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aRobotics and Advanced Manufacturing Group
Center for Research and Advanced Studies of the National Polytechnic Institute
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Lane detection is an important module for active safety systems since it increases safety and reduces traffic accidents caused
by driver inattention. Illumination changes or occlusions make lane detection a challenging task, especially if the detection
is performed from a single image. Consequently, this paper presents a probabilistic approach based on the Kalman filter,
which uses information from previous image frames to estimate the lane that could not be detected in the current image
frame, considering uncertainty in the prediction as well as in the detection. To this end, a principal component analysis of
the segmented curvature is introduced with the purpose of dimensionality reduction, moving from a large dimensional pixel
representation to a considerably reduced space representation. Furthermore, the proposed approach is compared with a fully
connected pretrained CNN model for lane detection, demonstrating that the proposed method has a lower computational
cost in addition to a smoother transition between lane estimates.
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1. Introduction
Autonomous robotics is aimed at perceiving the physical
world through computer-controlled mechanical devices in
order to navigate accordingly (Thrun et al., 2005). The
reliability of autonomous navigation depends directly on
the ability to perceive the environment. In autonomous
vehicles, advanced driver assistance systems have been
incorporated for alerting in dangerous situations or for
taking an active part in driving. The main bottleneck in the
development of such systems is the perception problem
(Thorpe et al., 1991), which has two elements: lane and
obstacle detection.

Lane detection and tracking have been investigated
from different viewpoints due to their complexity and
the distinction of the problems presented by each.
Lane detection involves determining the location of
lane boundaries in a single image without solid prior
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knowledge about the position of the lane (Kreucher et al.,
1998). Among the important challenges associated with
lane detection on structured roads is the presence of
lane markings that are not always clearly visible due to
their print quality (Yenikaya et al., 2013) and changes
in environmental conditions (McCall and Trivedi, 2004).
Most of the algorithms proposed are based on edge
detection (Phueakjeen et al., 2011; Truong and Lee, 2008)
and color segmentation (Sun et al., 2006; Chiu and
Lin, 2005). However, these approaches are limited to
the information obtained from the current image frame.
Therefore, approaches that allow lane tracking emerge,
determining the location of lane boundaries in a sequence
of consecutive images, using information on the location
of the lane in previous images to restrict the probable
location of the lane in the current image (Kluge and
Lakshmanan, 1995). These approaches are based on
Bayesian filters (Nieto et al., 2012) which provide a
framework for inferring the probability of a hypothesis
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being true from observations.
In recent years, deep learning has significantly

advanced lane detection by leveraging convolutional
neural networks (CNNs) and other deep learning
architectures. Methods such as segmentation-based
methods (e.g., GCN (Chiang et al., 2019), SCNN
(Parashar et al., 2017)), GAN-based methods (e.g.,
EL-GAN (Gao et al., 2022)) or lane detection systems
using deep learning frameworks such as YOLO (You
Only Look Once) and its variants have shown promising
results in achieving high accuracy in lane detection (Tang
et al., 2021). However, deep learning-based approaches
also have their limitations. One of the main limitations
is the computational complexity and the considerable
amount of processing computing power required. This
high computational demand can result in significant
latency, making it difficult to implement these systems
in real-time applications, especially in environments with
limited hardware capabilities (Zakaria et al., 2023). In
addition, the need for large labeled datasets to train these
deep learning models add another layer of complexity, as
the collection and annotation of such data is an exhaustive
process.

In both lane detection and lane tracking, there
are basically two classes for lane representation: the
feature-based and the model-based representations. The
first parameterizes lanes by combining low-level features
such as painted lines, edges, and lane segments.
Consequently, this technique depends on the number of
features extracted from the lane and has the disadvantage
of not imposing restrictions on shape or length (Wang
et al., 2004). On the other hand, model-based techniques
only use some parameters to represent the lanes, assuming
that lane shapes can be parameterized using mathematical
models, such as straight lines, parabolic curves, spirals or
splines. Model-based approaches are more robust against
noise and the lack of data than feature-based techniques
(Barshan et al., 2011).

