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Despite the growing popularity of machine learning (ML), such solutions are often incomprehensible to employees and
difficult to control. Addressing this issue, we discuss some essential problems of explainable ML applications in the fast-
moving consumer goods (FMCG) market. This research puts forward a new approach to effective supply management by
utilizing rough sets (RST), distance-based clustering, and dimensionality reduction techniques. In the presented case study,
we aim to reduce the work done by experts by applying a single delivery plan to many similar points of sale (PoS). We
achieve this objective by clustering vending machines based on historical sales patterns. To verify the feasibility of such
an approach, we performed a series of experiments related to demand prediction on two data representations with various
clustering techniques. The conducted experiments confirmed that, without losing quality in terms of MAE and RMSE, we
could operate on PoS in an aggregate manner, thus reducing the workload of preparing delivery plans.

Keywords: RST, clustering, PCA, UMAP, XAI, LLM, TRISM, FMCG, supply management.

1. Introduction
The recent progress in machine learning (ML) triggered
rapid technological advances in many sectors. One of
the beneficiaries of this technological transformation is
the FMCG industry. For instance, for food producers
and distributors, the demand misestimation may lead to
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lost sales opportunities or food waste, thus the successful
application of ML models to demand estimation is a
competitive factor for many manufacturers and retailers
(Tarallo et al., 2019; Malefors et al., 2021). A special
case, requiring even more attention, is the distribution
of meals via vending machines, where the applications
of artificial intelligence (AI) techniques may lead to the
optimization of operational processes related to supply
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management (Grzegorowski et al., 2022).
However, despite the growing popularity of AI/ML,

the adoption of intelligent systems is very limited and
faces many impediments. Such solutions are often
incomprehensible to employees and difficult to control,
causing reluctance among staff. The limited trust and
overall complexity of ML algorithms and deep models are
the primary factors impeding the widespread integration
of ML technologies, holding back their popularization
(Adadi and Berrada, 2018). The above-mentioned
concerns are just a sample of many challenges related to
tackling trust, risk, and security in AI models (TRISM)
and achieving more interpretable and explainable AI
(XAI) (Habbal et al., 2024; Dwivedi et al., 2023).

To overcome the above-mentioned limitations,
we propose a novel approach to apply granular
computing (GrC) and unsupervised ML methods in an
understandable, user-centric way. In particular, we apply
clustering to build granules of similar objects and identify
a prototype of each, i.e., the most representative element.
In the proposed framework, we interact with experts,
who perform their activities (in the discussed case study
related to supply management) but only for the selected
prototypes, which significantly limits their effort since
for the rest of similar elements we can propagate the
expert-based solution automatically.

To make the task more comprehensible, we apply
rough set reducts (Pawlak, 1982) to identify the
relation between clusters and their most distinguishable
characteristics to construct human-readable clusters’
descriptions using templates of sentences filled with
the identified characteristics. The additional component
of the process allows rephrasing the descriptions
with the preferred large language model (LLM). The
developed process provides several measures related to
trustworthiness, for example, monitoring of demand
estimation with standard regression measures like mean
average error (MAE). Moreover, we monitor the stability
of the clustering by providing a two-dimensional
visualization of week-to-week deviations with uniform
manifold approximation and projection (UMAP) and
principal component analysis (PCA).

The presented case study concerns the application
of ML to optimize supply management and delivery
planning for FitBoxY.com that distributes ready-to-eat
lunch meals with short expiry dates through a large
network of developed smart vending machines. To
avoid food expiration, the demand at each point of
sale has to be carefully estimated, considering many
factors, like weather forecasts, calendar events, and
historical customers’ purchase patterns. The application
of cloud computing and ML allowed FitBoxY.com
to develop a fully automatic supply management system
with prescriptive analytics capabilities, as described by
Grzegorowski et al. (2022), where XGBoost and deep

models are applied for demand prediction and heuristic
search is applied to generate supply proposals.

However, in the case of frequent rotation of product
lines or brands in selected locations, the quality of ML
models decreases significantly due to the excessive variety
and variability in time series related to sales transactions.
This enforces a manual supply process, which has a strong
impact on the expected workload. In this study, we
evaluate the possibility of optimizing supply management
in such situations.

