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The rank constrained nonconvex nonsmooth matrix optimization problem is an important and challenging issue. To solve
it, we first design a penalty model in which the penalty term can be expressed as a sum of specific functions defined on
smallest singular values of the matrix in question. We prove that the global minimizers of this penalty model are the same
as those of the original problem. Second, we propose a flexible factorization format for the penalty function, such that the
model enjoys the merit of fast computation in a SVD-free manner. We further prove that the factorization format problem
is equivalent to the penalty one. A Bregman proximal gradient (BPG) method is developed for optimizing the factorization
model. Third, we use two application problems as examples to illustrate that the problem considered has a wide application.
Finally, some numerical experiments are conducted, and their results indicates the effectiveness of the proposed method.
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1. Introduction

The low-rank constrained matrix optimization problem
has a wide application in the fields of financial
engineering, image and video processing, machine
learning and data mining, and so on, because low rank
constraints can be used to find the intrinsic compact
structure embedded in the large-scale data (Ji et al., 2013;
Li and White, 2001; Nguyen, 2017; Wang et al., 2022). In
financial engineering, it is used to optimize portfolios and
manage risk, especially in the estimation of covariance
matrices in asset pricing and risk assessment. In the
field of image and video processing, low-rank matrix
estimation helps to extract signals from noise and is

*Corresponding author

used for data compression. In machine learning and
data mining, low-rank matrix factorization technology
is widely used in recommendation systems and data
completion, which improves the accuracy and efficiency
of data analysis. In this paper, we consider the following
rank constrained optimization problem:

min
X∈Rm×n

f (X) (1a)

subject to

rank (X) ≤ r, XTX � In, (1b)

where f : Rm×n → R
+ is proper, lower semicontinuous

and continuously differentiable. Here r ≤ min {m,n}
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is a given positive integer. The rank of matrix X is the
number of its nonzero singular values, i.e.,

rank (X) =

min{m,n}∑

i=1

σi(X)
0
,

where σi (X) is the i-th largest singular value and

x0 =

{
1 if x �= 0,

0 otherwise.

In is the n × n identity matrix. XTX � In means that

In − XTX is a positive semidefinite symmetric matrix,
which can be easily achieved by multiplying the matrix X
by a normalized constant. The feasible region of problem
(1) will be denoted by

Ω =

{
X ∈ R

m×n
∣∣ rank(X) ≤ r, XTX � In

}
.

The rank function is discontinuous and nonconvex,
generally making problem (1) difficult to solve. In the
past few decades, various approximations of the rank
function have been extensively studied. The nuclear
norm is a well-known convex approximation to the rank
function, which is the l1-norm of the singular value vector
(Candes et al., 2008; Gao and Sun, 2010; Recht et al.,
2011; Recht et al., 2010). It has been shown that under
certain incoherence assumptions on the singular vectors
of the matrix, the nuclear norm regularization problem
produces a near-optimal low-rank approximate solution
(Bolte et al., 2014). On the other hand, Fan and Li (2001)
show that l1-norm over-penalizes the large elements of
a vector. In addition, they also proposed three criteria
for determining a good penalty function: unbiasedness,
sparsity and continuity at the origin. The l1-norm satisfies
both sparsity and continuity requirements, but it is biased.
Similarly, the nuclear norm excessively penalizes large
singular values and is biased.

In recent years, nonconvex penalties have attracted a
lot of attention in sparse and low-rank learning problems
(Ülkü and Kizgut, 2018; Zhong et al., 2022), because
researchers believe that a possible solution to a nonconvex
problem can make up for the deficiency of a unique
solution to a convex problem. Therefore, the l1-norm
can be replaced by the lp-norm with 0 < p < 1
(Chartrand, 2007; Ji et al., 2013; Liang et al., 2022; Lu
et al. , 2015a; Xu et al., 2012), and the Schatten p-norm

‖X‖p =

⎛

⎝
min{m,n}∑

i=1

σi(X)
p

⎞

⎠
1/p

(0 < p < 1)

is proposed for approximating the rank function. There
are other nonconvex norms, such as the sum of the

logarithms of singular values

‖X‖log =

min{m,n}∑

i=1

log (σi (X)),

cf. (Candes et al., 2008; Fazel et al., 2003).
Jia et al. (2020) proposed a generalized unitarily

invariant gauge (GUIG) regularization

Gg (X) = inf

{
d∑

i=1

g (|λi|) :

X =

d∑

i=1

λiuivi
T, ‖ui‖2 = ‖vi‖2 = 1

}
(2)

for fast low-rank matrix recovery, where d is a parameter
satisfying rank (X) ≤ d ≤ min {m,n}; g (·) :
R

+= [0 +∞) → R is a bounded function. The rank-one
matrix decomposition X =

∑d
i=1 λiuivi

T is not unique.
SVD leads to a decomposition, which imposes orthogonal
constraint on the factors ui and vi. Note that in
(2), the orthogonality of the factors ui and vi is not
enforced. The authors presented some conditions for
function g under which Gg (X) can be expressed as
Gg (X) =

∑d
i=1 g [σi (X)] (g(0) = 0 is assumed).

This regularization term is more general and covers the
cases such as the rank function (g (x) = x0), the
nuclear norm (g (x) = x), the Schatten p-norm (g (x) =
xp (0 < p < 1)), and the log sum of singular values
(g (x) = log x).

All of the above works consider the low-rank
constraint from the viewpoint of enforcing the sparsity
of singular value vector by minimizing the sum of
specific functions with the first few largest singular
values. However, simply taking these functions as
penalty terms and adding to the objective function f (X)
does not guarantee that a solution satisfies the constraint
rank (X) ≤ r since they aim to find an approximated
solution with the lowest possible rank rather than meet
the low-rank constraints exactly. In some problems that
require the rank of the approximation matrix to be as small
as possible, we can loosely set r to a sufficiently small
value according to the practical problems. However, in
some problems with strict requirements on the rank, for
example, in the sensor localization problem, the rank of
the approximation matrix is required to be strictly less
than or equal to 3 since the matrix is composed of the
position coordinates of the sensors. In these problems, the
constraint rank (X) ≤ r needs to be exactly satisfied.

Inspired by the relation

rank (X) ≤ r ⇔
min{m,n}∑

i=r+1

σi (X) = 0, (3)
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some authors propose to realize the low-rank constraint
by minimizing the sum of specific functions with the
last min {m,n} − r smallest singular values. A
penalty term

∑min{m,n}
i=r+1 σi (X) has been used by

Gao and Sun (2010) for solving a nearest low-rank
correlation matrix problem. In addition, the penalty
term

∑min{m,n}
i=r+1 σp

i (X) (0 < p < 1) has been discussed
by Liu et al. (2020) for solving a semidefinite-box
constrained low-rank matrix optimization problems.
Unfortunately, the optimization process for solving
these models includes singular value decomposition
(SVD), which always involves great computational cost.
Additionally, the computation procedure for solving these
model, especially in the fractional order norm case, is
also very complicated, and, therefore, unsuitable for
large-scale problems.

We propose the following penalty model for the
problem (1):

min
X∈C̄

Fμ (X) := f (X) +μRg (X) , (4)

where the penalty function

Rg (X) = inf

{
d∑

r+1

g (|λi|) :

X =

d∑

i=1

λiuivi
T , ‖ui‖2 = ‖vi‖2 = 1

}
.

The feasible region C̄ denotes the closure of C =
{X ∈ R

m×n| XTX ≺ I
}

which is a nonempty, convex
and open set in R

m×n. We prove that the penalty term
Rg (X) can be expressed as Rg (X) =

∑d
i=r+1 g [σi (X)]

under some conditions on function g. Therefore, it
generalizes the penalty functions used by Gao and Sun
(2010) and Liu et al. (2020), just like the way the penalty
function (2) generalizes the rank function, the nuclear
norm and Schatten-p norm, etc. Then the problem (4) can
be reformulated as

min
X∈C̄

F 1
μ (X) := f (X)+μ

d∑

i=r+1

g [σi (X)]. (5)

We further prove that problem (5) is an exact penalty
reformulation for problem (1) in terms of global solutions.
In addition, a flexible bilinear factorization formation for
the proposed penalty problem (4) is constructed with fast
computation in an SVD-free manner as follows:

min
UVT∈C̄

F 2
μ (U,V)

= f
(
UVT)

+ μ

d∑

i=r+1

[
g1

(‖U:,i‖2
)
+ g2

(‖V:,i‖2
) ]

,

(6)

where matrix X is decomposed as X = UVT with U
and V as two factors. U:,i and V:,i are the i-th columns
of the matrices U and V, respectively; g1 and g2 are two
functions satisfying some conditions associated with g.