In order to tackle the above problems, we present
a lane detector, based on the Kalman filter so as to
incorporate information from previous frames. To achieve
this task, a principal component analysis (PCA) (Tharrault
et al., 2008) generated from parameterized routes of
segmented lanes is developed, obtaining example-based
lane models, which are ideal for dimensionality reduction.
As a consequence, instead of having the Kalman filter
defined at the pixel space (considering one hundred pixel
positions), we use a reduced PCA projected space of three
parameters. This lower dimensional representation can be
incorporated into covariance self-tuning strategies.

1.1. Related work. Lane detection is an important
challenge to make the future of autonomous vehicles
possible. In recent years, several lane detection methods
based on image processing and filtering techniques have

been proposed as reported in the literature (Borkar et al.,
2009; Li et al., 2018). Such works have been focused
on solving the problem using classical computer vision
methods at the image level, i.e., color segmentation
and gradient operators (Truong and Lee, 2008). For
example, Chiu and Lin (2005) used the RGB space to
find the lane marking in contrast to the color of the road
through a threshold, which was defined in accordance
with experiments performed at different times of the day.
However, this method showed problems in the presence of
shadows cast on the lane. Other approaches have explored
the effect of using gradient operators over grayscale
images based on Canny’s algorithm, which performs edge
detection with reduced processing time (Assidiq et al.,
2008). In addition, this work includes techniques for
diminishing projected shadows, previously developed by
Finlayson et al. (2002). Unfortunately, the above methods
do not consider previous information; therefore they do
not benefit from the continuity naturally exhibited by lane
paths (Zou et al., 2020; Rhouma et al., 2022).

An alternative way to tackle the single frame problem
in lane detection is through probabilistic approaches
which were proposed to improve the robustness and
stability of lane tracking (Liu et al., 2010). For
instance, Danescu and Nedevschi (2009) designed a
cascade particle filter to work with a nonlinear system
(Liu et al., 2022) and reducing the computational cost
of the conventional particle filter. However, the main
problem of this filter is that the particles are degraded as
the importance weight of each particle decreases. Another
filter commonly used in lane tracking is the Kalman
filter (Rhouma et al., 2022), which allows modeling
and reducing the variation of lane estimation through a
correction stage, obtaining temporal coherence (Meuter
et al., 2009). Mammeri et al. (2014) used this filter to
track the endpoints of a line obtained using the Hough
transform, which was restricted to parameterize straight
lines. This parameterization was required by the Kalman
filter, as it is an optimal estimator for linear systems. In
practical applications of this filter, the input parameters
are generally unknown, and adjusting them is a difficult
task (Åkesson et al., 2008). If performed manually,
this would represent a considerable burden on the user.
Several works have developed self-adjustment strategies
(Odelson et al., 2006; Sumithra and Vadivel, 2021; Macias
and Gomez, 2006), where it was shown that it is possible
to control the behavior of the filter in the presence of
outliers.

We aim at obtaining both a prediction and a linear
model that are suitable for being used into a Kalman filter
framework, which provides an efficient recursive solution
to the least squares method. The Kalman filter is a linear,
unbiased and optimal estimator of the state of a process
at each moment of time. Based on information available
at time t − 1, an updating step is carried out through
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additional information available at time t. Considering
the linear nature of the filter, we perform a PCA based on
parameterized segmented lanes from a training obtained
in a competition of small-sized vehicles (see Fig. 1). It is
important to note that not all lanes are segmentable (see
Fig. 2), mainly due to illumination problems.

1.2. Deterministic lane detection. The measurement
model is based on the extraction of characteristics
by implementing the Canny algorithm (Green, 2002)
and subsequently parametrizing the curves through
first-order polynomials for straight shapes, and third-order
polynomials for curved shapes. With this, it is possible to
gather routes for a database and then represent such routes
considering a set of equally spaced points conforming
them. To distinguish the left from the right lanes, a
hierarchical clustering technique is used (Johnson, 1967).
The measurement model process, used to construct the
lane database, is depicted in Fig. 3.