The challenge here is to properly aggregate data in
a way that minimizes the variance in purchasing patterns
by grouping PoS with similar sales patterns. We examine
two different data representations–based on aggregating
sales for individual products and their category. We ensure
that the results of the data clustering are understandable
for the team of experts by referring to XAI prototypes
(Heide et al., 2021). Furthermore, we propose an
innovative method of generating human-readable cluster
descriptions inspired by feature ranking (Adadi and
Berrada, 2018), which relies on reduction algorithms from
rough set theory (RST) (Pawlak and Skowron, 2007),
thereby obtaining a good understanding of each cluster’s
most discernible characteristics. The conducted research
extends our former work (Grzegorowski et al., 2023;
2022) and confirms that without a significant loss of the
quality of demand prediction, we can operate on points of
sale in an aggregate manner, and thus reduce the amount
of work needed to prepare delivery plans. The main
contributions of the paper are as follows:

(i) optimization of supply management with GrC,
(ii) clustering stability assessment by the 2D projections

with PCA and UMAP,
(iii) a novel approach to interpretability based on RST,
(iv) experimental evaluation of two representations of

data from FitBoXy.com.

The rest of the paper is organized as follows. In
Section 2, we review the literature. Section 3 provides
the essential preliminary knowledge about RST, data
clustering, and dimensionality reduction. In Section 4,
we present the proposed solution. Section 5 describes
experimental evaluation. Section 6 summarizes the study.

2. Related works
Food production is a complex process under high
uncertainty resulting in differences between planned and
actual demand. Considering the short shelf-life of
products that may result in food waste, the accurate
prediction of the future demand at each point of sale is
very important (Tarallo et al., 2019). It is particularly
interesting to prepare such a delivery plan for each
vending machine, the realization of which will bring
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maximum profit and minimize food waste. One of the
ways is to predict demand with ML models.

State-of-the-art methods such as XGBoost or deep
neural networks are very effective in estimating demand
(Grzegorowski et al., 2022), yet suffer from a lack of
interpretability. On the other hand, models that are
intrinsically interpretable, yet simpler, often fall short
in accuracy compared with their more sophisticated
counterparts (Adadi and Berrada, 2018). This issue
becomes particularly problematic in the context of time
series data collected from vending machines, which are
characteristically very short. Hence, machine learning
models need to effectively alleviate the cold-start problem
(Kannout et al., 2024).

Maintaining trustworthy human-computer
collaboration is a vital research topic. Among the
plethora of ML explainability-related methods (Barredo
Arrieta et al., 2020), a particularly interesting are
model agnostic approaches (Dwivedi et al., 2023). The
example-based explanations are explicitly inspired by
the cognitive science of human reasoning, which is often
prototype-based. For explaining text clusters, keyword
extraction seems to be a feasible approach (Penta and
Pal, 2021), but this method is not applicable in the
general case. Other methods capable of explaining the
clusters’ similarities are based on variable rankings
(Fisher et al., 2019; Zhang et al., 2017). Recent
advances in natural language processing and large
pre-trained language models are also helpful in improving
interactions with users (Min et al., 2023).

In the context of PoS clustering, we require finding
a set of important differences between objects from
different clusters. Therefore, the application of RST-based
reduction methods (Grzegorowski and Ślęzak, 2019;
Janusz and Ślęzak, 2015) to facilitate this process, we
find a promising approach. Furthermore, considering the
variability of sales patterns in time impacting the cluster
structure, it is also worth paying attention to the stability
of clustering and explanations and various approaches
to visual explanation techniques (Barredo Arrieta et al.,
2020), particularly 2D projections.

3. Preliminary knowledge
3.1. Rough set theory. Proposed by Pawlak (1982),
rough set theory (RST) provides a formalism for
reasoning about imperfect data. In RST, objects u ∈
U , where U is a finite, nonempty set, are characterized
by their attributes. A finite, non-empty set of attributes
is denoted by A. A decision attribute d defines the
partitioning of U into disjoint sets corresponding to
decision classes (Pawlak and Skowron, 2007). A tuple
(U,A ∪ {d}), where A ∩ {d} = ∅, is called a decision
table and is denoted by S. One may consider a ∈ A, as
functions a : U → Va, where Va is the set of values of

a. Here, a typical way to represent S is a table with rows
corresponding to objects, columns to attributes, and cells
to pairs (u, a) assigned values a(u) ∈ Va.