In recent years, first-order algorithms have become
an important tool for solving large-scale optimization
problems, especially when low to medium accuracy
is sufficient (Sulaiman et al., 2024). However, most
first-order algorithms generally assume that the objective
function has a global Lipschitz continuous gradient, which
is a very strict condition hindering its application in areas
where the assumptions do not hold or are not reasonable
by practical considerations (Yang et al., 2023). There are
many application problems whose objective functions do
not have this property, such as quadratic inverse problems,
D-optimal experimental design (Atwood, 1969), and
Poisson inverse problems (Bertero et al., 2009). Bauschke
et al. (2016) deal with nonglobal Lipschitz continuous
gradients by replacing the usual quadratic upper bound
functions of the gradient Lipschitz functions with the
more general Bregman measure. The corresponding
BPG (Bregman proximal gradient) method was proposed
by Bauschke et al. (2016) with guaranteed complexity
and global convergence properties for convex composite
optimization problem. In the work of Lu et al. (2015b),
a similar idea was independently proposed for the
convergence of the BPG algorithm for solving convex
combination problems in Banach spaces. Bolte et al.
(2018) extend the BPG to the nonconvex case, that is,
minimizes the sum of an extended valued function and a
C1 function.

Instead of the commonly used alternating
minimization method for optimizing the factorization
format problem, a direct minimization method, namely
the BPG method developed by Bolte et al. (2018), is used
in this paper for the minimization problem (6). The direct
method is far more efficient since it only uses a single
update for U and V, rather than several updates involved
by alternating minimization within each main iteration
(Alain, 2013). Here, neither global gradient Lipschitz
nor convexity is needed to be satisfied by the objective
function f .

The main contributions of this paper are summarized
as follows:

(i) We propose a novel penalty function Rg (X)
for the rank constraint of problem (1), and
prove that the penalty term can be expressed as
Rg (X) =

∑d
i=r+1 g [σi (X)] under some conditions

for function g (stated by Theorem 1). We further
prove that the global optimal solution set of the
penalty problem (5) is the same as that of the original
problem (1) (stated by Theorem 2). The proposed
penalty function generalizes several existing exact
penalty functions induced by relation (3).
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(ii) We construct a flexible bilinear factorization format
for the proposed penalty function (presented in
Theorem 3), which enables the penalty problem to
be fast solved in a simple and SVD-free manner. We
also prove that the solution set of the factorization
formation (6) is the same as that of the proposed
penalty problem (4) (stated by Theorem 4).

(iii) A BPG method is developed for directly optimizing
the problem (6). This method does not require global
gradient Lipschitz and convexity of the objective
function. Therefore, it can be flexibly used under
very mild conditions.

The rest of this paper is organized as follows. In
Section 2, the equivalence between (4) and (5) is declared
under some conditions for function g. We further prove
the equivalence between the optimal solution sets of (5)
and (1), (4) and (6). In Section 3, we present a convergent
BPG algorithm for solving problem (6). In Section 4,
we take two applications as examples to illustrate that
the proposed model can cover a variety of applications.
Numerical experiments are presented in Section 5 to
further testify the effectiveness of the novel method.
Section 6 concludes the whole work. To make the paper
self-contained, we provide appendices which include the
material related to the convergence of the BPG algorithm
and a general list of notations.

2. Proposed penalty model
In this section, we first design a novel penalty term
Rg (X), and prove that it can be expressed as Rg (X) =∑d

i=r+1 g [σi (X)], thus converting the original problem
into an exact penalty minimization problem. Furthermore,
we transform the penalty function into a bilinear
factorization format. Finally, we prove that these
problems are equivalent in terms of the global minimizers.

2.1. Proposed penalty function and equivalence be-
tween (4) and (5).

Remark 1. Assume that there exists a decomposition
X =

∑d
i=1 λ

∗
iu

∗
i (v

∗
i )

T with ‖u∗
i ‖2 = 1 and ‖v∗

i ‖2 =

1 satisfying
∑d

i=1 g (|λ∗
i |) = Gg (X) as defined

by (2). Then we can verify that
∑d

i=r+1 g (|λ∗
i |)

achieves the infimum of
∑d

i=r+1 g (|λi|) among all the
decompositions of X, i.e.,

d∑

i=r+1

g (|λ∗
i |) = Rg (X)

= inf
{ d∑

i=r+1

g (|λi|) : X =

d∑

i=1

λiuivi
T,

‖ui‖2 = ‖vi‖2 = 1
}
.

Indeed, if there exists another decomposition X =∑d
i=1 λ

∗∗
i u∗∗

i (v∗∗
i )T with ‖u∗∗

i ‖2 = 1 and ‖v∗∗
i ‖2 = 1,

such that

d∑

i=r+1

g (|λ∗∗
i |)

= inf
{ d∑

i=r+1

g (|λi|) : X =

d∑

i=1

λiuivi
T,

‖ui‖2 = ‖vi‖2 = 1
}
,

then
d∑

i=r+1

g (|λ∗∗
i |) ≤

d∑

i=r+1

g (|λ∗
i |).

By taking the decomposition

X =
r∑

i=1

λ∗
iu

∗
i (v

∗
i )

T +
d∑

i=r+1

λ∗∗
i u∗∗

i (v∗∗
i )T,

we immediately have

r∑

i=1

g (|λ∗
i |) +

d∑

i=r+1

g (|λ∗∗
i |)

≤
r∑

i=1

g (|λ∗
i |) +

d∑

i=r+1

g (|λ∗
i |)

=

d∑

i=1

g (|λ∗
i |). (7)

On the other hand,

r∑

i=1

g (|λ∗
i |) +

d∑

i=r+1

g (|λ∗∗
i |) ≥

d∑

i=1

g (|λ∗
i |)

since
∑d

i=1 g (|λ∗
i |) achieves the infimum of∑d

i=1 g (|λi|) among all the decompositions of X.
Therefore, we have

r∑

i=1

g (|λ∗
i |) +

d∑

i=r+1

g (|λ∗∗
i |) =

d∑

i=1

g (|λ∗
i |),

which implies

d∑

i=r+1

g (|λ∗∗
i |)=

d∑

i=r+1

g (|λ∗
i |),

that is to say,
∑d

i=r+1 g (|λ∗
i |) achieves the infimum of

∑d
i=r+1 g (|λi|) among all the decompositions of X.

Similarly, we can conclude that
∑r

i=1 g (|λ∗
i |)

achieves the infimum of
∑r

i=1 g (|λi|) among all the
decompositions of X.
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In the work of Jia et al. (2020), it is proposed that
under some conditions on the function g, Gg (X) can be
expressed as

Gg (X) =

d∑

i=1

g (|λ∗
i |) =

d∑

i=1

g [σi (X)] (8)

if (λ∗
i )

d
i=1 achieves the minimum of

∑d
i=1 g (|λi|) among

all the decompositions of X. We shall prove

r∑

i=1

g (|λ∗
i |) =

r∑

i=1

g [σi (X)]. (9)

Theorem 1 states that under some conditions, this
conclusion is true. Before giving Theorem 1, we list the
relevant definition and all the lemmas used to prove the
theorem.

Definition 1. Let x,y ∈ R
n. We say that x is majorized

by y, denoted by x ≺ y, if for 1 ≤ k < n the following
holds:

k∑

j=1

x↓
j ≤

k∑

j=1

y↓
j , (10a)

n∑

j=1

x↓
j=

n∑

j=1

y↓
j , (10b)

where x↓ is the vector obtained by rearranging the
coordinates of x in descending order.

Lemma 1. (Schur’s theorem (cf. Bhatia, 2011)) Let A
be an n × n Hermitian matrix. Let diag (A) denote the
vector whose coordinates are the diagonal entries of A,
and let λ (A) denote the vector whose coordinates are the
eigenvalues of A specified in any order. Then

diag (A) ≺ λ (A) . (11)

Lemma 2. (Horn and Johnson, 1990, Thm. II.3.1) Let
x,y ∈ R

n. The following two conditions are equivalent:

(i) x ≺ y,

(ii)
n∑

i=1

φ (xi) ≤
n∑

i=1

φ (yi) for all convex functions φ

from R to R.

Lemma 3. (Horn and Johnson, 1990, Thm.3.3.14(c)) Let
A ∈ R

m×l and B ∈ R
n×l be given. Then, for any real-

valued function f such that φ (t) = f (et) is increasing
and convex, we have

k∑

i=1

f
(
σi

(
ABT)) ≤

k∑

i=1

f
(
σi (A)σi

(
BT)), (12)

where 1 ≤ k ≤ q and q = min {m,n, l}.

Theorem 1. Given a matrix X ∈ R
m×n, if there exists

a decomposition X =
∑d

i=1 λ
∗
iu

∗
i (v

∗
i )

T with ‖u∗
i ‖2 = 1

and ‖v∗
i ‖2 = 1 satisfying

∑d
i=1 g (|λ∗

i |) = Gg (X), then
(9) holds if the bounded function g satisfies the following
conditions:

(i) g is concave and monotonically ascending in
(0,+∞), and g (0) = 0,

(ii) the function ϑ (t) ≡ g (et) is convex.

