tedious and challenging and may not always lead to effective bias mitigation, we propose an alternative
approach: skillfully inserting biases during the training to improve model robustness. To validate the proposed method,
we applied TDA to two representative and diverse datasets: a clinical skin lesion dataset and a dataset of male and female
faces. We identified and manually annotated existing instrument and sampling biases in these datasets, explicitly focusing
on black frames and ruler marks in the skin lesion dataset and glasses in the face dataset. Using the counterfactual bias
insertion (CBI) method, we confirmed that these biases strongly affect the model performance. By randomly inserting
identified biases into training samples, we demonstrated that TDA significantly reduced bias measures by two times to
more than 50 times, with only a negligible increase in the error rate. We performed our research on three model families:
EfficientNet, DenseNet and Vision Transformer.
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1. Introduction

It is well known that when designing a model, an
appropriate selection of data used to identify their
parameters is crucial, especially for data-driven models.
The most widely used data-driven models are neural
network models. Their parameters are identified in the
training process using the available data. One of the issues
we have to deal with during training is the presence of bias
in the gathered data. Its presence always results in errors
during the development and later model use. Detecting
and mitigating biases involves a variety of approaches,
including collecting diverse datasets, carefully selecting
and designing algorithms, using models that are as
transparent as possible, employing explainable AI, and
continuously monitoring decision-making processes. This
article focuses on reducing the impact of data bias on
model performance and generalization ability by applying
a unique approach to utilize the data augmentation
approach.

Data augmentation is widely used in deep
learning-based systems in cases where we have too
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little data to identify model parameters optimally. In
the case of computer vision applications, images are
usually augmented by simple linear transformations,
color augmentations, and sometimes with more advanced
methods such as cutout or neural transformations (Shorten
and Khoshgoftaar, 2019). Data augmentation increases
model efficiency when analyzed using standard evaluation
metrics such as accuracy, precision, or recall. Moreover,
it contributes to overcoming the impact of biases.

In this paper, we propose the targeted data
augmentation (TDA) method to mitigate selected biases
in data, resulting in more robust classification. Bias
refers to systematic deviations in data that affect model
performance, which can include repetitive artifacts.
Artifacts are physical elements in images that might
introduce bias by creating spurious correlations. The term
“bias in data” mainly refers to four of the most common
data biases in machine learning: observer bias (Mahtani
et al., 2018), which may appear when annotators are
guided by their own opinions to label data; sampling bias,
when data are acquired in such a way that not all samples
have the same sampling probability (Mehrabi et al., 2021);
data handling bias, when the way of handling data distorts
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the classifier’s output; and instrument bias, which refers
to imperfections in the instrument and/or method used to
collect the data (He and van de Vijver, 2012).

The occurrence of bias in data is an ordinary, often
unnoticed, and underestimated problem that degrades
or distorts results (Gao et al., 2020; Luengo-Oroz
et al., 2021; Surówka and Ogorzałek, 2022). In
general, identifying and removing biases is a tedious and
challenging task. In addition, the process of eliminating
biases, such as removing hair from skin lesion images
or camera reflections from an image, results in some
remaining biases or the appearance of new artifacts, which
in turn are challenging to retouch even with advanced
methods such as image inpainting (Bissoto et al., 2020;
Bardou et al., 2022). Therefore, an opposite approach
seems attractive and reasonable. This paper proposes a
concept that focuses on enriching the training sets with
selected biases, forcing the model to ignore them.

This approach, called TDA, breaks the cycle
of mistaking correlation with causation by disrupting
spurious correlations. If one randomly adds biases
to the input during training, the model will treat the
bias-connected features as irrelevant. The methodology
behind TDA consists of four steps: bias identification
(Step 1), augmentation policy design (Step 2), training
with data augmentation (Step 3), and model evaluation
(Step 4).

Identifying bias in data includes a preliminary,
supervised step that aims to detect possible unwanted
biases in data. To achieve this, we used manual data
exploration. Regarding the skin lesion dataset, we
manually labeled 2,000 skin lesion images, while the face
dataset was labeled automatically using a trained glasses
detection model.

Then, according to the detected biases, we applied an
augmentation policy to mimic them and inject them into
the training data. In short, we propose to insert biases into
the training data instead of removing them. To evaluate
quantitatively the effect, after the training, we measured
the bias with the counterfactual bias insertion (CBI)
method introduced by Mikołajczyk et al. (2021). While
previous studies (e.g., Mikołajczyk et al., 2021) focused
on detecting biases and assessing their impact on model
performance, they did not explore methods for mitigating
them through data augmentation. By contrast, our
proposed TDA method actively addresses bias mitigation
by skillfully inserting biases during training to enhance
model robustness.

Our method has shown a significant drop in bias
measures. In classification using a model trained with
TDA, two to over fifty times fewer images switched
classes compared with classification using a model trained
classically. Moreover, training with TDA resulted in only
a slight increase in the error rate.

The contributions of this paper can be defined as

follows:

• proposing a bias mitigation method that can easily
complement the machine learning pipeline;

• introducing a bias mitigation benchmark that
includes two datasets, the publicly available code
for TDA and CBI, detailed results, and prepared
collections of masks and images to serve as a
benchmark for bias testing;

• identifying and confirming the existence of bias in
the gender classification dataset;

• demonstrating that some models are more prone to
capturing biases in the data, and this tendency is not
always well reflected in standard evaluation metrics;

• mitigating biases related to black frames and ruler
marks in the skin lesion dataset and glasses in the
face dataset.

The paper is organized as follows. We describe the
related works referenced in Section 2, while in Section 3,
we introduce the reader to the proposed TDA method
and the analyzed datasets. The details of the conducted
experiments are presented in Section 4, while the results
are presented in Section 5; finally, we formulate the
conclusions in Section 6.