In RST, a large emphasis is put on the granulation
of the attribute space and multivariate feature selection
(FS) (Grzegorowski, 2023). A fundamental concept
related to FS is a decision reduct R ⊆ A, which is an
irreducible subset of attributes (features, columns) that
determines a decision class (d) at the same level as the
whole set of attributes A. In the literature we may find
numerous definitions and algorithms allowing calculation
of reducts and their approximations (Grzegorowski, 2023;
Pięta and Szmuc, 2021; Janusz and Ślęzak, 2015; Stawicki
et al., 2017). Approximate reducts are usually based
on functions evaluating degrees of information induced
by reduced attribute subsets, and may lead to slightly
less accurate results, yet could be preferred in some
real-life applications when handling huge volumes of
data to achieve smaller representations (Grzegorowski
and Ślęzak, 2019). For instance, dynamically adjusted
approximate reducts (DAAR) (Janusz and Ślęzak, 2015),
is a combination of iterative filter-based FS and statistical
significance tests. This concept is applied in this
study to determine the most distinguishing attributes (cf.
Section 4.2) as a special implementation of the variable
importance XAI method (Fisher et al., 2019). Our method
does not just rank attributes, yet provides a complete
subset of descriptive ones.

3.2. Clustering methods. Clustering constitutes an
unsupervised learning technique that allows grouping
similar objects into the so-called clusters. In the
conducted research, we considered several distance-based
clustering methods including kmeans and partitioning
around medoids pam. The k initial centers of each cluster
in kmeans are randomly initiated and iteratively refined
in each iteration of the algorithm. Cluster centers may
not coincide with an actual data instance; therefore the
prototype object of a cluster is chosen as the instance
closest to the center. Partitioning around medoids works
similarly. Though, in each iteration, a new cluster center
(medoid) is selected as the instance with a minimal
distance to all other elements. Hence, medoids can be
used as the most representative instances (Ikotun et al.,
2023).

Agglomerative clustering methods create a
hierarchy by starting from singleton groupings, and
iteratively merging the two closest groups into a bigger
cluster (Kannout et al., 2024). This bottom-up approach
ends with all objects consolidated into a single cluster.
To measure dissimilarity between groups, agglomerative
algorithms utilize linkage functions. In experiments,
we evaluated single_linkage, complete_linkage, and
ward_linkage. The first one (single_linkage) measures
the (dis)similarity between two clusters as the smallest
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distance between any two elements of those clusters;
complete_linkage measures the largest distance between
any two objects; Ward’s minimum variance method
(ward_linkage) relies on the total squared distances
between all pairs of instances from clusters. Divisive
methods, e.g., divisive analysis (DIANA, diana_linkage),
construct the hierarchy in the inverse order, starting with
objects grouped together, and recursively dividing a
group with the largest diameter into two groups whose
diameters are possibly small (Ezugwu et al., 2022).

3.3. Dimensionality reduction. Dimensionality
reduction techniques are useful for 2D visualizations
of high-dimensional data (Zong et al., 2020). There
are many dimensionality reduction methods, yet the
most prominent in the context of 2D visualization are
uniform manifold approximation and projection (UMAP)
and principal component analysis (PCA). UMAP is a
nonlinear technique, which provides a low-dimensional
graph that maintains the relationships existing in the
original high-dimensional data in a way that similar
objects are typically grouped together. The process
consists of two steps. The first involves learning the
structure of the manifold, whereas the second prioritizes
identifying a low-dimensional representation, by creating
a neighbor graph that calculates a similarity score for each
point and its neighbors and employs fuzzy cross-entropy
to retain similarities of points in the low-dimensional
embedding space.

PCA is used to reduce the dimensionality of datasets
A ∈ R

m×n while preserving its crucial information.
This is achieved by transforming the original variables
into a set of new, uncorrelated variables called principal
components, which retain most of the variation from
the original variables. The first principal component is
the direction in feature space along which projections
of observations have the largest variance. The second
principal component is the direction which maximizes
variance among all directions orthogonal to the first one,
etc. In the first step, the data are centered by subtracting it
mean vectors for each column from them. The covariance
matrix C ∈ R

n×n for the columns (features) in matrix
B =

(−→
b1 · · · −→bn

)
is calculated as C = 1

mBTB, as well as
the eigenvectors, and the corresponding eigenvalues, for
matrix C, such as CW = WΛ. Matrix W contains
eigenvectors, and the diagonal matrix Λ contains the
eigenvalues. For 2D plotting, we can project the data onto
the first k = 2 components by truncating matrix W to k
most significant features (Wk) and projecting the data.

4. Solution overview
The key idea behind the proposed supply management
flow (cf. Fig. 1) is to represent every print of sale

(PoS) as a vector based on their historical sales patterns,
grouping of similar points, and selecting the central (most
representative) element. For instance, consider cluster C
with central element PoSC . Here the assumption is that
without significant mismatch to customers’ needs, we can
supply all PoSi ∈ C with the menu prepared for PoSC ,
thereby significantly limiting the effort by |C|.