What is more, by subtracting (9) from (8), we get

d∑

i=r+1

g (|λ∗
i |) =

d∑

i=r+1

g [σi (X)]. (13)

Proof. Given a matrix X ∈ R
m×n, consider its

decomposition X = UΣVT = Û |Σ| V̂T, where Σ ∈
R

d×d is a diagonal matrix with elements λ1, λ2, · · · , λd

such that |λ1| ≥ |λ2| ≥ · · · ≥ |λd|. The matrix
U, Û ∈ R

m×d and V, V̂ ∈ Rn×d are of unit l2 column
norm.

Let Λ ∈ R
d×d be a diagonal matrix with elements

β1, β2, . . . , βd, satisfying βi = |λi| as 1 ≤ i ≤ r, and
βi = 0 as r + 1 ≤ i ≤ d. Let A = ÛΛ(1/2 ), and
B = Λ(1/2 )V̂T. Write Ā = ATA and B̄ = BBT. From
Lemma 1, we have

diag(Λ) = diag
(
Ā
) ≺ σ

(
Ā
)
= σ2 (A) ,

diag(Λ) = diag
(
B̄
) ≺ σ

(
B̄
)
= σ2 (B) .

Let σ (·) denote the singular value vector in
descending order. Since β1 ≥ β2 ≥ · · · ≥ βd, we
have diag(Λ) ≺ (

σ2 (B) + σ2 (A)
)
/2 . For a concave

function g, we have

r∑

i=1

g (|λi|) =
d∑

i=1

g (βi)

≥
d∑

i=1

g

(
σ2
i (A) + σ2

i (B)

2

)

≥
d∑

i=1

g (σi (A) σi (B))

≥
d∑

i=1

g (σi (AB))

=
d∑

i=1

g
(
σi

(
ÛΛV̂T

))

=

r∑

i=1

g (σi (X)).
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The first inequality results from Lemma 2 since −g is a
convex function. The second inequality holds because of
the fact that the function g is increasing, and a2 + b2 ≥
2ab. The third inequality stems from Lemma 3. All the
inequalities become equalities if and only if X = UΣVT

is the SVD. Since
∑r

i=1 g (|λ∗
i |) achieves the minimum of∑r

i=1 g (|λi|) among all the decompositions of X due to
Remark 1, we conclude that

r∑

i=1

g (|λ∗
i |) =

r∑

i=1

g [σi (X)].

The proof is completed. �
Combining Eqn. (13) with Remark 1, we conclude

that the proposed penalty function can be expressed as a
sum of specific functions with the d− r smallest singular
values of matrix X, i.e.,

Rg (X) =

d∑

i=r+1

g [σi (X)]. (14)

Hence we deduce that the penalty term Rg (X) proposed
here is a generalization of those presented by Gao and
Sun (2010) and Liu et al. (2020) when g is taken as
g (x) = x and g (x) = xp (0 < p < 1), respectively.
The equivalence between the penalty models (4) and (5)
is verified by (14).

It should be noted that the conditions of Theorem 1
can be easily satisfied by many functions. For example,
the functions g (x) = x, g (x) = x0 and the widely used
nonconvex functions g (x) = xp (0 < p < 1) all satisfy
these conditions. The nonconvex function g (x) = log x
meets these conditions if we revise its value at zero as
g (0) = 0.

2.2. Equivalence between (5) and (1). In this section,
we build a relationship between the penalty model (5)
and the original problem (1). The following theorem
shows that model (5) is an exact penalty reformulation of
problem (1) in terms of global minimizers.

Lemma 4. Let XΩ be a projection of X ∈ C̄ (C̄ ={
X ∈ R

m×n|XTX � I
}

) onto Ω, and let g satisfy

g (x) ≥ x for any x ∈ [0, 1]. Then

‖X−XΩ‖F ≤
d∑

i=r+1

g (σi (X)). (15)

Proof. Using Proposition 2.6 of Lu et al. (2017), it is not
hard to prove that

‖X−XΩ‖F =

√√√√
d∑

i=r+1

σ2
i (X), ∀ X ∈ C̄.

Notice from X ∈ C̄ that 0 ≤ σi (X) ≤ 1 holds for all
1 ≤ i ≤ d. In view of the fact g (x) ≥ x for any x ∈ [0, 1],
one can observe that

√√√√
d∑

i=r+1

σ2
i (X) ≤

d∑

i=r+1

σi (X)

≤
d∑

i=r+1

g (σi (X)), ∀X ∈ C̄.

It then follows that (15) holds as desired. This completes
the proof. �

Theorem 2. If g satisfies g (x) ≥ x for anyx ∈ [0, 1], then
for any μ > Lf , where Lf is the Lipschitz constant of f ,
problems (1) and (5) have the same global minimizers.

Proof. Recall that f is assumed to be continuously
differentiable in C̄. It follows that f is Lipschitz
continuous in C̄, that is, there exists some constant Lf > 0
such that

|f (X)− f (Y)| ≤ Lf‖X−Y‖F.

For the first part, let X̂ be a global minimizer of
problem (1) and X be an arbitrary matrix in C̄. We let XΩ

denote a projection of X onto Ω. Thus, we know from the
global optimality of X̂ that f (XΩ) ≥ f

(
X̂
)

. Using this
relation and the Lipschitz continuity of f , we have

f(X̂)− f(X) = f(X̂)− f (XΩ)

+ f (XΩ)− f (X)

≤ f (XΩ)− f (X)

≤ Lf‖X−XΩ‖F.

This, together with Lemma 4, μ ≥ Lf , and rank(X̂) ≤ r,
implies that

F 1
μ (X) = f (X) + μ

d∑

i=r+1

g (σi (X))

≥ f (X) + Lf‖X−XΩ‖F

≥ f(X̂)

= f(X̂) + μ

d∑

i=r+1

g(σi(X̂))

= F 1
μ(X̂),

which together with the arbitrariness of X ∈ C̄ and X̂ ∈ C̄
implies that X̂ is a global minimizer of problem (5).

For the second part, assume that μ > Lf . Let X̂ be a
global minimizer of problem (5) and X̂Ω be a projection
of X̂ onto Ω. It is easy to observe that if X̂ ∈ Ω, then it
is a global minimizer of problem (1). Thus, it suffices to
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prove that X̂ ∈ Ω. Suppose for contradiction that X̂ /∈ Ω.
Then we have

∥∥∥X̂− X̂Ω

∥∥∥ > 0, and hence

f(X̂Ω) ≤ f(X̂) + Lf

∥∥∥X̂− X̂Ω

∥∥∥
F

< f(X̂) + μ
∥∥∥X̂− X̂Ω

∥∥∥
F

≤ f(X̂) + μ

d∑

i=r+1

g(σi(X̂))

≤ f(X̂Ω) + μ
d∑

i=r+1

g(σi(X̂Ω))

= f(X̂Ω).

The first inequality follows from the Lipschitz continuity
of f . The second inequality is due to μ > Lf . The third
inequality is due to Lemma 4. Then the last inequality
follows from the global optimality of X̂ in problem (5).
These inequalities immediately lead to a contradiction
f(X̂Ω) < f(X̂Ω). This completes the proof. �

The condition of Theorem 2, that is, g (x) ≥ x for
any x ∈ [0, 1], can be satisfied by functions g (x) = x0

and g (x) = xp (0 < p ≤ 1). The function g (x) = log x
does not meet this condition.

2.3. Equivalence between (4) and (6). We further
prove that the penalty function Rg (X) can be expressed
in a bilinear factorization form, which enables the penalty
problem (4) being efficiently solved without using SVD.

Theorem 3. If there exist functions g1 and g2 such that

g (x) = min
x=ab
a,b≥0

g1(a) + g2 (b) , x ∈ [0,+∞) , (16)

then Rg (X) can be represented as

Rg (X)

= min
X=UVT

d∑

i=r+1

[
g1

(‖U:,i‖2
)
+ g2

(‖V:,i‖2
)]
. (17)

Proof. Let X = UΣVT =
∑d

i=1 λiuivi
T be a

decomposition of X, satisfying ‖ui‖2 = 1, ‖vi‖2 = 1.
According to (16), for i = r + 1, . . . , d , we have

g (|λi|) = min
|λi|=λ1

iλ
2
i

λ1
i ,λ

2
i≥0

g1(λ
1
i ) + g2

(
λ2
i

)
.

For any decomposition λi = λ1
i λ

2
i of each λi, X can be

written as

X =
d∑

i=1

λiuivi
T

=

d∑

i=1

(
λ1
iui

) (
λ2
ivi

)T

=

d∑

i=1

ũiṽ
T
i=ŨṼT,

where ‖ũi‖2 =
∣∣λ1

i

∣∣, ‖ṽi‖2 =
∣∣λ2

i

∣∣, and Ũ, Ṽ are two
matrices composed of columns ũi and ṽi, respectively.
Therefore,

g (|λi|) = min
|λi|=‖ũi‖2‖ṽi‖2

g1(‖ũi‖2) + g2 (‖ṽi‖2) ,

i = r + 1, . . . , d. Adding these from i = r + 1 to i = d,
we immediately get

d∑

i=r+1

g (|λi|)

=
d∑

i=r+1

min
|λi|=‖ũi‖2‖ṽi‖2

[g1(‖ũi‖2) + g2 (‖ṽi‖2)].