2. Related works
2.1. Bias mitigation. It is well documented that
models, in most cases, reflect the biases in data and
even amplify them (Zhao et al., 2017). Commonly,
biases are often subtle, and their potential impact on
the performance of the models is complex and not
fully understood, especially in cases when the model
demonstrates high-accuracy results. Bias mitigation
methods from classical literature usually operate on
simple, linear models (Wang et al., 2020) that are not
applicable to deep learning models.

Data pre-processing approaches. The most obvious
solution at first glance is to identify and remove all the
biases (e.g., features or artifacts) at the pre-processing
stage before training the models. This approach, fairness
through blindness, was proposed by Wang et al. (2020). It
is based on the idea that we can remove potentially biasing
variables from the input data. For instance, we could
remove information about a candidate’s gender when
evaluating a potential job candidate’s résumé. However,
in practice, this is not sufficient because some information
about gender might be encoded in the résumé, e.g.,
feminine hobbies connected to gender or gender-specific
adjectives. Moreover, removing all potential biases is
often difficult, if not impossible, especially in computer
vision. One of the applications in which the problem



Targeted data augmentation for improving model robustness 145

1 Identify and confirm potential biases e.g. with
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Fig. 1. Pipeline of the proposed targeted data augmentation (TDA) method for bias mitigation. The process involves four main steps:
bias identification, where potential biases in the dataset are detected and measured using methods like counterfactual bias
insertion for validation (1); augmentation policy design, where strategies are developed to introduce identified biases into the
training data in a controlled manner (2); training with TDA, where the model is trained on data augmented with the biases
according to the designed policy (3); and model evaluation, where the trained model is evaluated using standard metrics and
CBI is employed again to assess the effectiveness of TDA in mitigating bias influence (4). This pipeline illustrates how TDA
integrates bias identification and mitigation into the machine learning workflow, with CBI serving as a tool for both initial bias
measurement and post-training evaluation. GEBI stands for global explanations for bias identification.

of artifact removal has been analyzed for many years is
skin lesion analysis for possible cancer detection (Abbas
et al., 2011; Oliveira et al., 2016).

Adversarial debiasing techniques. Another branch of
approaches is adversarial bias mitigation, such as the
supervised learning method proposed by Zhang et al.
(2018). The task is to predict an output variable Y
given an input variable X while remaining unbiased with
respect to some variable Z . This approach uses the
output layer of the predictor as an input to another model
called the adversary network, which attempts to predict
Z . This idea was further improved by Le Bras et al.
(2020), who proposed the concept of adversarial debiasing
filters. Their algorithm uses linear classifiers trained
on different random data subsets at each filtering phase.
Then, the linear classifier’s predictions are collected, and
a predictability score is calculated. High predictability
scores are undesirable as their feature representation can
be negatively exploited. Hence, Le Bras et al. (2020)
proposed simply removing the top n instances with the
highest scores. The above process can be repeated several
times to reduce the bias influence.

Attention-based methods. Finally, there are a number of
attempts to exploit the advantages of attention guidance.

Early works on attention guidance in computer vision
focused on improving segmentation tasks (Huang et al.,
2019), enhancing classification using attention approaches
from natural language processing (Barata et al., 2019),
or even using attention maps to zoom closer to regions
of interest (Li et al., 2019). The guidance provided by
attention maps highlights relevant regions and suppresses
unimportant ones, thus enabling better classification.
A similar method is based on self-erasing networks
that prohibit attention from spreading to unexpected
background regions by erasing unwanted areas (Hou et al.,
2018). Some researchers have proposed different ways
to solve this problem, such as rule extraction, built-in
knowledge, or built-in graphs (Chai and Li, 2020).

Other methods. Similarly, this problem is actively
analyzed by many researchers in other fields and
applications. Zhao et al. (2017) proposed an inference
update scheme to match a target distribution to remove
bias. Their method introduces corpus-level constraints so
that selected features co-occur no more frequently than
in the original training distribution. Dwork et al. (2018)
proposed a scheme for decoupling classifiers that can be
added to any black-box machine learning algorithm and
then used to learn different classifiers for different groups.
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Mikołajczyk et al. (2021) introduced the CBI method
to detect and measure the influence of biases in datasets.
However, their work did not propose any strategies for
mitigating these biases. Our TDA method builds upon
the understanding of biases revealed by CBI but innovates
by introducing a data augmentation strategy specifically
designed for bias mitigation.

Building on these approaches, we propose an
alternative solution to increase the robustness of
models by artificially introducing appropriately prepared,
purpose-biased data into the analyzed dataset. We
introduce our TDA method for bias mitigation (see
Fig. 1). We have conducted experiments on two datasets
to validate the approach: the International Skin Imaging
Collaboration 2020 skin lesion benchmark (ISIC, 2020)
and the gender classification dataset (Chauhan, 2019).

2.2. Comparison with existing bias mitigation meth-
ods. As described in the previous section, several
methods have been proposed to mitigate biases in machine
learning models. Adversarial debiasing methods, such
as those introduced by Zhang et al. (2018), employ
adversarial networks to remove sensitive information from
learned representations. While effective in some cases,
these methods often require complex training procedures
and modifications to the model architecture, which can be
computationally intensive and challenging to implement.
Attention-based techniques, like the work by Barata
et al. (2019), utilize attention mechanisms to focus the
model on relevant, unbiased features. This can improve
interpretability and reduce the impact of biases but may
not fully eliminate the influence of spurious correlations,
especially when biases are subtle or pervasive in the
dataset.