The whole process starts in the upper left corner in
Fig. 1, with the extraction of two data representations
and grouping of similar points of sale (cf. Section 4.1).
Next, we apply DAAR reducts to discover the most
discriminative features of clusters (cf. Section 4.2). This
allows us to construct meaningful human-readable cluster
descriptions, as presented in Section 4.3. In the following
step, we engage an expert, whose tasks are limited to
preparing delivery plans for the selected cluster prototypes
(cf. Section 4.4). In this way, the overall effort is
significantly limited. For instance, having 400 PoS in the
pipeline and an average cluster size of 10, the expert’s
effort is limited to planning supply for just 40 PoS.

In the presented flowchart, the process may split
depending on the human decision. In the main flow,
the expert prepares the delivery for the selected PoS and
triggers their automatic propagation cf. flow C in Fig. 1. In
some situations, however, the provided cluster description
may be considered ambiguous; here we may apply LLMs
to refine the text (cf. Section 4.3). There is also a
possibility to control the process on demand, cf. flow
D. In particular, the developed solution has mechanisms
for tracking changes in data by projecting them onto a
two-dimensional space (cf. Section 4.5).

4.1. Data representation and clustering. Data
ingestion and integration are two initial steps, leading
to a vectorized representation of historical sales in
every PoS. In our solution, we construct two alternative
representations by aggregating transactions per individual
product or their category: prod_data and cat_data,
respectively (cf. Section 5.1). The product-based
representation aggregates historical sales transactions by
each product offered in a PoS. The category-based
representation aggregates transactions for entire product
categories. To compare these two representations, we
rely on the L1 (city-block) distance, which allows us to
measure the dissimilarity between two vectors based on
the sum of the absolute differences in their values.

In our experiments, we verified several clustering
methods to group similar PoS (cf. Section 3.2). It was
also vital to select the most representative PoS (prototype)
for each cluster. The two flat clustering algorithms we
used are kmeans and pam (Guo et al., 2020). For kmeans
the prototypes are chosen as the instances closest to
the clusters’ centers. For pam, we use medoids. For
agglomerative clustering, we used single_linkage, com-
plete_linkage, and ward_linkage. We used also the di-
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Fig. 1. Flowchart of the proposed method.

ana_linkage method (Ezugwu et al., 2022) which defines
the cluster’s diameter as the largest distance between any
two members of a group. The details of each method are
described in Section 3.2.

Additionally, we included expert_prediction, which
is the top line for quality evaluation on prod_data, since
it would correspond to singleton clusters and a random
method (random_random) that shows the bottom line. To
complete the picture, we also evaluate the importance
of the selection of a prototype PoS that well represents
a cluster, regardless of the clustering algorithm. In
random_custom, the division into clusters is performed
at random, yet the representative vending machine is
selected as the closest to the cluster’s center.

4.2. Attributes for cluster differentiation. A key
aspect of the proposed framework is identifying the most
distinctive attributes of objects belonging to different
clusters. Our method leverages the concept of decision
reduct, derived from rough set theory, which represents an
irreducible set of attributes that sufficiently distinguishes
objects in different decision classes. In our study, we
discuss two approaches to reduct computation—a global
approach that identifies a single set of attributes that is
discriminative for all clusters, and a local approach that
determines a unique set of attributes for each cluster,
capturing only its specific characteristics.

In the global approach, we calculate a single decision
reduct to discern PoS classes (here clusters). This is
achieved using a greedy local discretization (Riza et al.,
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Table 1. Characteristic attributes of exemplary clusters’ (global and local discernibility).

Method Cluster Cluster’s characteristic attributes Attr. value Ratio
No. Size High Low High Low

Global 4 3

7 prev. days sales ‘Chicken Sechuan’ 2 1 1.99 1.865
7 prev. days sales ‘Tomato soup’ 2 1 1.95 1.515
sales in cat.‘Other meals’ 19 11 1.459 1.323
sales in cat.‘Pasta’ 6 3 2.977 2.143
sales in cat.‘Snacks’ 3 1 1.206 3.32

Global 5 51

7 prev. days sales ‘Chicken Sechuan’ 2 1 10.115 2.604
7 prev. days sales ‘Tomato soup’ 2 1 19.926 2.837
sales in cat.‘Other meals’ 19 11 14.907 2.205
sales in cat.‘Pasta’ 6 3 10.039 4.613
sales in cat.‘Snacks’ 3 1 6.084 1.472