Taking minima for all the decompositions of X, we then
have

inf
λ=(λ1,...,λd)

d∑

i=r+1

g (|λi|)

= min
X=UVT

d∑

i=r+1

[
g1(

∥∥U:,i

∥∥
2
) + g2

(‖V:,i‖2
)]
.

The proof is completed. �

Many widely used functions, such as g (x) = x0,
g (x) = xp (0 < p ≤ 1) and g (x) = log x, all have the
factorization expression shown in (16), for example,

x0 = min
x=ab
a,b≥0

a0 + b0,

xp = min
x=ab
a,b≥0

(p/p1 ) a
p1 + (p/p2 ) b

p2 ,

log x = min
x=ab
a,b>0

log a+ log b.

Under the conditions of Theorem 3, the penalty
model (4) becomes

min
X∈C̄

Fμ (X)

= f (X) + μ min
X=UVT

d∑

i=r+1

[
g1

(‖U:,i‖2
)

+g2
(‖V:,i‖2

)]
.

(18)
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We further relax it to a bilinear optimization problem as
follows:

min
UVT∈C̄

F 2
μ (U,V)

= f
(
UVT)+ μ

d∑

i=r+1

[
g1

(‖U:,i‖2
)

+g2
(‖V:,i‖2

)]
,

which is exactly the problem (6). The following theorem
shows that the solution sets of problems (4) and (6) are
equivalent and the optimal objective function values are
the same.

Theorem 4. Suppose that X̂ is a solution to prob-
lem (4), in which function g satisfies the conditions of The-
orem 3. Then there exists a decomposition X̂=ŨṼT such
that (Ũ, Ṽ) is the solution of (6). Let (Û, V̂) be a solu-

tion to problem (6). Then X̄ = Û(V̂)
T

is also a solution
to (4). Furthermore, we have that Fμ(X̂) = F 2

μ(Û, V̂).

Proof. On account of Theorem 3, assume that there exists
a decomposition X̂=ŨṼT such that

Rg(X̂)

=

d∑

i=r+1

[
g1(‖Ũ:,i‖2) + g2(‖Ṽ:,i‖2)

]

= min
X̂=UVT

d∑

i=r+1

[
g1

(‖U:,i‖2
)
+ g2

(‖V:,i‖2
)]
.

Then

Fμ(X̂) = f(X̂) + μRg(X̂)

= f(ŨṼT)

+ μ

d∑

i=r+1

[
g1(‖Ũ:,i‖2) + g2(‖Ṽ:,i‖2)

]

= F 2
μ(Ũ, Ṽ) ≥ F 2

μ(Û, V̂).

Write X̄ = Û
(
V̂
)T

. According to Theorems 3 again,
we have

F 2
μ (Û, V̂)

= f(Û(V̂)
T
)

+ μ

d∑

i=r+1

[
g1(‖Û:,i‖2) + g2(‖V̂:,i‖2)

]

≥ f(Û(V̂)
T
)

+ μ min
X̄=UVT

d∑

i=r+1

[
g1(‖U:,i‖2) + g2(‖V:,i‖2)

]

= f(X̄) + μRg(X̄)

= Fμ(X̄) ≥ Fμ(X̂).

Then we have Fμ(X̂) = F 2
μ(Û, V̂). Consequently,

F 2
μ (Û, V̂)=F 2

μ(Ũ, Ṽ) and Fμ(X̂)=Fμ(X̄) according to
the above inequalities. Therefore (Ũ, Ṽ) is a solution to
problem (6), and X̄ is a solution of problem (4). The proof
is completed. �

Figure 1 visually shows the relationship between the
problems mentioned above.

Remark 2. As for the selection of the function
g (x) (x ∈ [0, +∞)), the widely used functions, such as
g (x) = x0 and g (x) = xp (0 < p ≤ 1), all satisfy the
conditions in this section. Then the equivalence among
models (1), (4), (5) and (6) can be built. For function
g (x) = log x, only the equivalence among models (4),
(5), (6) can be built since it does not satisfy g (x) ≥ x
for x ∈ [0, 1]. We usually choose the functions g (x) =
xp (0 < p ≤ 1) to solve problem (1) because g (x) = x0

and the corresponding g1 and g2 are discontinuous at zero.

3. Optimization algorithm
To solve problem (6), U and V are directly optimized by
the BPG method in this section. Let Z =

(
UT,VT

)T,
p (Z) = μ

∑d
i=r+1

[
g1

(‖U:,i‖2
)
+ g2

(‖V:,i‖2
)]

and
f (Z) = f

(
UVT

)
, we consider the following composite

optimization problem:

min
Z∈C̄′

F 2
μ (Z) = f (Z) + p (Z) , (19)

where C̄′ =
{
Z =

(
UT,VT

)T∣∣UVT ∈ C̄} and C̄ ={
X ∈ R

m×n
∣∣XTX � I

}
. By using the BPG method,

we can get a sequence of approximate solutions, that is,
for k = 0, 1, . . . ,

Zk+1 ∈ Tτ

(
Zk

)

= arg min
Y∈C̄′

{〈∇f
(
Zk

)
,Y − Zk

〉

+τDh

(
Y,Zk

)
+ p (Y)

}
, (20)

where Tτ (Z) is the BPG map

Tτ (Z) := arg min
Y∈C̄′

{〈∇f (Z) , Y − Z〉
+τDh (Y,Z) + p (Y)} .

The proximity measure Dh : Rm×n ×R
m×n → R

+

is the so-called Bregman distance and is defined as

Dh (Y,Z) = h (Y)− h (Z)− 〈∇h (Z) , Y − Z〉 ,

where h : R
m×n → (−∞,+∞] is a kernel

generating distance. For early pivotal results on Bregman
distances, associated proximal-based algorithms and a lot
of instances of kernels h, we refer the reader to the works
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Fig. 1. Relationship between different models. The hollow arrow indicates that the corresponding two problems are equivalent. The
black solid arrow indicates that the global minimal solution sets of the two problems are the same. The texts next to the arrows
are the required conditions for the equivalence relationship.

of Bauschke et al. (2016), Bauschke and Borwein (1997),
Censor and Zenios (1992), Chen and Teboulle (1993),
Eckstein (1993) and Teboulle (1992). The gradient of f
is

∇f (Z) =
(
(∇fU)

T
, (∇fV)

T
)T

.

By deleting the irrelated terms with the minimization
of Y, and letting Pτ

(
Zk

)
= ∇f

(
Zk

) − τ∇h
(
Zk

)
, the

iteration (20) can be simplified as

Zk+1 ∈ arg min
Y∈C̄′

{〈
Pτ

(
Zk

)
,Y

〉
+ τh (Y) + p (Y)

}
.

(21)
Under some wild assumptions, which can be found

in Appendix A, and the L-smooth adaptable condition,
there exists L > 0 such that Lh − f is convex on
C′, the convergence of iteration (21) falls into the scope
considered by Bolte et al. (2018). It is worth mentioning
that the conditions associated with h are easily fulfilled.
Although a lot of classical f are not global gradient
Lipschitz functions, we can always find a h such that
these conditions hold (please refer to Bolte et al. (2018)).
Especially, when ∇f is locally Lipschitz continuous on
any bounded subset of R

m×n, the global convergence,
meaning that any bounded sequence

{
Zk

}∞
k=0

generated
by the BPG converges to a critical point of F 2

μ (Z), can
be obtained using the KL property (Bolte et al., 2014) of
F 2
μ (Z). When f does not even meet the local gradient

Lipschitz condition, the descent of the function values can
still be guaranteed. The convergence results and relative
materials presented by Bolte et al. (2018) can also be
found in Appendix A.

4. Applications
This section illustrates the potential applications of our
approach. To this end, we consider two classes of

application problems. One is the nearest low-rank
correlation matrix problem, and the other is the quadratic
inverse problem. We shall show that our method is
effective for both.

4.1. Nearest low-rank correlation matrix problem.
The nearest low-rank correlation matrix estimation is
often used in the fields of financial engineering, data
compression, data mining etc. For example, it is used for
the estimation of covariance matrices in asset pricing and
risk assessment in financial engineering. In the field of
data compression, it is also used to estimate covariance
matrices in the widely used principal component analysis
for dimensionality reduction. In data mining, it is used to
estimate the correlation matrix between items or users to
eliminate redundancy.