Data pre-processing approaches, such as fairness
through blindness (Wang et al., 2020), attempt to remove
selected attributes or biases from the dataset before
training. However, removing all potential biases is
often nearly impossible, and pre-processing methods
can either inadvertently discard important information
or introduce new artifacts. Other methods (e.g., Zhao
et al., 2017) that addressed bias amplification in language
models by introducing corpus-level constraints might be
effective for textual data, but applying such constraints to
deep learning models handling high-dimensional image
data is non-trivial. The method would require careful
crafting of constraints and may not scale well to large
datasets common in computer vision tasks. Similarly,
the proposed decoupled classifiers to achieve fairness by
training separate classifiers for different groups (Dwork
et al., 2018), reduce bias by ensuring that each group is
modeled independently. In that case the method relies
on having explicit group labels and results in increased
model complexity and maintenance efforts. It may also
become less practical in cases where there is a huge

disproportion of the number of samples per class, like in
the benign/malignant skin lesion classification.

In contrast, our proposed TDA method offers a
straightforward and practical approach to bias mitigation.
Hence, by intentionally introducing biases into the
training data in a controlled manner, TDA reduces
the model’s reliance on spurious correlations without
altering the model architecture or requiring extensive
modifications to the training procedure. This makes TDA
easy to integrate into existing pipelines and applicable to a
wide range of models and datasets. Moreover, TDA could
even be used along with those methods to further improve
the training.

2.3. Bias in datasets. There is a limited number of
communications on defining biases in datasets. Torralba
and Efros (2011) examined cross-dataset generalization
on popular benchmarks by evaluating the performance
of the ‘car’ and ‘person’ classes when training on one
dataset and testing on another. Regarding the skin lesion
classification problem, the existence and influence of bias
in skin lesion datasets have been previously analyzed
by some researchers, yet the problem has not been
thoroughly investigated and explained yet. Bissoto et al.
(2019; 2020) conducted research on biases in skin lesion
benchmarks and their impact on the quality of model
performance. They showed that existing dermoscopy
artifacts, such as frames, gel bubbles, or ruler marks,
distort the results and are a common source of bias in data.

Van Molle et al. (2018) proved that the model,
in addition to medically relevant features, was driven
by artifacts such as specular reflections, gel application
and rulers. Mikołajczyk et al. (2022) showed that
there is a strong correlation between artifacts such as
black frames and ruler marks and the skin lesion type
(benign/malignant). They showed that models trained
on biased data learned spurious correlations, resulting in
more errors in images with such artifacts. Barata et al.
(2019) proposed a hierarchical classification model for the
diagnosis of skin lesions with attention maps that helped
interpret the results. They showed that the system is
able to identify clinically relevant regions in the lesions
and biasing features. Mikołajczyk et al. (2021) proposed
the global explanations for bias identification (GEBI)
method, which can be used for the detection of bias in
data or in model behavior. Based on a skin lesion case
study, they showed that the method could detect dataset
artifacts. In that paper, the authors also proposed injecting
artificial artifacts such as black frames, ruler marks, and
red circles to measure the model’s robustness against
those biases. Finally, Bissoto et al. (2020) conducted
a comprehensive analysis of seven visual artifacts and
their influence on deep learning models and employed
debiasing methods to decrease their impact on model
performance. Unfortunately, they concluded that the
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existing state-of-the-art methods for bias removal are not
capable of handling these biases effectively.

Data used in the paper. The International Skin Imag-
ing Collaboration 2020 benchmark (ISIC, 2020) is the
largest skin lesion dataset divided into two classes:
benign and malignant. It contains 33,126 dermoscopic
images from over 2,000 patients. The diagnoses were
confirmed either by histopathology, expert agreement, or
longitudinal follow-up. ISIC gathered the dataset from
several medical facilities. The dataset was used in the
SIIM-ISIC Melanoma Classification Challenge (Zawacki
et al., 2020). The lesion is usually in the center and
clearly visible in the images. Examples of artefacts
in this dataset that may introduce bias into the model
include hair, frames, rulers, pen marks, and gel drops.
Past research showed that frames are correlated with
the malignant class and ruler marks with the benign
(Mikołajczyk et al., 2022).

The gender classification dataset (Chauhan, 2019)
consists of cropped images of male and female faces.
The data were collected from various Internet sources. It
contains 47 009 images in the training set (23 766 male,
23 243 female) and 11 649 images in the testing set (5 808
male, 5 841 female), with a similar distribution between
female and male subsets. The images are frontal portraits
of individuals. We have discovered that glasses are a
possible bias source, as subjects wore them more often
than actresses.

3. Targeted data augmentation
Within the framework of the proposed TDA method,
we specify the following stages: bias identification,
augmentation policy design, training with TDA, and
finally, model evaluation. The TDA pipeline is presented
in Fig. 1.

Bias identification is a preliminary, supervised step
in which we aim to detect unwanted biases within the
data. In our case, we manually explored the data to
detect potential biases such as black frames and rulers in
skin lesion images or glasses in face images. To confirm
and measure the influence of these biases, we employed
our CBI method introduced in Mikołajczyk et al. (2021).
It is important to note that, while our previous work
focused on bias detection and measuring bias influence
using methods like CBI, they did not propose any bias
mitigation strategies involving data augmentation. By
contrast, our work introduces TDA as a novel bias
mitigation method that utilizes data augmentation to
improve model robustness.

In the next step, augmentation policy design, we
develop a strategy for how to augment the data to mitigate
the identified biases. This involves specifying which
features will be modified and determining the method of
modification. For example, we might decide to add a

black frame to skin lesion images or glasses to face images
to disrupt any spurious correlations between these artifacts
and the target classes.