Local 1 2 sales in cat.‘Other meals’ 18 17 1.349 3.478
total sales 54 45 3.181 1.497

Local 6 30 sales in cat.‘Other meals’ 8.5 5 5.244 2.399
total sales 56 38 3.54 1.01

2014), combined with the DAAR algorithm (Janusz and
Ślęzak, 2015). The resulting reduct RDAAR ⊆ A provides
a unified set of attributes that capture the variations in
sales patterns across all clusters. In the local method,
reducts are calculated individually for each cluster, but
instead of discriminating all PoS from all clusters, they
focus on a single cluster only (one vs. all). As a result,
reducts are specialized to detect the most distinguishing
factors of the corresponding group of PoS. They aid in
identifying attribute cuts that result in rules with larger
lift coefficients,1 and thus lead to more meaningful cluster
descriptions.

In the subsequent step, for each cluster C ⊆ U ,
attribute a ∈ RDAAR, and its discretized value v, we
estimate the lift of a rule u ∈ C =⇒ a(u) = v.
Lastly, we construct natural language descriptions of
clusters, highlighting their key characteristics. To ensure
clarity, we may only include attributes with lift values
exceeding a specified threshold, focusing on the most
relevant cluster features. Table 1 presents sample results
of both global and local reduction methods for data in
the investigated case study (cf. Section 5). The global
method results in high consistency in the description of all
clusters because they are based on the same attributes. The
difference is in the ratios that reflect the lift coefficients
of the corresponding attribute value. Table 1 displays
sample results of both global and local reduction methods
used to build cluster descriptions for the case study
under investigation. The global method yields longer
descriptions, which, however, are highly consistent across
all clusters, and distinctions among the PoS groups lie

1Lift is calculated by dividing the confidence of the rule X → Y by
the support of the consequent (Y ).

solely in the ratios that mirror the lift of the corresponding
attribute value. The local method results in a more concise
description, but the reducts may differ in their attributes,
their discretization, and resulting lift values (cf. Table 1).

4.3. Cluster descriptions. It is important to keep
cluster names possibly compact and easily interpretable
by users. We achieve this through direct suggestions
expressed by these names about what is in the clusters,
which become particularly useful in reasoning conducted
by intelligent systems regarding perceived situations. This
is related to the very important problem of creating
concepts in natural language.

To craft descriptions that emphasize the unique
properties of objects within clusters, we apply the
algorithms as described in Section 4.2. In this way,
obtaining each cluster’s characteristics (cf. Table 1).
We use pre-prepared formatted text templates to
enhance the prepared descriptions and make them more
self-descriptive. For the local approach, Cluster 6, and
lift greater than 3.0, descriptions are “PoS from Clus-
ter 6 are 5.244 times more likely to have greater sales in
seven previous days than 8 in the category ‘Other meals’
than other PoS” and “PoS from Cluster 6 are 3.540 times
more likely to have greater total sales than 56 in seven
previous days than other PoS.”

For the global method, Cluster 5, and the lift
threshold of 10.0, the generated cluster descriptions
in the first row of Table 2. It is also important to
mention that both methods are independent and may
be computed simultaneously—it is up to the user to
determine which is easier to understand. Additionally,
as an optional step in the process, the user may call
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Table 2. Example descriptions for Cluster 5.
Method Cluster description
Cluster 5
desc.

(1) PoS from Cluster 5 are 10.1 times more likely to have greater sales in seven previous days than 2 for
‘Chicken Sechuan’ than other PoS
(2) PoS from Cluster 5 are 19.9 times more likely to have greater sales in seven previous days than 2 for
‘Tomato soup’ than other PoS
(3) PoS from Cluster 5 are 14.9 times more likely to have greater sales in seven previous days than 19 in
the category ‘Other meals’ than other PoS, etc.

GPT-3.5 PoS in Cluster 5 have significantly higher sales in the last seven days compared with 2 other PoS for
‘Chicken Sechuan’, ‘Tomato soup’, and 19 PoS in the category of ‘Other meals’. They are respectively
10.1 times, 19.9 times, and 14.9 times more likely to have greater sales in these categories compared to
other PoS.

GPT-4 Points of Sales in Cluster 5 are significantly more likely to have high sales compared to other PoS. They
are 10.1 times more likely to have high sales for ‘Chicken Sechuan’, 19.9 times more likely for ’Tomato
Soup’, and 14.9 times for 19 other meals in the previous week.