1.3. Dimensionality reduction. One of the main
objectives of this work is to build a linear model
of segmented lanes, which allows for projection and
reprojection of shapes from new examples. The principal
components obtained from a dataset of segmented lanes
with the reference frame relative to the vehicle frame
must contain a high percentage of the variability observed
along the examples. Our data were gathered during
three autonomous vehicle competitions organized by the
Mexican Robotics Federation, which were held in Mexico
City (CDMX), Monterrey (MTY) and Guadalajara
(GDL), from 2017 to 2019. Samples from each database
were segmented by the deterministic lane detector defined
in Section 1.2, and are shown in Fig. 4.

In our experiments, each lane is represented by a
discrete finite sequence of m = 102 points (x, y) as
tn×1 = [x1, x2, . . . , xm, y1, y2, . . . , ym]T , where n =
2m is the number of elements of each vector t. The
training set data matrix, [t1 | t2 | · · · | tk], where k
is the number of training examples is then formed by
using the long vectors t as columns. The differences
from the average route t̄ are used to construct the centered
training data matrix Tn×k = [(t1 − t̄) | (t2 − t̄) |
· · · | (tk − t̄)]. Principal component analysis seeks a set
of n − 1 orthogonal vectors which, in the least-squares
sense, minimize the correlation between the columns of
T. The solution is found by calculating the eigenvectors
of the covariance matrix Σn×n = TTT . As Σ is
symmetric, there always exist an orthogonal basis Un×n

and a diagonal matrix Λn×n that satisfies the relationship

Σ = UΛUT , (1)

where Un×n is the eigenvector matrix and the eigenvalues
of Σ are the diagonal elements of matrix Λ. Typically,
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Fig. 1. Segmentable lane case: image frame after homography
(a), image frame applying a Canny edge detector (b), seg-
mentable lanes (c).
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Fig. 2. Unsegmentable lane case: image frame after homogra-
phy (a), image frame applying a Canny edge detector
(b), lane parametrization in image frame with light ex-
posure (c).

a number of eigenvectors l is chosen so that sufficient
in-training variability is conserved. From now on, we will
refer to matrix ̂Un×l as the model.

An out-of-training example t0 can be fitted to
the model by calculating the parameter vector b =
[b1, b2, · · · , bl]T that minimizes the squared error e,
expressed as

b = ̂UT (t0 − t̄). (2)

The recovered approximation of the out-of-training
lane t0 is given by

t0 ≈ t̄+ ̂Ub. (3)
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Fig. 3. Deterministic lane detection model. The different stages
for accessing the measurement model are shown in the
figure.
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Fig. 4. Pixel-level databases of segmented samples: CDMX
database, 82 curve and 38 straight lanes were segmented
(a), MTY database, 76 curve and 40 straight lanes were
segmented (b), GDL database, 154 curve and 48 straight
lanes were segmented (c).

2. Low-dimensional parametrization
According to Fig. 5, it was observed that three
eigenvectors were sufficient to capture at least 98% of
the model’s variability, for which the matrix ̂U was set to
dimensions 204 × 3. As a consequence, using the model
it is possible to fit an out-of-training trajectory using only
three eigenvectors.

Figure 6 depicts the behavior of training–testing pairs
between the different datasets used in our experiments.
The box plots illustrate the interquartile ranges and
highlight the median values, indicating that MTY–GDL
not only has a lower standard deviation but also exhibits
less variability and fewer outliers. Box plot whiskers were
determined by calculating Q1−1.5× IQR and Q3+1.5×

IQR, where Q1 represents the first quartile, Q3 is the third
quartile, and IQR represents the interquartile range (i.e.,
IQR = Q3 − Q1). Data points outside these whiskers
were considered outliers. This observation reveals that
the MTY data represent the most robust model when
entering out-of-training lanes, as evidenced by its smaller
dispersion error. Specifically, the standard deviation for
MTY–GDL is 0.24, compared with 0.81 for GDL–CDMX
and 0.63 for CDMX–GDL. Recall that, in order to achieve
dimensionality reduction, first an image sized 480 × 640
undergoes lane segmentation; then, a 204 × 1 vector is
formed through the acquired (x, y) coordinates of the
segmented lanes; and finally, the model transforms the
segmented shape vector into a highly reduced 3×1 vector.