Then, we proceed to train with targeted data aug-
mentation. This process involves randomly adding the
specified biases to the training data according to the
designed augmentation policy. By artificially introducing
these biases during training, we aim to make them less
correlated with a given class and increase randomness,
thereby encouraging the model to focus on the relevant
features. This step is a key contribution of our work, as
previous studies did not incorporate data augmentation for
bias mitigation.

Finally, in the model evaluation stage, we assess the
performance of the model trained with TDA. We compare
its performance with that of a model trained without
TDA using standard evaluation metrics. To measure the
remaining bias influence after applying TDA, we use the
CBI method as an evaluation tool. Here, CBI allows us to
quantify the effectiveness of TDA in mitigating bias, but
it is not part of the TDA method itself.

3.1. Bias identification. The key to successful
bias-targeted data augmentation is to thoroughly identify
potential biases and their sources. This can be done
through manual inspection of data, with the aid of global
explanation methods (e.g., GEBI (Mikołajczyk et al.,
2021)).

In this paper, we selected potential biases through
manual data analysis. To make it more objective, the
manual data inspection process was based on three basic
metrics: artifact cardinality, artifact ratio, and class ratio.

Cardinality of artifacts. The cardinality of artifacts
within a class is the total number of elements (images) in
which a certain artifact is present. The cardinality cannot
exceed the number of images annotated per class.

Artifact ratio. The artifact ratio Qartifact is the number of
images with certain artifacts divided by the total number
of images investigated. The artifact ratio shows how many
samples have a certain artifact out of all. The artifact ratios
are calculated separately for each class.

Class ratio. The class ratio Qclass is equal to the fraction
of artifact ratios from two classes C1 and C2:

Qclass, artifact =
Qartifact,C1

Qartifact,C2
. (1)

A class ratio close to one means that both the classes
have the same incidence of artifacts. A significantly lower
or higher class ratio means that the examined artifact is
more common in one class than in the other.

3.2. Augmentation policy design. An augmentation
policy should describe what feature is being modified and
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how to modify it. This can include modifying features,
adding elements, and swapping categorical feature values.

For instance, if we recognize a potential bias based
on the feature called country-of-origin, we can randomly
modify the country-of-origin value during the training
(i.e., randomly switch Poland to China). If we suppose
that the bias in a bird song classification comes from city
sounds when classifying pigeon songs (since pigeons are
often recorded in cities unlike other bird species), then
we might randomly add city noises to samples. If the
algorithm is biased toward a certain age (i.e., works well
on people aged 16–18 but poorly on 19-year-olds), we can
modify the age values within a certain range.

In the reported research, we focused on examining
two image classification problems: skin lesion
classification and gender classification. After discovering
the biasing factors, we decided to augment the first dataset
with ruler marks and black frames and the second one
with glasses.

Frame augmentation. Frames, also known as dark
corners, are black or white round markings around the
skin lesions, black rectangular edges, and vignettes. We
focused on the black round and rectangular markings
of different sizes and shapes. We performed the frame
augmentation by randomly inserting different types of
black frames during training. Additionally, each frame
was randomly scaled and rotated. We used six different
types of frames during training and a separate set of five
frames for the evaluation procedure.

Ruler augmentation. The ruler marks are partially or
fully visible ruler markings of different shapes and colors
that can be found throughout the dermoscopic skin lesion
datasets. We used pairs of images and segmentation
masks of rulers from a designated subset of data to copy
rulers from the source image to the target image. This
enabled us to achieve good augmentation quality without
a significant increase in computing time. Similarly to
the previous case, the segmentation masks were randomly
scaled and rotated.

Glasses augmentation. Glasses are objects that may be
visible in the face image but do not belong to the face
itself. In this research, we randomly inserted masks of
different types of glasses, including sunglasses, into the
image at eye level. In accordance with Wesker et al.
(2015), the mask was placed at one-third of a human face
from the top (i.e., at eye level). It was not randomly
rotated nor scaled, as this could result in a strange position
of the glasses relative to the face. We provided thirty
different masks for training and eight other masks for
evaluation.

Examples of black frames, rulers, and glasses
augmentation are shown in Fig. 2.

Ruler augmentation

Black frame augmentation

Glasses augmentation

Fig. 2. Example augmentations.

3.3. Training with targeted data augmentation.
Training using TDA is almost identical to any other
classical training. It requires a designed augmentation
method that specifically targets bias. It can be used
alongside other data augmentation methods and bias
mitigation techniques. As the purpose of TDA is to
mitigate spurious correlations between chosen features
and outputs, it should be applied randomly, with a selected
probability p.

3.4. Bias evaluation. Bias evaluation is an important
step in bias mitigation pipelines. Here, we measured the
bias influence with CBI (Mikołajczyk et al., 2021).

The model’s prediction for the original input is
compared with its prediction on the distorted input with
the inserted bias. The steps of CBI are as follows. First,
compute the predictions p for all samples from the dataset
and store them. Next, insert the examined bias into every
sample, and compute the predictions pbiased for all biased
samples. Finally, compare the original predictions with
the biased predictions.

Ideally, the model’s predictions should remain the
same after inserting minor artifacts or small data shifts.
An example of inserting black frames into a skin lesion
image is presented in Fig. 3.

The most basic measure proposed is the difference
between the F1 score values of the original samples and
the F aug

1 values calculated for samples with the inserted
bias.

Ideally, F aug
1 should be the same as F1, which means

that adding the bias to the data does not change the
model’s performance. Significant differences between
F aug
1 and F1 scores indicate greater susceptibility to bias.

The Fmean
1 index, which is the average of F1 and F

aug
1 ,

shows how well the model performs on both the original
and modified data.