PaLM2 PoS from Cluster 5 are more likely to have increased sales of Chicken Sechuan and Tomato soup, and the
chance of them having increased sales of other meals is also high.

Gemini
Pro

Points of sale (PoS) in Cluster 5 are much more likely to have higher sales in several categories compared
to other PoS:
(1) They are over 10 times more likely to have higher sales of ‘Chicken Sechuan’
(2) They are almost 20 times more likely to have higher sales of ‘Tomato soup’
(3) They are nearly 15 times more likely to have higher sales in the ‘Other meals’ category
This means that PoS in Cluster 5 are particularly strong performers in these categories and may have
unique characteristics or strategies that contribute to their success.

a large language model (LLM) of choice (Min et al.,
2023). The prompt construction is based on a simple
instruction that fits well for the autoregressive LLMs like
GPT: Summarize briefly Points of Sales in a cluster in
a human-readable form, knowing that: “〈ORIGINAL
DESCRIPTION〉”. Table 2 provides several examples of
how selected LLMs can reformulate the initial prompt,
i.e., 〈ORIGINAL DESCRIPTION〉 that may be found in
the first row (‘Cluster 5 desc.’). We may notice that the
refinement of clusters’ descriptions with LLM introduces
a sort of vagueness and speculation into descriptions, e.g.,
“. . . significantly more likely. . . ”, “. . . chance of them
having increased sales..”, “. . . are particularly strong per-
formers in these categories. . .”. In some cases, the
level of creativity may be misleading (especially without
numeric evidence), provide inaccuracies, or result in
unclear statements like “. . . strategies that contribute to
their success. . . ”. In the future, we consider further
evaluation of the usefulness of this approach by polling
experts, or conducting Action Research (Przybyłek et al.,
2022).

4.4. Cluster prototypes. In order to best cater to
customers’ needs and provide attractive meal offerings,
it would be ideal for experts to prepare the menu

individually for each location. However, given a large
number of locations, limited resources, and time, this
would not be practical. The gist is to group points of
sales based on the customers’ purchase patterns (reflected
in sales transactions) and then involve experts to prepare
the menu for entire clusters of similar PoS. To achieve
this, we first cluster similar PoS and then select the most
representative one as a cluster prototype to depict the
entire group. In this way, by maintaining an average
cluster size of X , we ensure that the workload for experts
is reduced by a factor of X . In our study, we aim for
X ≥ 5. We also assess whether this approach could
yield satisfactory results through an exploration of real
data sourced from FitBoxY.com (cf. Section 5).

4.5. Cluster stability visualization. The developed
solution adjusts to variations in customer preferences.
Still, such changes are reflected in the purchasing patterns,
thereby causing the data representations to vary in time.
Consequently, this affects clustering results, which may
differ from week to week. We can observe these
regularities by projecting vectors representing PoS onto
a two-dimensional space and emphasizing the changes for
every PoS. In our case, we use two significantly different
approaches. The first one is UMAP that is strongly

FitBoxY.com
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Fig. 2. 2D projection with UMAP that emphasizes the distance between the particular PoS in the first and second week.

nonlinear, whereas the other one is a linear dimensionality
reduction technique, namely PCA. We provide two
alternative visualizations because PCA, which may be
easier to interpret, can also come short of capturing the
similarities between instances when the first two principal
components do not express a sufficient fraction of data
variance.

Figure 2 shows 2D-embeddings with UMAP for
cat_data and prod_data representations. Observably, the
category-based representation is more stable, i.e., the
points representing each PoS for two consecutive weeks
in data form a more compact structure. We can also
clearly see this regularity in Fig. 3 where we apply PCA
as a dimensionality reduction method. In the figures, PoS
from the first week are represented as circles, while those
from the second week are represented as triangles. The
distance between the same points from the first and second
week is emphasized with the color depth – the further the
city-block distance between vectors representing PoS for
the second week from the first one, the brighter the color.

5. Experimental evaluation
5.1. Data. The data is sourced from FitBoxY.com
vending machines and contains the sales history collected
between June 21, 2017, and May 21, 2021. The
time series data cover the first three waves of the
COVID-19 pandemic with all the impacts caused by
multiple lockdowns, as well as the more stable and
uniform pre-pandemic period. The test data covers the
period between December 2, 2019, and May 21, 2021, so
they cover the first year of the pandemic and a period of a
few months before the COVID-19 outbreak.