In order to know the contribution of each eigenvector,
these were reprojected by Eqn. (3) varying the coefficient
of b within the range from −12 to 12, which represents 66
percent of the b data distribution. The shape and length
contributions of the resulting reprojected lanes are shown
in Figure 7.

Figure 7(a) shows that the contribution of the first
eigenvector corresponds to left-to-right variations of the
lanes, which exhibit a rather constant curvature. Thus,
this eigenvector will have a greater participation in the
reprojection of lanes that belong to curves in the road. The
contribution of the second eigenvector corresponds to an
elongation with respect to the y coordinate axis, as shown
in Fig. 7(b). Alternatively, Fig. 7(c) presents a shape
contribution related to an inflection point, characterizing
another kind of curvature observed in the lanes. The
prior knowledge of the contribution of eigenvectors allows
designing a strategy for covariance self-tuning within the
proposed Kalman filter described in the next section.

3. Probabilistic segmentation based on the
Kalman filter

The Kalman filter for probabilistic segmentation is
formulated from the dimensionality reduction analysis
presented in Section 1.3, which shows a model generated
by PCA that allows for the reprojection of segmented
routes in terms of three parameters. Since this model is
linear, the Kalman filter provides an efficient recursive
solution of the least squares method which consists
of two main stages: prediction and update, the state
representation is shown in

xt = Axt−1 +But + εt, (4)
zt = Cxt + δt, (5)

respectively, where A is the n × n state matrix, n is the
dimension of the state vector xt, B is the n × m control
matrix, and m is the dimension of the control vector ut.
The random variable εt is a Gaussian random vector of
the same dimension as the state vector, with zero mean
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and covariance matrix Rt, Ct is a k × n matrix, where
k shares the same dimension as the measurement vector
zt. The vector δt describes the measurement noise and its
distribution is multivariate Gaussian with zero mean and
covariance matrix Qt.

3.1. Measurement model. According to the
measurement model equation of the Kalman filter
in the state-space form, Eqn. (5), and Eqn. (2),
corresponding to the reprojection of the segmented route,
the measurement model of the probabilistic segmentation
method is defined by

zt = ̂UTxt,d + δt, (6)

where C = ̂U is the PCA model of dimension 204×3 and
xt,d is the segmented lane given by the deterministic lane
detector with dimension 204× 1.

3.2. Prediction model. At the image level, there is
no control over the behavior of lanes. For this reason,
the prediction will depend directly on the added Gaussian
noise, with ut = 0 and At = ̂UT for the PCA model,
transforming Eqn. (4) (corresponding to the prediction)
into the state space form as

xt = ̂UTxt−1 + εt, (7)

where xt−1 is the prior state corresponding to a lane of
dimension 204× 1, reprojected by the matrix of the PCA
model ̂U 204 × 3, and εt is the Gaussian noise with zero
mean and covariance matrix Rt of size 3× 3.

3.3. Formulation of the proposed Kalman filter al-
gorithm. It is important to note that not all lanes are
segmentable due to lighting conditions or occlusions. For
this reason the filter proposed in this work performs a
strategy to correct such situations. This strategy was
inspired by the work of Macias and Gomez (2006), in
which a method was presented to estimate the noise
covariance from the process data, performing an update
of the covariance during the transitory periods and thus
allowing rapid convergence of the Kalman filter in the
presence of sudden changes in the observation. The
sudden change in lane segmentation arises from not
detecting a route in the observation model. Based on
the above, our strategy maintains constant covariance
matrices while the measurement model detects a route and
updates the covariances by not detecting a route. Before
showing the proposed algorithm, Section 3.3.1 details the
main idea about the covariance update strategy.