An additional measure proposed in the paper is the
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Evaluate change in prediction

Fig. 3. Counterfactual bias insertion example.

number of switched classes. A prediction is considered
switched when the predicted class has changed after
inserting the bias. If the dataset is not biased with
respect to the artifact under study, the number of switched
classes should remain zero. The number of switched
classes does not test the accuracy or correctness of the
predicted category but only assesses the effect of bias on
the prediction.

A switched class is defined as follows:

switched(k) =

{
1 if cout

pk
�= cbiased

pk
,

0 otherwise,
(2)

where coutpk is the predicted class (based on prediction
pk) for input k, and cbiasedpk is the predicted class for the
biased input k.

4. Experiments
We designed experiments to measure to what extent the
TDA method helps mitigate biases, how the augmentation
probability influences the results, and whether the
obtained results differ between the considered models.
Following the TDA pipeline, we first carefully identified
the potential biases, i.e., frames and rulers in the skin
lesion dataset and glasses in the gender dataset.

After bias identification, we measured the influence
of the detected biases with the CBI. We added the artifacts
to all images and measured the resulting change in the
predictions. In the case of a perfect classifier, adding
artifacts such as a black frame or a ruler mark to the image
of a skin lesion, or eyeglasses to the image of a person,
should not change the prediction.

After completing this step, we proceeded to the
augmentation policy design. For this purpose, we used
the augmentation methods described in the augmentation
policy design (Section 3.2). We carefully prepared a
separate subset of biases for training and testing for each

dataset to avoid data leakage. For training, we applied
rotations, zoom-in/out, and other modifications of the
masks (in the case of skin lesions). We inserted each bias
with a certain probability p, depending on the training.
When testing two different biases on the skin lesion
dataset, we augmented each bias separately.

We selected three model families: EfficientNet (Tan
and Le, 2019), DenseNet (Huang et al., 2016), and Vision
Transformer (ViT) (Dosovitskiy et al., 2021), and trained
on the same dataset, either using classical training or
with bias augmentation, with identical hyperparameters.
During the evaluation, we compared the results on clean
images without the bias (p = 0.0) with those on images
with inserted biases (p = 1.0), using unmodified masks
to avoid unnecessary randomness. We averaged the
obtained results for each bias. We used the switched
metric introduced in Section 3.4 to measure how many
predictions changed after adding the bias to the data.

4.1. Skin lesion classification. In the case of the skin
lesion dataset, the relevant literature shows that black
frames are correlated with malignant lesions and ruler
marks with the benign class (Mikołajczyk et al., 2022).

This finding was further supported by our research,
where we hand-labeled an additional 2,000 samples.
Table 1 presents the results of these 2,000 images
with annotations aggregated with public labels from
(Mikołajczyk et al., 2022).

The metrics used for comparison were the cardinality
of artifacts, artifact ratio, and class ratio introduced in
Section 3.1. Statistics show that frames are not only a very
common artifact but are also strongly correlated with the
malignancy class. The total number of images with frames
is about 5% for the benign class and 26% for malignant,
for malignant, meaning that frames are five times more
common in malignant cases (Qclass ≈ 5.01). Ruler marks
are even more common but less correlated with the skin
lesion type than frames, with Qclass ≈ 1.39. This confirms
the presence of potentially biasing features that may affect
the models.

Then, we conducted CBI experiments to measure
how bias affects the models. For each test image, we
inserted five different types of frames or ruler masks into
the data and measured the effect of inserting the given
bias. We present the averaged results (with augmentation
probability p = 0.0) in Table 2.

The obtained results clearly show that all three
architectures were strongly affected by inserting the
frames. Each neural model had a significantly lower F1

score after bias insertion: the smallest difference was
F diff
1 = 12.7% for EfficientNet, then a larger difference

of 36.3% for DenseNet, and finally 56.62% for the Vision
Transformer (ViT). A higher difference means a greater
influence of the inserted bias on the prediction. In all
measured cases, predictions were strongly affected by the
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Table 1. Aggregated annotations from the work of Mikołajczyk et al. (2022) and manually annotated artifacts in the skin lesion dataset
ISIC 2019 (Combalia et al., 2019; Codella et al., 2018; Tschandl et al., 2018) and ISIC 2020 (ISIC, 2020). Ben and mal stand
for benign and malignant, respectively.

Type |ben| Qartifact |mal| Qartifact Qclass

Frame 104 5.20% 521 26.05% 5.01
Hair 958 47.88% 868 43.40% 0.91
Ruler 422 21.09% 586 29.30% 1.39
Others 426 21.29% 818 40.90% 1.92
None 538 26.89% 268 13.40% 0.50
Total (artifacts) 2448 3061
Total (images) 2001 2000

biases. Almost all samples switched from the benign to
malignant class after inserting the frame bias.

Similarly, when testing the ruler insertion, we
observed a drop in accuracy, although not as large as in
the case of the frames. Depending on the neural model’s
architecture, the mean difference between F1 and F aug

1

was approximately 5% for DenseNet, around 13% for
EfficientNet, and only 1.4% for ViT. Most of the cases
with inserted ruler marks switched from malignant to
benign. These observations point out the need for bias
mitigation. For this purpose, we used segmentation masks
with ruler marks to mitigate ruler bias and six masks of
frames. The training details are described in Section 4.3
and the results of training are gathered in Table 2.

In all examined cases, training with TDA resulted in
a significant decrease in switched predictions, as well as
an increase in F aug

1 , and sometimes even an increase in
F1. The effect of frame bias, as measured by the switched
metric, decreased by a factor of 38 (from almost 2,000
cases to only 50) in DenseNet, 2.7 times for EfficientNet,
and an impressive 57 times for ViT. In the case of ruler
marks, we observed a notable decrease in switched values:
by a factor of 1.8 for DenseNet and EfficientNet, and by a
factor of 5 for ViT.