The nearest low-rank correlation problem (Horn and
Johnson, 1990; Liu et al., 2020) can be formulated as
follows:

min
X∈Sn

1

2
‖H ◦ (X−C)‖2F (22a)

subject to

0 � X � nIn, (22b)

diag (X) = e, (22c)
rank (X) ≤ r, (22d)

where H is a given weight matrix belonging to the set
Sn of n × n symmetric positive semidefinite matrices.
C ∈ Sn is a given correlation matrix, and e is the all
ones vector. Upon changing the variable Y = X/n , we
solve problem (22) by the bilinear relaxation model of the
proposed penalty method in the form of

min
UVT∈C̄

F 2
μ (U,V)
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=
1

2

∥∥∥∥H ◦
(
UVT − 1

n
C

)∥∥∥∥
2

F

+
μ1,k

2

∥∥∥∥diag
(
UVT)− 1

n
e

∥∥∥∥
2

2

+ μ2,k

d∑

i=r+1

[
g1

(‖U:,i‖2
)
+ g2

(‖V:,i‖2
)]
,

(23)

where μ1,k, μ2,k > 0 are penalty parameters for k =
0, 1, . . . , and C =

{
Y ∈ Sn|YTY ≺ In

}
. This problem

coincides with the form of problem (19) with

f (Z) =
1

2

∥∥∥H ◦ (
UVT − 1

n
C

)∥∥∥
2

F

+
μ1,k

2

∥∥∥diag
(
UVT)− 1

n
e
∥∥∥
2

2

and

p (Z) = μ2,k

d∑

i=r+1

[
g1

(‖U:,i‖2
)
+ g2

(‖V:,i‖2
)]
.

Since f (Z) has a local Lipschitz gradient on the
bounded region C′ =

{
Z =

(
UT,VT

)T∣∣UVT ∈ C} (Liu
et al., 2020), the BPG algorithm is obviously applicable
by taking h (Z) = ‖Z‖2F/2 .

By the first-order stability condition of (21), we
obtain

∇p
(
Zk+1

)
+ τ∇h

(
Zk+1

)
= −Pτ

(
Zk

)
. (24)

We calculate

Pτ (Z)

= ∇f (Z)− τ∇h (Z)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H ◦
(
U(V)T − 1

n
C

)
V

+ μ1,k

(
Diag

(
U(V)

T
)
− 1

n
In

)
V − τU

H ◦
(
U(V)T − 1

n
C

)
U

+ μ1,k

(
Diag

(
U(V)

T
)
− 1

n
In

)
U− τV

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(25)
Applying (24) and the separability on columns, we have

⎧
⎪⎨

⎪⎩

Uk+1
:,i = − 1

τ

(
P 1,k
τ

)
:,i
,

Vk+1
:,i = − 1

τ

(
P 2,k
τ

)
:,i

(26)

for columns i = 1, 2, . . . , r and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
μ2,k

g′1
(∥∥Uk+1

:,i

∥∥
2

)

∥∥Uk+1
:,i

∥∥
2

+ τ

]
Uk+1

:,i

= −(
P 1,k
τ

)
:,i

[
μ2,k

g′2
(∥∥Vk+1

:,i

∥∥
2

)

∥∥Vk+1
:,i

∥∥
2

+ τ

]
Vk+1

:,i

= −(
P 2,k
τ

)
:,i

(27)

for columns i = r + 1, . . . , d. Here P 1,k
τ is the upper

block of Pτ

(
Zk

)
, and P 2,k

τ is the lower block of Pτ

(
Zk

)
.

For any column of i = r + 1, . . . , d, due to the linear
correlation between

(
P 1,k
τ

)
:,i

and Uk+1
:,i ,

(
P 2,k
τ

)
:,i

and

Vk+1
:,i shown by (27), consider the following two cases:

(i) If
(
P 1,k
τ

)
:,i
=0, then Uk+1

:,i = 0; if
(
P 2,k
τ

)
:,i
=0, then

Vk+1
:,i =0.

(ii) If
(
P 1,k
τ

)
:,i

�= 0, then Uk+1
:,i = −ti

*
(
P 1,k
τ

)
:,i

; if
(
P 2,k
τ

)
:,i

�= 0, then Vk+1
:,i = −s∗i

(
P 2,k
τ

)
:,i

, where
s∗i , ti* is the positive root of the following system of
equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ2,kg
′
1

(
ti

∥∥∥
(
P 1,k
τ

)
:,i

∥∥∥
2

)

∥∥∥∥
(
P 1,k
τ

)

:,i

∥∥∥∥
2

+ τti − 1 = 0

μ2,kg
′
2

(
si

∥∥∥
(
P 2,k
τ

)
:,i

∥∥∥
2

)

∥∥∥
(
P 2,k
τ

)
:,i

∥∥∥
2

+ τsi − 1 = 0

(28)

Let Ŷ = Û(V̂)
T

with (Û, V̂) being an
approximated solution of problem (23) obtained by the
above method. We use the same post-processing strategy
as Liu et al. (2020) to further obtain an approximated
solution X̂ of problem (22): let D ∈ Sn be a diagonal
matrix with Dii = 1/

√
nŶii (i = 1, . . . , n) and X̂ =

n(DŶD). One can observe that X̂ preserves the rank of
Ŷ while having all ones on its diagonal.

To sum up, the nearest low-rank correlation matrix
problem can be effectively solved using Algorithm 1.
Its convergence falls into the scope of Proposition A1 in
Appendix A. Since f (Z) has a local Lipschitz gradient on
the bounded region C′, the L-smooth adaptable property
holds. It is also easy to see that Assumption A1 holds. We
need to choose functions g1 and g2 such that the penalty
term p (Z) satisfying h (Z)+(1/τ ) p (Z) is supercoercive
for all τ > 0, and this is true for the widely used functions
g (x) = x0

(
g1 (a) = a0, g2 (b) = b0

)
and g (x) =

xp (0 < p ≤ 1) (g1 (a) = (p/p1 ) a
p1 , g2 (b) = (p/p2 ) b

p2 ,
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1/p = 1/p1 + 1/p2, p1, p2 ∈ Z+ ), since either
p (Z)/‖Z‖F is lower bounded or its limit is ∞, and
lim‖Z‖F→∞ h(Z)/‖Z‖F = +∞. Furthermore, the
assumption Tτ (Z) ⊂ C′ has to be fulfilled. Please refer
to Bolte et al. (2018) for how to guarantee this condition.
However, to keep our presentation simple and transparent,
these technical issues will not be pursued here.

Remark 3. Note that τ > L is needed in the convergence
results of Proposition A1 and Theorem A1 in Appendix A.

Algorithm 1. Nearest low-rank correlation matrix.
Require: H, C, ρ = 1.1.

1: Initialize:U0,0 = V0,0 = P
√
D where Y0,0 =

C/n = PDPT, μ1,0, μ2,0, ε0, τ0,0 = 1, k = 0.

2: while ‖diag(Yk,0)−e/n ‖
max{‖Yk,0‖F,1} > 10−4 and

∑d
i=r+1 g

(
σi

(
Yk,0

))
> 10−4 do

3: Let j = 0.

4: while ‖Yk,j+1−Yk,j‖F

max{‖Yk,j+1‖F,1} > εk do

5: Set Zk,j =
((
Uk,j

)T
,
(
Vk,j

)T)T
, compute

Pτk,j

(
Zk,j

)
using (25).

6: For i = 1, 2, . . . , r, obtain Uk,j+1
:,i by (26);

7: For i = r + 1, . . . , d ,
8: if

(
P 1
τk,j

)
:,i
=0 then

9: Uk,j+1
:,i =0,

10: else
11: Uk,j+1

:,i = −ti
*
(
P 1
τk,j

)
:,i

.
12: end if
13: if

(
P 2
τk,j

)
:,i
=0 then

14: Vk,j+1
:,i =0,

15: else
16: Vk,j+1

:,i = −s∗i
(
P 2
τk,j

)
:,i

.
17: end if
18: where s∗i , t∗i is the positive root of (28).
19: Update Yk,j+1 = Uk,j+1

(
Vk,j+1

)T, τk,j+1 =

min
{
ρτk,j , 10

−6
}

, j = j + 1.
20: end while
21: Set Uk+1,0 = Uk,J , Vk+1,0 = Vk,J , Yk+1,0 =

Yk,J , τk+1,0 = τk,J (J is the total number
of iterations in the current inner loop), εk+1 =
max

{
0.2εk, 10

−4
}

.

22: if ‖diag(Yk+1,0)−e/n ‖
max{‖Yk+1,0‖F,1} > 10−4 then

23: μ1,k+1 = 5μ1,k.
24: end if
25: if

∑d
i=r+1 g

(
σi

(
Yk+1,0

))
> 10−4 then

26: μ2,k+1 = 5μ2,k.
27: end if
28: k = k + 1.
29: end while

Here L is the constant included in the L-smooth adaptable
condition, which means that τ must be chosen sufficiently
large. Since only the existence of L is described in
Liu et al. (2020) for the nearest low-rank correlation
matrix problem without knowing its value, we make the
parameter τ incrementally larger in Algorithm 1.