3.3.1. Updating strategy for covariance matrices.
According to the analysis carried out in Section 2, it
was observed that the first eigenvector corresponds to a
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ure shows that with only three eigenvectors it is possible
to achieve more than 98% variability.
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Fig. 6. Selecting the best database for training. The box plots
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structed examples and ground truth. Each box plot re-
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mented from Mexico City’s competition and tested using
the lanes segmented from Monterrey’s competition.
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Fig. 7. Eigenvector contribution from the MTY model: synthetic
variations along the first eigenvector show contributions
related with left-right curvature changes in the segmented
lanes (a), the second most important variability, related to
the length of the segmented lanes (b), the third eigenvec-
tor depicting a greater elongation along curvatures (c).
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contribution with respect to left-to-right variations of the
lanes, as well as in the curvature of the projected route.
This contribution is significant from a factor in the order
of hundreds as shown in Fig. 8, where it is possible to
observe that by varying positive values, the route begins to
acquire a greater curvature, as well as a displacement from
the endpoint to the left; for negative values the behavior is
mirroring. Figures 8(b) and (c) show a significant change
in curvature when a factor of an order of hundreds is
added, presenting an average distance difference of 8.11
and 40.56 pixels, respectively, while in Fig. 8(a) this
distance is 1.62 pixels with a factor of 20. With this
prior knowledge it is possible to anticipate the prediction
behavior when a route xt,d is not detected, identifying
whether the last state corresponds to a line or a curve.

To obtain a threshold of the first coefficient that
determines whether the state corresponds to a straight
line or a curve, 520 routes were segmented from the
MTY database, from which the projection coefficients
were obtained (see Fig. 9(a)). It was observed that for
values greater than 250 of the first coefficient the route
corresponds to a curve (see Fig. 9(b)) and for values less
than 250 the route corresponds to a straight line (see Fig.
9(c)). With the threshold defining the state of the route
and the knowledge about the behavior of the route to the
variation of the coefficients, the strategy of updating the
covariance matrices in the Kalman filter is developed.

3.3.2. Proposed segmentation algorithm based on
the Kalman filter. Algorithm 1 shows, based on the
previous section, the strategy for updating the covariances
in the absence of a detected route xt,d. In this covariance
update algorithm, the function diag(vec) returns a
diagonal matrix whose main diagonal elements are the
vector vec. The algorithm indicates in Line 3 that if
a detected route xt,d is not obtained, the uncertainty
in the measurement model increases by a factor of 12.
Conversely, in the prediction model, a factor of 0.5
reduces the uncertainty. These factors increase linearly
for each instant when the route xt,d is absent, as the
counter c increments by Δc. It is important to note
that positive scaling factors are used for this covariance
matrix update, which ensures that the resulting matrices
Qt and Rt are always symmetric and positive definite.
This ensures that the resulting estimate will maintain a
normal distribution. In Line 7 the difference between the
segmented route and the previous estimate in the reduced
dimension space is calculated, which allows from Lines 8
to 16 covariance matrices to be defined according to the
value of the difference of the coefficients. In case the
last detected route is a curve, a factor is added to obtain
a variation in the first coefficient of the estimate. This
determines the transition of estimates in curve sections
where it is not possible to segment a lane. Given Eqns. (6)
and (7) corresponding to the measurement and prediction
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Fig. 8. Positive variation in the first coefficient: adding a factor
of 20 (a), adding a factor of 100 (b), adding a factor of
500 (c).
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Fig. 9. Definition of the threshold to determine whether the
state of the segmented route corresponds to a curve or
a straight line: first coefficient with respect to the seg-
mented route (a), Route 73 corresponds to a curve (b),
Route 344 corresponds to a straight line (c).

model, respectively, Algorithm 2 based on the Kalman
filter designed in the reduced space of three dimensions
is proposed.