4.2. Gender classification. To measure the bias
towards glasses in the gender classification dataset, we
additionally annotated a small subsample of this dataset
for the presence of eyeglasses. We used this along with
the glasses or no glasses dataset,1 which was generated
by a generative adversarial network (GAN), to train an
EfficientNet-B2 model to detect images with glasses. The
final glasses classifier achieved a high performance score
of about F1 ≈ 0.96. We automatically annotated the
gender dataset using this classifier and compared the
metrics between samples in both gender categories. This
confirmed our hypothesis about the bias in the dataset.
The results are presented in Table 3.

1Glasses or no glasses dataset: https://www.kaggle.com/d
atasets/jeffheaton/glasses-or-no-glasses (from the
course T81-855: Applications of Deep Learning at Washington Univer-
sity in St. Louis).

Glasses are not very common in this dataset, the
total number of images with glasses is less than 12% for
men and a little over 1% for women. However, glasses
are over seven times more common (Qclass ≈ 7.79) in
images of men than in images of women. This makes it
the strongest single trait disparity between classes in the
present comparison.

Since the total number of images with glasses in
the dataset is quite small, we additionally conducted CBI
experiments to confirm this hypothesis. For each test
image, we inserted nine different types of glasses and
measured the effect of bias. The averaged results (with
augmentation probability p = 0.0) are gathered in Table 4.

We confirmed that, similarly to the skin lesion
dataset, all models were affected by glasses insertion –
a feature that theoretically should not affect the result.
Each model had a lower F1 score after the insertion of
the bias: F diff

1 was equal to 4.93 for DenseNet, 4.6 for
EfficientNet, and 1.21 for ViT. Consequently, almost all
model predictions for selected samples, switched from
the female to the male class, once again confirming the
correlation between glasses and gender.

We used 30 masks with both corrective glasses and
sunglasses to test the bias mitigation algorithm on this
dataset. The training details are described in Section 4.3,
while the results of the training are reported in Table 4.

In all the tested cases, training with TDA resulted in a
significant decrease in switched predictions, as well as an
increase in F

aug
1 , and even sometimes in F1. The glasses

bias, represented by the switched metric, decreased 3.8
times for DenseNet, 3.3 times for EfficientNet, and 1.8
times for ViT. This shows that even in task where bias
does not occur very often, TDA can have a positive effect.

4.3. Training details. We performed the experiments
using the ISIC 2020 and gender classification datasets
described in Section 2.3. In the case of skin lesion
classification, we applied 411 ruler segmentation masks
from (Ramella, 2021) which were published in open
repositories.

We tested and trained three different architectures:

https://www.kaggle.com/datasets/jeffheaton/glasses-or-no-glasses
https://www.kaggle.com/datasets/jeffheaton/glasses-or-no-glasses
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Table 2. Counterfactual bias insertion results on frame and ruler bias testing with and without targeted data augmentation: ‘ben’ and
‘mal’ stand for benign and malignant, respectively.

Model Type p switched mal to ben ben to mal F1 F
aug
1 F diff

1

DenseNet121 Frame 0 1928.8 25.61% 0.79% 99.21% 88.18% 51.88% 36.30%
0.25 68.0 0.90% 66.76% 33.24% 87.79% 85.50% 2.29%
0.5 49.8 0.66% 59.84% 40.16% 88.22% 87.11% 1.11%

0.75 82.0 1.09% 11.95% 88.05% 88.54% 88.29% 0.24%
1 73.6 0.98% 70.65% 29.35% 87.51% 86.66% 0.85%

Ruler 0 142.4 1.89% 78.51% 21.49% 89.62% 84.82% 4.80%
0.25 77.2 1.03% 86.01% 13.99% 89.84% 88.31% 1.52%
0.5 92 1.22% 90.87% 9.13% 88.92% 88.58% 0.34%

0.75 77.8 1.03% 83.03% 16.97% 90.40% 89.01% 1.39%
1 86.6 1.15% 90.30% 9.70% 88.60% 88.60% -0.01%

EfficientNet-B2 Frame 0 504.2 6.70% 4.72% 95.28% 86.56% 73.81% 12.76%
0.25 187.0 2.48% 8.34% 91.66% 83.23% 78.61% 4.62%
0.5 310.0 4.12% 12.97% 87.03% 79.06% 73.22% 5.84%

0.75 411.8 5.47% 41.04% 58.96% 78.12% 78.00% 0.11%
1 204.8 2.72% 9.57% 90.43% 73.02% 72.90% 0.12%

Ruler 0 173.4 2.30% 97.00% 3.00% 87.89% 76.67% 11.22%
0.25 167.2 2.22% 95.81% 4.19% 87.92% 79.39% 8.52%
0.5 157.4 2.09% 92.25% 7.75% 88.97% 81.64% 7.33%

0.75 171.2 2.27% 93.57% 6.43% 85.48% 75.67% 9.81%
1 93 1.24% 86.67% 13.33% 88.56% 86.55% 2.01%

ViT Frame 0 5014.2 66.59% 0.00% 100.00% 88.85% 32.22% 56.62%
0.25 187.0 2.48% 0.08% 91.66% 83.23% 78.61% 4.62%
0.5 161.2 2.14% 2.61% 97.39% 90.18% 86.88% 3.30%

0.75 115.8 1.54% 63.90% 36.10% 88.33% 87.77% 0.55%
1 87.2 1.16% 60.55% 39.45% 90.30% 88.49% 1.81%

Ruler 0 189.4 2.52% 93.24% 6.76% 88.85% 87.47% 1.38%
0.25 37.4 0.50% 63.64% 36.36% 79.87% 78.99% 0.88%
0.5 37 0.49% 69.19% 30.81% 80.30% 80.22% 0.08%

0.75 290 3.85% 96.97% 3.03% 78.94% 76.82% 2.12%
1 33.6 0.45% 25.00% 75.00% 78.76% 78.54% 0.22%

EfficientNet-B2, DenseNet121, and Vision Transformer
(base version, 16 patch, 224).