4.2. Quadratic inverse problem. Quadratic
inverse problems are widely used in medical imaging,
geophysical exploration, material science, and control
engineering. In medical imaging, the quadratic inverse
problem technique is used in the reconstruction of
computer tomography and magnetic resonance imaging,
which significantly improves the accuracy of diagnosis.
In geophysical exploration, scientists are able to invert
underground structures and discover mineral, oil and
gas resources by processing the data of seismic waves,
gravity and magnetism. In materials science, a quadratic
inverse problem technique is used to reconstruct defects
and structures inside materials to ensure the quality of
materials and components through nondestructive testing
methods. In control engineering, system identification
techniques use quadratic inverse problems to invert the
dynamic model of the system by observing the input and
output data, so as to optimize the control strategy.

The quadratic inverse problem can be generally
described as follows. Given a symmetric matrix Ai ∈
R

m×m and possibly noisy measurements Bi ∈ R
n×n for

i = 1, 2, . . . , l, our goal is to find a solution X ∈ R
m×n

that satisfies the following equation:

XTAiX = Bi, i = 1, 2, . . . , l. (29)

The famous phase retrieval problem is a particular case of
this problem, which has been extensively studied in the
literature (Beck and Eldar, 2012; Luke, 2017). Applying
the least-squares method to quantify the error and taking
a low-rank constraint on matrix X, the problem can then
be rewritten as the following nonconvex problem:

min
X∈Rm×n

f (X)=
1

4

l∑

i=1

∥∥XTAiX−Bi

∥∥2
F (30a)

subject to
rank (X) ≤ r. (30b)

By applying the bilinear relaxation model for the proposed
penalty method, the above problem can be solved by

min
UVT∈C̄

F 2
μ (U,V)

=
1

4

l∑

i=1

∥∥VUTAiUVT −Bi

∥∥2
F

+ μ

d∑

i=r+1

[
g1

(‖U:,i‖2
)
+ g2

(‖V:,i‖2
)]

(31)
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with C̄ = R
m×n.

This problem coincides with the form of problem
(19) with

f (Z) =
1

4

l∑

i=1

∥∥VUTAiUVT −Bi

∥∥2
F

and

p (Z) = μ

d∑

i=r+1

[
g1

(‖U:,i‖2
)
+ g2

(‖V:,i‖2
)]
.

By taking

h (Z) =
1

4
‖Z‖4F +

1

2
‖Z‖2F , (32)

we can prove that Lh−f is convex on C through a similar
procedure as in Bolte et al. (2018) if

L ≥
l∑

i=1

3 ‖Ai‖2F + ‖Ai‖F‖Bi‖F.

By the expressions of f and h, we calculate the
following terms:

∇h (Z) =
(
‖Z‖2F + 1

)
Z

=

⎛

⎜⎝

(
‖U‖2F + ‖V‖2F + 1

)
U

(
‖U‖2F + ‖V‖2F + 1

)
V

⎞

⎟⎠ ,
(33)

Pτ (Z) = ∇f (Z)− τ∇h (Z)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l∑

i=1

AiUVT (
VUTAiUVT-Bi

)
V

− τ
(
‖U‖2F + ‖V‖2F + 1

)
U

l∑

i=1

(
VUTAiUVT −Bi

)T
VUTAT

iU

− τ
(
‖U‖2F + ‖V‖2F + 1

)
V

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(34)
Substituting (33) and (34) into (24), due to the

separability of columns, we can obtain, for each column
with index i = 1, 2, . . . , r,

⎧
⎪⎨

⎪⎩

τ
(∥∥Uk+1

∥∥2
F +

∥∥Vk+1
∥∥2

F + 1
)
Uk+1

:,i = −(
P 1,k
τ

)
:,i
,

τ
(∥∥Uk+1

∥∥2
F +

∥∥Vk+1
∥∥2

F + 1
)
Vk+1

:,i = −(
P 2,k
τ

)
:,i

(35)

and for each column with index i = r + 1, . . . , d,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
μg′1

(∥∥Uk+1
:,i

∥∥
2

)
/
∥∥Uk+1

:,i

∥∥
2

+τ
(∥∥Uk+1

∥∥2

F +
∥∥Vk+1

∥∥2
F + 1

)]
Uk+1

:,i

= −(
P 1,k
τ

)
:,i
,

[
μg′2

(∥∥Vk+1
:,i

∥∥
2

)
/
∥∥Vk+1

:,i

∥∥
2

+τ
(∥∥Uk+1

∥∥2

F +
∥∥Vk+1

∥∥2
F + 1

)]
Vk+1

:,i

= −(
P 2,k
τ

)
:,i
.

(36)

Now, for all columns with index i = 1, . . . , d, according
to the linear correlation described by (35) and (36), we
consider the following two cases:

(i) If
(
P 1,k
τ

)
:,i
=0, then Uk+1

:,i = 0; if
(
P 2,k
τ

)
:,i
=0, then

Vk+1
:,i =0.

(ii) If
(
P 1,k
τ

)
:,i

�= 0, then Uk+1
:,i = −t∗i

(
P 1,k
τ

)
:,i

;

if
(
P 2,k
τ

)
:,i

�= 0, then Vk+1
:,i = −s∗i

(
P 2,k
τ

)
:,i

,
where s∗i , ti* are the positive roots of the following
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τti

(∑d

j=1
t2j
∥∥(P 1,k

τ

)
:,j

∥∥2
2

+
∑d

j=1
s2j
∥∥(P 2,k

τ

)
:,j

∥∥2
2
+1

)
− 1 = 0,

τsi

(∑d

j=1
t2j
∥∥(P 1,k

τ

)
:,j

∥∥2
2

+
∑d

j=1
s2j
∥∥(P 2,k

τ

)
:,j

∥∥2
2
+1

)
− 1 = 0,

(37)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μg′1
(
ti
∥∥(P 1,k

τ

)
:,i

∥∥
2

)
/
∥∥(P 1,k

τ

)
:,i

∥∥
2

+ τti

(∑d

j=1
t2j
∥∥(P 1,k

τ

)
:,j

∥∥2
2

+
∑d

j=1
s2j
∥∥(P 2,k

τ

)
:,j

∥∥2
2
+1

)
− 1 = 0,

μg′2
(
si
∥∥(P 2,k

τ

)
:,i

∥∥
2

)
/
∥∥(P 2,k

τ

)
:,i

∥∥
2

+ τsi

(∑d

j=1
s2j
∥∥(P 2,k

τ

)
:,j

∥∥2
2

+
∑d

j=1
t2j
∥∥(P 1,k

τ

)
:,j

∥∥2
2
+1

)
− 1 = 0.

(38)

To sum up, the quadratic inverse problem can be
effectively solved using Algorithm 2. In order to apply
the convergence results referred to in Appendix A, we
observe that h given above is 1-strongly convex on R

m×n

and it easy to see that the L-smooth adaptable property
and Assumptions A1 and A4 hold (Bolte et al., 2018).
The supercoercive property of h (Z) + (1/τ ) p (Z) for
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all τ > 0 holds for the common functions: (i) g1 (a) =
(p/p1 ) a

p1 , g2 (b) = (p/p2 ) b
p2 , (0 < p ≤ 1, 1/p =

1/p1 + 1/p2 (p1, p2 ∈ Z
+) ); (ii) g1 (a) = a0, g2 (b) =

b0, since we obviously have lim‖Z‖F→∞ h (Z)/‖Z‖F =
∞. Furthermore, the function f is a real polynomial,
hence semi-algebraic (Bolte et al., 2014). The functions
g1, g2 mentioned above are all semi-algebraic (Bolte et al.,
2014), and ‖·‖2 is a semi-algebraic function, therefore,
since the addition and composition of semi-algebraic
functions result in a semi-algebraic function; it follows
that for model (31), the objective F 2

μ is a KL function, and
BPG can be applied on the problem to produce a globally
convergent sequence which converges to a critical point
of F 2

μ .

Algorithm 2. Quadratic inverse problem.
Require: Ai ∈ R

m×m and Bi ∈ R
n×n for i =

1, 2, . . . , l, L ≥ ∑l
i=1

(
3 ‖Ai‖2F + ‖Ai‖F‖Bi‖F

)
,

τ > L .
Initialize:U0,0 ∈ R

m×d, V0,0 ∈ R
n×d, X0,0 =

U0,0
(
V0,0

)T, μ0, ε0, k = 0.
2: while

∑d
i=r+1 g

(
σi

(
Xk,0

))
> 0.1 do

Let j = 0.

4: while ‖Xk,j+1−Xk,j‖F

max{‖Xk,j+1‖F,1} > εk do

Set Zk,j =
((

Uk,j
)T
,
(
Vk,j

)T
)T

, compute

Pτ

(
Zk,j

)
using (34).

6: For i = 1, . . . , d,
if
(
P 1
τ

)
:,i
=0 then

8: Uk,j+1
:,i = 0,

else
10: Uk,j+1

:,i = −ti
*
(
P 1
τ

)
:,i

.
end if

12: if
(
P 2
τ

)
:,i
=0 then

Vk,j+1
:,i =0,

14: else
Vk,j+1

:,i = −s∗i
(
P 2
τ

)
:,i

.
16: end if

where s∗i , t∗i are the positive roots of (37) and
(38).