There are two versions of the dataset, aggregated
by products and categories. The product-based dataset
(prod_data) represents each point of sale (PoS) as a vector

of all available products, indicating the quantity sold in
the last week. The category-based dataset (cat_data)
aggregates products into seven categories (e.g., breakfast,
small lunch dishes, pasta). To capture temporal variations
in the customer behavior, we considered each PoS at
different time points as separate instances. For example,
let A, B represent two PoS and t, t′ two week-long
periods in data, we have four different vectors in the
data At, At′ , Bt, Bt′ . This approach allows us to model
customer behavior changes over time at a given location.

5.2. Experiment flow. For both category and
product data representations, we perform the following
steps for each week in the test data set, i.e.,
〈2019-12-02, 2019-12-09〉, 〈2019-12-09, 2019-12-16〉,
. . . , 〈2021-05-24, 2021-05-31〉. We generate the training
data involving all the instances before the beginning of the
test week, as specified by the logic of the following query:

SELECT
t.product, t.PoS, t.week_no, t.year,
sum(t.product.qty) as sales_qty

FROM transactions t
WHERE t.date < TEST_WEEK_START_DATE
GROUP BY

t.product, t.PoS, t.week_no, t.year;

A similar query is used for cat_data with t.product
being replaced by t.product.category (i.e., we additionally
aggregate products into categories, hence achieving
smaller and more dense vectors). Next, vectors of
products and categories with aggregated ‘sales_qty’
values are created, which we subsequently cluster using
the methods of choice (see Section 4.1) into clusters C.
For each clusterC, we choose its most representativePoS
(cf. Section 3.2). We similarly process the test data.

FitBoxY.com
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Fig. 3. 2D projection with PCA that emphasizes the distance between the particular PoS in the first and second week.

In the prediction phase, each PoS is allocated to
the nearest cluster. For the delivery prediction for the
test week, we consider products delivered to the most
representative PoS of the corresponding cluster. These
recommendations are then compared with the actual
product sales at the PoS over the next seven days. We
evaluate the quality of these predictions using the mean
average error (MAE) and root mean square error (RMSE).
Naturally, all the sales have already taken place (and are
reflected in the collected data). For instance, suppose
that based on the cluster C and its prototype PoSC , we
supply PoSY ∈ C with PoSC menu. Proper clustering
should assure high similarity between PoSY and PoSC ,
but it may happen that some of the products available in
PoSC were not present in PoSY , and customers could not
purchase such. Hence, this way of evaluation additionally
penalizes the proposed approach, and in practice, we can
expect even better results.

5.3. Experimental results. In an experimental
evaluation, we compared the performance of the proposed
framework depending on the data representation and
clustering method of choice. In particular, we may
notice that the PAM clustering algorithm achieved the best
results for the product-based representation in terms of
the mean absolute error (MAE) of 1.15, yet considering
the RMSE slightly better results were achieved by Ward’s
minimum variance method (ward_linkage) (cf. Table 3).
An interesting observation is that the random_custom
method performed relatively well in terms of MAE. It
could suggest that a reasonable selection of the most
representative element is more important than the used
clustering method. In terms of the RMSE, this method
was less successful, which corresponds to a relatively
high standard deviation of the results. This approach

could work in a situation where sales from week to week
are very stable and predictable, although when the data
includes periods of high sales variability, the clustering
method becomes important.

For cat_data, complete_linkage hierarchical
clustering performed very well, with MAE of 1.26 and
RMSE of 2.67 and the difference from the experts’
predictions (which in practice correspond to singleton
clusters) was not big. The detailed results of all
methods on both data sets, including MAE, RMSE,
and their standard deviations (sd) are presented in
Table 3. Notably, we can achieve accurate demand
estimations with approximately one-product mismatch in
a week-long prediction horizon, yet significantly reducing
the workload. These findings highlight the effectiveness
of our proposed method for practical applications.

Figure 4 illustrates the fluctuation of error in time
for the expert method and PAM clustering on both data
representations. The empty sections correspond to periods
of COVID-19 lockdowns. After the outbreak of the
pandemic, as well as a few weeks before and after each
lockdown, sales patterns deviated significantly from the
historical mean, making such periods particularly difficult
to predict. This resulted in noticeably higher prediction
errors. However, as the pandemic progressed and more
data was collected, models became better equipped to
represent these unusual patterns. Consequently, the error
levels observed towards the end of the chart are only
marginally higher than those before the pandemic.