In Line 3, the filter is started by considering a
hypothesis of the previous state xt−1. In this process,
the covariance matrices are held constant upon successful
segmentation of xt,d. However, when lane detection is
not available, the covariances are updated according to
Algorithm 1. Line 9 calculates the Kalman gainKt, which
regulates the contribution of the difference between the
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Fig. 10. Probabilistic segmentation method estimation: seg-
mented Route 298 (a), segmented Route 299 (b), seg-
mented Route 300 (c).
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Fig. 11. Regulation of the estimation in the presence of an atyp-
ical observation: segmented Route 115 (a), segmented
Route 116 (b), segmented Route 117 (c).

detected route xt,d and the previous estimate xt, defined
in Line 10. Finally, Line 11 updates the uncertainty matrix
Σt. The results obtained by the proposed probabilistic
segmentation method are presented in the next section.

4. Experimental results

In this section we validate the formulation of the
proposed probabilistic segmentation method, testing its
performance in practice by means of two experiments: the
first one corresponds to the segmentation capacity when
detecting the route xt,d; the second shows the predictive
capability of the method when there is no information in
the visual sensor.

Algorithm 1. Cov update(x̄t, xt,d, Rt, Qt).

1: Function
2: c = 1;Δc = 0.2;Cs = 100;
3: while xt,d == {} do
4: F Qt = cdiag([12, 12]), F Rt = cdiag([0.5, 0.5])

5: if xt,d[1] > 250 then
6: M Rt = diag([mrt, 1, 1])
7: end if
8: Δx = xt,d − x̄t

9: if Δ[1] > Cs then
10: Rt = F Rtdiag([Rt[1, 1], 0.1, 0.1])M Rt

11: Qt = F Qtdiag([Qt[1, 1], 0.1, 0.1])
12: end if
13: if Δ[2] > Cs then
14: Rt = F Rtdiag([0.1, Rt[2, 2], 0.1])M Rt

15: Qt = F Qtdiag([0.1, Qt[2, 2], 0.1])
16: end if
17: if Δ[1] > Δ[2] > Cs then
18: Rt = F Rtdiag([Rt[1, 1], Rt[2, 2], 0.1])M Rt

19: Qt = F Qtdiag([Qt[1, 1], Qt[2, 2], 0.1])
20: end if
21: c = c+Δc

22: end while
23: return Qt, Rt

4.1. Experiment 1: Segmentation with visual sensor
information. For this experiment, 520 estimations were
performed using the MTY data at 15 frames per second.
According to the calculation of the covariance matrices,
Rt presents a higher uncertainty, having a 36.72% higher
variance in the first value of the diagonal, 36.72% in
the second value and 13.01% higher in the third value
with respect to the covariance matrix Qt. These matrices
determine uncertainty, indicating the degree of reliability
of the model. Therefore, by having a detected route xt,d

the measurement model has a lower uncertainty, and the
resulting estimate xt will have a higher similarity with
respect to the detected route compared to the prediction.
The above is shown in Fig. 10, in which three consecutive
estimates are presented. Comparing numerically, the
prediction in Fig. 10(a) presents a difference in the
average distance with respect to the detected route of
18.74 pixels, as opposed to the resulting estimate which
has a difference of 7.14 pixels with respect to the detected
route. Since the data sets were obtained at 15 frames per
second, it is expected that the change in the segmented
routes and the result of the probabilistic segmentation
method shows a smooth transition, even in the presence
of an outlier observation. This is due to the proposed
covariance update strategy that regulates such transition
that is shown in Fig. 11.

Note that in Fig. 11(b) the resulting estimate has a
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Algorithm 2. Proposed Kalman filter—segmentation
(xt−, Σ̄t, xt,d, Qt, Rt).