18: j = j + 1.
end while

20: Set Uk+1,0 = Uk,J , Vk+1,0 = Vk,J , Xk+1,0 =
Xk,J (J is the total number of iterations in the
current inner loop), εk+1 = max

{
0.5εk, 10

−4
}

.

if
∑d

i=r+1 g
(
σi

(
Xk+1,0

))
> 0.1 then

22: μk+1 = 10μk.
end if

24: k = k + 1.
end while

5. Numerical experiments
In this section, experiments are conducted on the above
two applications to test the effectiveness and efficiency of
the proposed method. For the nearest low-rank correlation
matrix problem, we conduct numerical experiments and
comparisons in Section 5.1. Meanwhile, an extensive
experiment is performed for the quadratic inverse problem
in Section 5.2. All the experiments are performed on a
PC with Windows 10 LTSC, Intel(R) Core(TM) i7-5650U
CPU (2.20 GHz), and 8G RAM. The code is written in
Matlab 2018a.

For the following two groups of experiments, we
adopt the following common settings. The function

g (x) = min
x=ab
a,b≥0

g1(a) + g2 (b)

is chosen as

g (x) = xp (0 < p ≤ 1, x ∈ [0, ∞))

with
g1 (a) =

p

p1
ap1

and
g2 (b) =

p

p2
bp2

satisfying 1
p = 1

p1
+ 1

p2
; for example, in case p = 1, we

simply choose g1 (a) = a2/2 and g2 (b) = b2/2 ; in case
p = 0.5, we choose g1(a) = a/2 and g2(b) = b/2 ; and
in case p = 2/3, g1(a) = 2a/3 and g2(b) = b2/3 are
selected.

5.1. Experiments on the nearest low-rank correlation
matrix problem. We now verify the performance of the
method presented in Section 4.1. For fair comparison,
we use exactly the same experimental setup as Liu et al.
(2020) as follows. Choose H as the all-ones matrix,
and C is with Cij = 0.5 + 0.5e−0.05|i−j| for i, j =
1, . . . , n. The initial values of parameters are μ1,0 = 0.5,
μ2,0 = 0.5, ε0 = 10−3. To evaluate the performance
of the competing methods, we adopt the same quantity
residue = ‖H ◦ (

X̂−C
)‖F. Since rank (X) ≤ d ≤ n,

and we do not know the rank of matrix X, we choose
d = n to reduce the selection of parameters.

Figure 2 shows the singular values of the
ground-truth correlation matrix C and the nearest
low-rank correlation matrix X̂. We present experimental
results for different matrix sizes, and different values
p and r. From Fig. 2(a) it can be observed that the
last n − r singular values of X̂ are all zeros, which
strictly coincides with the constraint rank(X) ≤ r in
all cases of the matrix size. Figure 2(b) shows that the
suggested approach satisfies the rank constraint condition
well in the three cases of the p value. Figures 2(a) and
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(b) also show the effect of our method on different r
values. Figure 2(c) shows the result of the singular values
after adopting the penalty function

∑d
i=1 σi

p (X) with
different p values. Except for the penalty function, other
experimental settings are the same as shown in Fig. 2(b).
The rank constraint cannot be satisfied as p = 1 and
p = 2/3. As p = 1/2, although the rank constraint
condition is satisfied, in contrast, it is satisfied more
compactly by using our penalty function. The penalty
function

∑d
i=1 σ

p
i (X) yields an approximation of C with

the lowest possible rank while the penalty proposed here
meets the low-rank constraint exactly.

Figure 3 shows variation in the objective function
values with the number of iterations within the first outer
loop, corresponding to all cases in Fig. 2. The objective
function value decreases rapidly in a few iterations and
finally almost stabilizes at the smallest value in all cases.

In Table 1, we compare CPU times and residues
of our method with the methods proposed by Gao and
Sun (2010) and Liu et al. (2020) denoted by PenCorr
and PM0.5, respectively. Note that PM0.5 achieves better
results with p = 0.5 than PM1 with p = 1; thus, we
only select PM0.5 as the compared method. The best
residue and the least time cost in each row are shown in
boldface. One can see from Table 1 that the proposed
method outperforms PM0.5 and PenCorr a little bit in
terms of residues in most cases, and costs far less CPU
time than the other two methods.

5.2. Experiments on the quadratic inverse problem.
In this section, experiments are performed on synthetic
data to verify the effectiveness and computational
efficiency of the proposed method for quadratic inverse
problems. The ground-truth low rank data is generated
by X = UtrueV

T
true, where Utrue ∈ R

m×r and Vtrue ∈
R

n×r are i.i.d. data sampled from the normal distribution
N (0, 1) and normalized on columns. To ensure X

satisfying the constraint (X)
T
X � In, we use the

eigenvalue decomposition of X(X)
T and (X)

T
X, namely,

X(X)
T
= P1DPT

1 , (X)
T
X = P2DPT

2 , and the truth
Xtrue is set as Xtrue = P1

√
D/‖D‖F PT

2 . The intrinsic
rank of Xtrue satisfies rank (X) ≤ r. Set Ai=aia

T
i ∈

R
m×m (i = 1, 2, . . . , 10), in which the entries of ai are

i.i.d. data sampled from the normal distribution N (0, 1)
for ten times. The matrices Bi ∈ R

n×n are generated
from XT

trueAiXtrue = Bi (i = 1, . . . , 10).

In this experimental scenario, we initialize U0,0 ∈
R

m×d andV0,0 ∈ R
n×d through i.i.d. randomly sampling

from the normal distribution N (0, 1), and U0,0 and V0,0

are normalized on columns. To ensure the initial X0,0 =
U0,0

(
V0,0

)T satisfying the constraint
(
X0,0

)T
X0,0 � In,

we use the same operation as on X. We set

L =

l∑

i=1

3 ‖Ai‖2F + ‖Ai‖F‖Bi‖F,

and τ=1.1L. The parameters are initialized as μ0 =
10−4, ε0 = 0.1. We evaluate the accuracy of
the estimated X̂ to ground-truth Xtrue by residue =
‖X̂−Xtrue‖F/‖Xtrue‖ F, and a lower value indicates
a more accurate result. Since the objective function
of this problem is highly nonconvex and nonsmooth,
convergence is slow when dealing with a large-size
matrix, so we choose a smaller d to speed up calculations.
We set d = [1.25r] (round up to an integer) in the same
way as done by Jia et al. (2020).

The singular values of the ground-truth matrix
Xtrue and the estimated matrix X̂ are shown in Fig. 4.
Figure 4(a) shows the presented method meets the rank
constraint well in all matrix sizes. The choice of
parameter p is illustrated in Fig. 4(b). In all the three
cases, the result satisfying the rank constraint is good.
Figures 4(a) and (b) also indicate the good effect of our
method on different r values. Figure 4(c) shows the
result of adopting the penalty function

∑d
i=1 σ

p
i (X) with

different p values. Except for the penalty function, all
other experiment settings are the same as in Fig. 4(b).
In all the three cases of p, the rank constraint condition
can not be satisfied. The result of the penalty function∑d

i=1 σ
p
i (X) is affected by the value of d, while in the

same settings the proposed penalty function is not affected
by this value.

Figure 5 shows variation in the objective function
values with the number of iterations within the first outer
loop. The objective function values gradually decrease
and converge in all the listed three cases. Similar results
can be obtained with different r and p values. In Table 2,
we report CPU times and residues for different p values.
The best residue and the least time cost in each row are
expressed in boldface. One can see that as p = 2/3, the
proposed method yields the best residues in most cases.
The least amount of CPU time is corresponds to p = 0.5
in most cases. As p = 1, the residue results are worse than
other two cases.