We trained all models for five epochs. Regarding the
hyperparameters, the learning rate was set to lr = 510−4

for EfficientNet-B2 and DenseNet121 and to lr = 510−5

for ViT. The step scheduler reduced the learning rate by
multiplying it by 0.9 every epoch. A batch size of 64
was used for skin lesion classification and 2 for gender
classification.

Depending on the experiment scenario, we
additionally randomly inserted the biases—a ruler,
a frame, and glasses—with different probabilities
p ∈ {0.0, 0.25, 0.5, 0.75, 1.0}.

4.4. Code and data availability. The code for
the targeted data augmentation and counterfactual bias
insertion methods, along with the scripts used for training
and evaluation, are publicly available in our GitHub

repository2.
Full datasets with all skin lesion artifacts annotations

(4k samples), used segmentation masks and eyeglasses,
and bias annotations are available to download in an
open-access repository3.

The datasets used in our experiments are publicly
accessible:

• ISIC 2020 skin lesion dataset,4

• gender classification dataset,5

2Repository of target data augmentation code: https://github
.com/AgaMiko/targeted-data-augmentations

3Bias mitigation data repository: https://mostwiedzy.pl/p
l/open-research-data/bias-mitigation-benchmark-
that-includes-two-datasets,227084836236401-0?_s
hare=322e9564d0341d8a

4ISIC 2020 skin lesion dataset: https://www.kaggle.com/c
/siim-isic-melanoma-classification/data.

5Gender classification dataset: https://www.kaggle.com/da
tasets/cashutosh/gender-classification-dataset.

https://github.com/AgaMiko/targeted-data-augmentations
https://github.com/AgaMiko/targeted-data-augmentations
https://mostwiedzy.pl/pl/open-research-data/bias-mitigation-benchmark-that-includes-two-datasets,227084836236401-0?_share=322e9564d0341d8a
https://mostwiedzy.pl/pl/open-research-data/bias-mitigation-benchmark-that-includes-two-datasets,227084836236401-0?_share=322e9564d0341d8a
https://mostwiedzy.pl/pl/open-research-data/bias-mitigation-benchmark-that-includes-two-datasets,227084836236401-0?_share=322e9564d0341d8a
https://mostwiedzy.pl/pl/open-research-data/bias-mitigation-benchmark-that-includes-two-datasets,227084836236401-0?_share=322e9564d0341d8a
https://www.kaggle.com/c/siim-isic-melanoma-classification/data
https://www.kaggle.com/c/siim-isic-melanoma-classification/data
https://www.kaggle.com/datasets/cashutosh/gender-classification-dataset
https://www.kaggle.com/datasets/cashutosh/gender-classification-dataset
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Table 3. Artifact statistics for a semi-automatically annotated gender classification dataset.
Type |male| Qartifact |female| Qartifact Qclass

Glasses 2659 11.19% 334 1.44% 7.79
None 21107 88.81% 22909 98.56% 0.90
Total 23766 23243

Table 4. Counterfactual bias insertion results on glasses bias testing with and without targeted data augmentation.
Model Type p switched mal to fem fem to mal F1 F aug

1 F diff
1

DenseNet121 Glasses 0 908.4 7.8% 9.98% 90.02% 96.90% 91.98% 4.93%
0.25 235.6 2.02% 55.99% 44.01% 96.95% 95.88% 1.07%
0.5 284.8 2.44% 44.56% 55.44% 98.78% 95.59% 1.18%

0.75 282.9 2.43% 53.02% 46.98% 96.19% 95.27% 0.92%
1 337.4 2.90% 26.24% 73.76% 93.42% 94.14% 0.71%

EfficientNet-B2 Glasses 0 800.9 6.88% 21.24% 78.76% 96.41% 91.81% 4.60%
0.25 300.7 2.58% 54.36% 45.64% 96.90% 95.76% 1.15%
0.5 273.6 2.35% 53.57% 46.43% 96.62% 95.49% 1.12%

0.75 237.4 2.04% 39.07% 60.93% 96.66% 95.69% 0.97%
1 333.7 2.86% 63.97% 36.03% 95.59% 95.45% 0.13%

ViT Glasses 0 262.1 2.25% 11.45% 88.55% 97.69% 96.48% 1.21%
0.25 187.1 1.61% 14.31% 85.69% 97.62% 96.90% 0.72%
0.5 160.3 1.38% 27.10% 72.90% 97.31% 96.80% 0.51%

0.75 178.9 1.54% 37.33% 62.67% 97.17% 96.66% 0.51%
1 144.6 1.24% 24.52% 75.48% 97.34% 96.88% 0.46%

• segmentation masks of hair and rulers,6

• skin lesion artifacts annotations (2k samples)
(Mikołajczyk et al., 2022).7

Detailed instructions for reproducing our
experiments are provided in the README file of
the code repository.

5. Results
The results from the experiments suggest that various
neural network architectures exhibit different degrees
of susceptibility to biases, and understanding the
architectural differences can provide insights into these
variations. Specifically, the vision transformer (ViT)
appears to be more affected by certain biases, such as
black frames, compared to convolutional architectures
like DenseNet121 and EfficientNet-B2. We suspect
that this discrepancy might arise due to the following
architectural distinctions:

• Convolutional networks (DenseNet121,
EfficientNet-B2). They rely on convolutional
layers that use local spatial hierarchies by applying
convolutional filters to usually small regions of the
input image. This localized filtering process allows

6Segmentation masks of hair and rulers: https://github.com
/gramella/HR.