1: Function
2: if t = 1 then
3: x̄t = ̂UT (xt−1 − t̄)
4: else
5: x̄t = xt

6: end if
7: if xt,d == {} then
8: [Qt, Rt] = Cov update(x̄t, xt,d, Rt, Qt)
9: end if

10: Σ̄t = Σ̄t +Rt

11: Kt = Σ̄t(Σ̄t +Qt)
−1

12: xt = x̄t +Kt(xt,d − x̄t)
13: Σt = (I −Kt)Σ̄t

14: return xt,Σt

higher reliability with respect to the prediction, because
the route detected in this frame has a large variation
with respect to the previous information. Analyzing
the accuracy of the route prediction with the detected
route revealed an average variation of 11.2 pixels, with
a standard deviation of 2.4 pixels.

4.2. Experiment 2: Segmentation without infor-
mation in the visual sensor. The purpose of this
experiment is to demonstrate the predictive capacity of the
probabilistic segmentation method when no information
is available in the visual sensor. For this purpose, in
this experiment, tests were performed in sections with
different occlusion periods. Figure 12 shows the variation
in the estimation of routes without observation, in which
there is a significant difference in the reduced dimension
space of 43.1 pixels with respect to the prediction,
demonstrating the predictive ability of the proposed
method, once a detection is obtained (cf. Fig. 12(f)), the
regulation of the proposed model is observed.

With these experiments, it has been shown that the
proposed method based on the Kalman filter results in
a smooth transition in the estimations. This behavior
is favorable since there is no atypical change in the
lanes. On the other hand, at the deterministic level, the
observation model presents significant changes from one
lane to another.

4.3. Performance of the proposed model estimates.
Figure 13 shows this behavior for 520 observations in
which straight and curved sections are included.

Note that there is a large variation between
observations, since a parameterization of the lanes is
performed with the information obtained at time t,
which may not be reliable mainly due to illumination
changes. Figure 14 illustrates the variation using a

(a) (b)

(c) (d)

(e) (f)

Fig. 12. Curves section, estimates in image frames 126 to 130
are made without observation (solid black line): (a), (b),
(c), (d), (e) display estimates without observation, (f)
shows the effect of the incorporation of an observation.

fully connected pre-trained CNN model for lane detection
(Zou et al., 2020). While there is an improvement in
smoothness compared with the inter-lane variations of the
measurement model, the behavior is not entirely smooth.

Detection issues still persist, resulting in significant
variations. Additionally, the computation time to process
a frame using deep learning (DL) was 4.1 seconds on
hardware with an RTX 2070 GPU and 32GB of RAM,
compared with the proposed method which processes in
real-time at 0.04 seconds per frame. The process time
analysis was also performed for the Guadalajara (GDL)
and Mexico City (CDMX) databases, obtaining similar
results.

The Kalman filter considers the previous information
given by the proposed measurement model and regulates
the contribution of the new observation, resulting in a
smooth behavior of the transitions as shown in Fig. 15.
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Fig. 13. Average difference in pixels between deterministic
observations. Variation corresponds to a significant
change in the lane.
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Fig. 14. Average pixel difference between lanes detected using
deep learning. The variation obtained in lane detection
through DL remains significant.
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Fig. 15. Average difference in pixels between estimates after ap-
plying the Kalman filter. A smooth transition is ob-
served between estimates.

5. Conclusions

In this paper, we proposed a probabilistic segmentation
method based on the Kalman filter, which was designed in
a reduced dimensional space using principal component
analysis to validate a linear model that allows the
reprojection of routes in this space. The importance
of this model lies in the fact that it comes from
route data collected in three different autonomous
vehicle competitions, which is of relevance in the
study of principal variations of routes for scale vehicle
competitions. We have performed an experimental
evaluation that demonstrates the performance efficiency
of the method for shape and lane dimension estimations.

In the experiments, the regulation of the method to
achieve a smooth transition between estimates becomes

visible, including the input of an outlier observation
made by the deterministic lane detector. In addition, the
method shows predictive capabilities when facing image
frames with occlusions due to the strategy developed
for the covariance update. As future work, we plan
to incorporate additional information from other sensors
into the measurement model, use more sophisticated
techniques for curvature parameterization, and include a
deep learning-based measurement model.
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