6. Conclusion
We present a general exact penalty method for a class
of nonconvex nonsmooth matrix optimization problems
with a rank constraint. We prove that the penalty
function can be expressed as a sum of specific functions
with the smallest singular values, and thus the penalty
problem is equivalent to the original problem. Then,
the proposed penalty problem is transformed into an
equivalent bilinear factorization form to avoid SVD
computation. Furthermore, a BPG algorithm is designed
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Fig. 2. Comparison for keeping the rank constraint.
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Fig. 3. Variation in the objective function values.
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Fig. 4. Comparison for keeping the rank constraint.
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Fig. 5. Variation in the objective function values with the number of iterations in the case of r = 2, p = 1/2.
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Table 1. Comparison of the residue and CPU time.
n r PM0.5 Pencorr Our method (p = 0.5)

Time(s) Residue Time(s) Residue Time(s) Residue
500 2 389.323 156.4053 437.293 156.4172 179.416 155.0347

5 303.377 78.8307 407.338 78.8342 116.829 78.5631
10 249.849 38.6845 358.938 38.6852 24.3952 38.6033
15 187.383 23.2497 273.484 23.2463 5.0740 23.7481
20 102.384 15.7106 183.484 15.7080 5.2267 15.5352

1000 2 694.838 332.7649 795.483 332.8054 447.2027 332.1289
5 539.940 189.3868 628.485 189.3978 318.1396 189.0017

10 429.330 110.7867 510.384 110.7868 228.4321 110.6066
15 354.393 74.7463 463.844 74.7494 154.7981 74.7688
20 239.209 54.1675 345.243 54.1680 88.8603 53.8598

1500 2 3081.834 509.4009 4183.374 509.4665 1193.7 508.8373
5 2846.374 301.1784 3629.385 301.1892 1057.1 300.8431

10 2459.539 188.5594 2937.596 188.5554 780.2371 188.2148
15 2084.380 135.3811 2849.382 135.3820 584.9598 134.8534
20 1639.373 103.1023 2084.283 103.1043 448.7425 103.0713

2000 2 4373.293 686.1070 5930.293 686.1815 2088.967 686.0691
5 4028.373 413.0689 4837.382 413.0763 1877.233 412.8227

10 3547.383 267.3751 4293.162 267.3920 1688.929 267.4098
15 3048.733 198.6823 3703.293 198.6795 1460.605 198.1249
20 2694.383 156.1624 3493.056 156.1522 1058.554 156.0143

Table 2. Comparison of the residue and CPU time.
m = n r p = 1 p = 0.5 p = 2/3

Time(s) Residue Time(s) Residue Time(s) Residue
20 2 41.782 1.4991 9.343 1.4424 19.418 1.4084

5 32.560 1.6726 36.582 1.4084 59.168 1.3969
10 52.089 1.4946 31.831 1.2083 76.261 1.1727
15 98.453 1.5919 64.886 1.4627 141.322 1.4022

50 2 185.838 1.4516 40.468 1.4215 97.300 1.3558
5 209.674 1.5977 190.735 1.2848 360.791 1.2840
10 276.910 1.4413 186.278 1.2572 456.382 1.2246
15 571.255 1.5529 409.519 1.4763 874.754 1.4602

100 2 472.116 1.4212 167.855 1.4039 378.653 1.3970
5 791.636 1.5920 736.154 1.2546 1533.720 1.3140
10 999.878 1.4517 887.41 1.2157 1825.149 1.1776
15 2320.564 1.6003 1852.654 1.4349 3578.863 1.4314

for fast solving the factorization problem. The numerical
experiments on two application problems are conducted
and the results indicate the effectiveness and efficiency
of the proposed method. There are still some issues
to be addressed in the future. The first is that, when
the objective is just continuously differentiable, only a
descent of the objective function values is proved in
the situation of nonconvex optimization, and the global
convergence needs to be guaranteed. The second is how
to design a parameter learning method to avoid parameter
tuning.
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Appendix A

Convergence of the BPG algorithm
(Bolte et al., 2018)

Consider the following nonconvex composite
minimization problem:

inf
X

{
F (X) = f (X) + p (X) : X ∈ C} . (A1)

It consists in minimizing the sum of two nonconvex
functions: an extended real valued function p and a
continuously differentiable function f . C denotes the
closure of C which is a nonempty, convex and open set
in R

m×n.

Definition A1. (L-smooth adaptable) A pair (f, h) is
called L-smooth adaptable on C if there exists L > 0 such
that Lh− f are convex on C.

Definition A2. (Kernel generating distance) Let C be a
nonempty, convex and open subset of Rm×n. Associated
with C, a function h : Rm×n → (−∞,+∞] is called a
kernel generating distance if it satisfies the following:

(i) h is proper, lower semicontinuous and convex, with
dom h ⊂ C and dom ∂h = C.

(ii) h is C1 on int domh ≡ C.

We denote by G (C) the class of kernel generating
distances.
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Assumption A1.

(i) h ∈ G (C) with C̄ = domh.

(ii) p : R
m×n → (−∞,+∞] is a proper and lower

semicontinuous function with dom p ∩ C �= ∅.

(iii) f : R
m×n → (−∞,+∞] is a proper and lower

semicontinuous function with dom h ⊂ dom f ,
which is C1 on C.

(iv) inf
{
f (X) + p (X) : X ∈ C} > −∞.

Assumption A2. The function h+
(
1
τ

)
p is supercoercive

for all τ > 0, that is,

lim
‖Z‖F→∞

h (Z) + 1
τ p (Z)

‖Z‖F
= ∞. (A2)

Assumption A2 is quite a standard coercivity
condition for guaranteeing the well-posedness of Tτ ,
which is stated in the following result.

Lemma A1. (Well-posedness of Tτ ) Suppose that
h + (1/τ) p is supercoercive. Then the set Tτ (Z) is a
nonempty and compact subset of Rm×n.

Assumption A3. For all Z ∈ C, we have Tτ (Z) ⊂ C.

Proposition A1. Assume that the following assumptions
hold:

(i) (f, h) is L-smooth adaptable on C;

(ii) Assumptions A1, A2 and A3 hold.

Let
{
Xk

}
k∈N

be a sequence generated by BPG with
τ > L for solving problem (A1). Then the following
assertions hold:

(i) The sequence F
(
Xk

)
is nonincreasing.

(ii)
∑∞

k=1 Dh

(
Xk,Xk−1

)
< ∞ and hence the se-

quence
{
Dh

(
Xk,Xk−1

)}
k∈N

converges to zero.

Consider problem (A1) defined on C = R
m×n,

namely,

inf
X

{
f (X) + p (X) : X ∈ R

m×n
}
. (A3)

Assumption A4.
(i) dom h = R

m×n and h is σ-strongly convex on
R

m×n;

(ii) ∇h and ∇f are Lipschitz continuous on any
bounded subset of Rm×n.

Let η ∈ (0,+∞]. We denote by Φη be the class of all
concave and continuous functions ϕ : [0, η) → R

+ which
satisfy the following conditions:

(i) ϕ (0)=0;

(ii) ϕ is C1 on (0, η) and continuous at 0;

(iii) for all s ∈ (0, η):ϕ′ (s) > 0.

Definition A3. (Kurdyka–Lojasiewicz property (Bolte et
al., 2014)) Let F : Rm×n → (−∞,+∞] be proper and
lower semicontinuous

(i) X̄ ∈ dom ∂F :=
{
X ∈ R

m×n : ∂F
(
X̄
) �= 0

}
is

defined as a KL point of function F if there exists a
neighborhood U of X̄, η > 0 and ϕ ∈ Φη such that
for all X in the following intersection

U ∩ {
X|F (

X̄
)
< F (X) < F

(
X̄
)
+ η

}
,

one has

ϕ′ (F (X)− F
(
X̄
))

dist (0, ∂F (X)) ≥ 1. (A4)

(ii) If F satisfies the KL property at each point of
dom ∂F then F is called a KL function.

It is easy to establish that the KL property holds in
the neighborhood of noncritical points. Thus, the truly
relevant aspect of this property is when X̄ is critical,
i.e., when 0 ∈ ∂F

(
X̄
)
. In that case it warrants that

F is sharpened up to a reparameterization of its values.
A remarkable aspect of KL functions is that they are
ubiquitous in applications, for example, semi-algebraic,
subanalytic and log-exp are KL functions (Bolte et al.,
2014).

Theorem A1. (Convergence theorem of BPG) Assume
that the following assumptions hold: (i) (f, h) is L-smooth
adaptable on C, (ii) Assumptions A1, A2 and A4 are met.
Let

{
Xk

}
k∈N

be a sequence generated by BPG which is
assumed to be bounded and let τ > L . The following
assertions hold:

(i) Subsequential convergence: Any limit point of the
sequence

{
Xk

}
k∈N

is a critical point of the objec-
tive function.

(ii) Global convergence: Suppose that the objective
function satisfies the KL property on its definition
domain. Then, the sequence

{
Xk

}
k∈N

has finite
length and converges to a critical point of the ob-
jective function.

Assumption A3 is automatically fulfilled since C =
R

m×n.
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Appendix B
Adopted notation

Table 1. List of special symbols.
rank (X) Rank of matrix X

σ (X) Singular value vector of matrix X in descending order
‖x‖2 Vector l2 norm
‖·‖F Frobenius norm of matrix X

A � B B−A is a positive semidefinite symmetric matrix

‖X‖p Schatten p-norm of matrix X

‖X‖log Sum of logarithms of the singular values of matrix X

X:,i Column i-th of matrix X
diag (X) Vector whose coordinates are the diagonal entries of matrix X

x↓ Vector by rearranging the coordinates of x in descending order
x ≺ y Vector x is majorized by vector y
λ (X) Vector whose coordinates are the eigenvalues of matrix X specified in any order
Tτ (Z) BPG map

Dh (Y,Z) Bregman distance
∇f (Z) Gradient of functional f on Z

∇fU Partial derivative of functional f on U
Sn Set of n× n symmetric positive semidefinite matrices
e All-ones vector

A ◦B Element-wise multiplication of matrices
Diag (X) Diagonal matrix whose diagonal entries are the diagonal entries of matrix X

In Identity matrix n× n
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