7Manual annotations and public labels: https://github.com/
AgaMiko/debiasing-effect-of-gans.

CNNs to be more robust to small perturbations or
artifacts in the image, as the convolutional filters are
designed to focus on local patterns (e.g., textures,
edges, like gel blobs), rather than global features.

• Vision transformer (ViT). Unlike convolutional
networks, the ViT architecture processes an image
by splitting it into a few larger patches and applying
self-attention mechanisms across these patches.
Since the ViT does not inherently encode spatial
locality, it may be more prone to biases that are
globally distributed across the image, such as frames
or rulers. This lack of inductive bias towards
local spatial patterns makes ViT more vulnerable to
spurious correlations introduced by global artifacts
like frames. The self-attention mechanism may focus
disproportionately on these artifacts, interpreting
them as relevant features during classification.

The susceptibility of ViT to frame biases, in particular,
may be due to its global attention mechanism that
treats every patch of the image with equal importance,
potentially mistaking the repetitive nature of frames as
significant features. This explains why ViT showed
the largest drop in the F1 score after the insertion of
the frame bias, compared with the relatively smaller
drops in convolutional architectures (DenseNet121 and
EfficientNet-B2).

We observed an interesting trend that highlights
the importance of selecting an optimal probability for
applying the TDA. For most models, lower augmentation

https://github.com/gramella/HR
https://github.com/gramella/HR
https://github.com/AgaMiko/debiasing-effect-of-gans
https://github.com/AgaMiko/debiasing-effect-of-gans
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probability (p = 0.25 to 0.5) models were exposed to
the bias often enough to learn to ignore it, but not so
frequently that the model overfitted to the augmented data.
This balance helped improve robustness while keeping
the error rates low. For example, DenseNet121 and
EfficientNet-B2 showed the most consistent reduction in
the number of switched classes and minimal differences
between F1 and F aug

1 at p = 0.5. At higher probabilities
(p = 0.75 to 1.0), where the model was exposed to biases
in almost every training sample, the effectiveness of the
augmentation diminished slightly. Although the models
became robust to the biases they were trained on, their
performance on clean, unmodified images sometimes
decreased suggesting that overexposure to the biases can
lead to model overfitting to the augmented data, limiting
its ability to generalize to clean data. This shows that a
probability in the mid-range (p = 0.5) generally offered
the best trade-off between robustness and accuracy across
the tested models.

6. Conclusions
The robustness of a neural network model refers to its
ability to remain effective even when it is subjected to data
with distributions different from those on which it was
trained, containing artefacts (visible or hidden), noise or
clear imbalances. In general, biases present in the training
data weaken the robustness, particularly hampering the
model’s ability to generalise since it learns patterns
specific to the biases, which can lead to overfitting. In our
study, we focused on showing the impact of instrument
and sampling bias on model robustness in a classification
task. We confirmed our hypotheses regarding bias
influence by training the models on datasets and testing
them using the CBI method. The results showed that the
models are strongly affected by the biases selected for the
experiments, with the largest switched metrics observed
for the frame bias—a commonly observed artifact that is
strongly correlated with the malignant class. To mitigate
the discovered biases, we trained the models by randomly
inserting biases during the training.

Our experiments demonstrate that TDA effectively
reduces the influence of biases on model predictions,
as evidenced by significant decreases in the number
of switched classes and improved robustness measures.
Unlike adversarial debiasing, TDA does not require
additional adversarial networks or complex loss functions,
simplifying implementation and reducing computational
overhead. The TDA method is model-agnostic, allowing
it to be used with any neural network without modifying
the architecture. This contrasts with attention-based
methods, which may depend on specific model designs
or require additional components like attention layers.
Moreover, TDA does not rely on removing biases, which
can be impractical or introduce new issues. Instead, it

embraces the presence of biases by incorporating them
into the training process, teaching the model to ignore
these features during prediction. However, the method
also shares the limitation of any bias mitigation method,
that is, it requires manual effort for bias identification.

We examined three different deep neural network
architectures: DenseNet121, EfficientNet-B2, and Vision
Transformer (ViT). All of them exhibited similar
behaviour when subjected to TDA. All models showed
significant improvement in terms of robustness to bias
after training with TDA. Notably, the vision transformer
was strongly influenced by frame and ruler biases, yet
was the least affected by the glasses bias. This was
most likely due to architectural differences between these
networks, as ViT does not include convolution layers in
its design. The results have shown that the F1 score is
not always the best indicator of robustness. For instance,
the ViT model with the highest F1 values was the most
affected model by the frame bias. This indicates the need
for careful and comprehensive model evaluation, beyond
standard performance metrics. Future work could include
automating the bias identification and annotation process,
testing how TDA handle multiple biases simultaneously,
and exploring the applicability of TDA in other domains
or with other types of data (e.g., textual data).

An interesting point relates to the augmentation
probability coefficient p. In each case, experiments with
p > 0 resulted in a reduction of the switched metric, and
in most cases, p within the range 0.25 to 0.75 gave the
best results. Similarly, using TDA reduced the difference
betweenF1 andF aug

1 , which is a clear evidence supporting
the postulated immunization of the model to the bias in the
analyzed data.

In this paper, we propose a new and effective
method for mitigating biases called TDA. Although this
method requires partial manual user involvement, it
can successfully debias models without removing biases
(e.g., artifacts) from inputs. Furthermore, we propose
confirming the manual bias identification using CBI to
avoid improperly chosen bias factors.
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