Furthermore, we investigated the relation between
cluster size and our solution performance. We may notice
the trend that the greater the number of elements in the
cluster, the greater the error (both MAE and RMSE).
For instance, in the case of the PAM algorithm and an
average cluster size of approximately 12, the MAE error
is 0.86, whereas for clusters of size 15 MAE is 1.06,
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for clusters of approximately 20 elements MAE is 1.21.
We may notice that this regularity was less visible before
the pandemic when the difference in MEA between small
and big clusters lies between 0.72 and 0.75. This may
be related to the similar performance of the vending
machines and consistent menus, which somehow explains
the good performance of the random_custom method.
The differences are more significant during the pandemic,
where depending on the cluster size MEA varies between
1.03 and 1.46. This period is, however, particularly
hard for analysis because the number of test data points
varies in time, i.e., there are periods with significantly
less operating PoS and it is impossible to construct bigger
clusters.

In terms of evaluating the stability of clustering
over time (cf. Section 4.5), representations based on
categories are generally more stable. Given that the
sum of all attribute values in both representations is
identical, it is possible to compare their distributions
of week-to-week distances with the L1 (city-block)
distance. The city-block distance between the points of
sale represented by categories is relatively small, with
a mean of 18.85, a median of 15, and a maximum of
123. These values are noticeably lower compared with the
product-based representation, which has a mean of 41.49,
a median of 37, and a maximum of 225. Typically, the
overall dispersion of PoS for two consecutive weeks is
similar for the first representation, whereas it is decidedly
different for the second one (cf. Figs. 2 and 3). Our
experiments demonstrated that for an average cluster size
of approximately 5 vending machines, the product-based
representation (prod_data) yields better results than the
category-based representation (cat_data), yet the latter
one is much more concise and behave more stable.

6. Summary

This study discusses some essential challenges related
to trustworthiness and interpretability in ML applications
and presents a novel approach to supply management in
the FMCG market that leverages rough sets, clustering,
and dimensionality reduction to enable human-computer
interaction. In the proposed approach, instead of
demand forecasting with predictive or prescriptive
machine learning techniques, we directly rely on experts’
recommendations that are scaled to hundreds of objects
(here, points of sales) utilizing rough sets (RST) and
unsupervised clustering algorithms and their central
points. The solution is focused not only on prediction
accuracy but also on stability in time and interpretability.
In the presented case study of the FMCG market, we
showed that it is possible to operate on whole groups of
PoS, significantly reducing the work required to prepare
delivery plans resulting in increased work efficiency. The
conducted experimental evaluation confirmed that the
proposed approach achieved a fair trade-off between ML
performance, interpretability, and trustworthiness.

One of the future research directions and
improvements is related to interaction with experts
(Grzegorowski, 2023). Following the idea of Lofti Zadeh,
assuming that “information granulation plays a key
role in the implementation of the strategy of divide-and-
conquer in human problem-solving,” one can consider
using this idea to decompose the specification of the
problem considered in the work expressed in natural
language (Averkin, 2023). The decomposition of such
specification can be carried out in dialogue with users,
supported by knowledge discovered from data about
the system’s operation, e.g., regarding the location of
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Table 3. MAE and RMSE of demand prediction (prod_data vs. cat_data).

Method prod_data cat_data
MAE sd RMSE sd MAE sd RMSE sd

1 expert_prediction 1.05 0.60 2.45 1.46 1.07 0.62 2.50 1.50
2 random_random 1.25 0.72 2.66 1.55 1.35 0.74 2.81 1.61
3 random_custom 1.16 0.7 2.55 1.59 1.35 0.73 2.77 1.60
4 kmeans 1.17 0.66 2.54 1.53 1.27 0.71 2.68 1.54
5 pam 1.15 0.66 2.53 1.54 1.3 0.72 2.72 1.54
6 single_linkage 1.16 0.67 2.53 1.54 1.41 0.74 2.82 1.47
7 complete_linkage 1.18 0.67- 2.55 1.53 1.26 0.67 2.67 1.51
8 ward_linkage 1.17 0.65 2.53 1.52 1.28 0.68 2.73 1.51
9 diana_linkage 1.17 0.67 2.53 1.54 1.29 0.69 2.71 1.53

PoS, variability in the sales over time, preferences of
users in the vicinity of PoS, etc. Another possibility
is to explore the applicability of pre-trained language
models and template-based fine-tuning (Min et al., 2023).
Another important aspect of future research is the further
development of adaptive strategies for the developed
system. It would also be valuable to manage the behavior
of the modeled system through distributed control
implemented in a network of interacting local models.
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