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Methods for the design of discrete-time linear systems with desired poles and zeros of their transfer matrices are proposed.
Conditions for the existence of the solution to the problem and the procedures for computation of the desired matrices are
given. Reduction of the systems with controllable and observable pairs to those with nilpotent matrices is analysed. The
procedures are illustrated by simple numerical examples of linear discrete-time systems.
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1. Introduction
The concepts of controllability and observability
introduced by Kalman (1960; 1963) have been the basic
notions of the modern control theory. It well known that
if a linear system is controllable then by state feedback
it is possible to modify the dynamical properties of the
closed-loop system (Antsaklis and Michel, 1997; Hautus
and Heymann 1978; Kaczorek, 1992, Kailath, 1980;
Klamka, 1991; 2018; Mitkowski, 2019, Zak, 2003). If a
linear system is observable then it is possible to design
an observer which reconstructs the state vector of the
system (Antsaklis and Michel, 1997; Kaczorek, 1992;
Mitkowski, 2019; Emirsajłow, 2021).

Kaczorek (2021) proposed a method for pole-zero
assignment by state feedback in positive linear systems.
He then introduced a method for eigenvalue assignment
in uncontrollable linear systems by state feedback
(Kaczorek, 2022) and a method for eigenvalue assignment
in descriptor linear systems by state-derivative feedback
(Kaczorek, 2023a). Further transformations of the
matrices of linear systems to their canonical form
with desired eigenvalues were also proposed (Kaczorek,
2023b) and a method for transformations of linear
standard systems to positive asymptotically stable linear
systems was presented (Kaczorek, 2024).

Global stability of discrete-time feedback nonlinear

*Corresponding author

systems with descriptor positive linear parts and interval
state matrices was considered by Kaczorek and Ruszewski
(2022). Veselić et al. (2020) analyzed the discrete–time
sliding mode control of linear systems with input
saturation. A decentralized static output feedback
controller design for linear interconnected systems was
introduced by Fadhilah et al. (2023).

In this paper, in much the same way as in the works of
Kaczorek (2023b; 2024), the design of linear systems with
desired stable poles and zeros of their transfer matrices
will be extended to linear discrete-time systems. The
previously mentioned papers dealt witch continuous-time
linear systems and they were focused on systems with
singular state matrices as well as positive systems. This
paper addresses SISO and MIMO discrete-time standard
(nonpositive) linear systems as well as reduction of the
discrete-time systems with controllable and observable
pairs to systems with nilpotent matrices.

In Section 2 some basic definitions and theorems
concerning the controllability and observability of linear
discrete-time systems and of the matrix equations with
nonsquare matrices and their solutions are recalled. The
proposed approach for SISO systems is presented in
Section 3 and for MIMO linear systems in Section 4.
In Section 5 the reduction of the discrete-time systems
with controllable and observable pairs to systems with
nilpotent matrices is analyzed. In Section 6 a new
method based on the matrix decomposition is proposed
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and illustrated by simple numerical examples. Concluding
remarks are given in Section 7.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n × m real matrices; In, the
n× n identity matrix.

2. Basic definitions and theorems for linear
discrete-time systems

Consider the linear discrete-time system

xi+1 = Axi +Bui, (1)
yi = Cxi +Dui (2)

where xi ∈ R
n, ui ∈ R

m, yi ∈ R
p are the state, input and

output vectors, respectively, and A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n, D ∈ R
p×m.

Theorems 1–3 as well as Definitions 1–4 are standard
and can be found, e.g., in the works of Antsaklis
and Michel (1997), Kaczorek (1992), Kailath (1980),
Mitkowski (2019) or Zak (2003).

Theorem 1. The solution of (1) has the form

xi+1 = Aixi +

i−1∑

k=0

Ai−k−1Bui, i ∈ Z+. (3)

Definition 1. The linear discrete-time system (1)–(2) is
called controllable in the range from 0 to q if there exists
an input ui for i = 0, 1, . . . , q−1 which steers the state of
the system from the initial condition x0 ∈ R

n to the final
state xf = xq ∈ R

n.

Theorem 2. The linear system (1) is controllable if and
only if

rank[ B AB . . . An−1B ] = n, (4)

rank[ Inz −A B ] = n, z ∈ C, (5)

where C is the field of complex numbers.

Definition 2. The discrete-time linear system (1)–(2) is
called observable if knowing its input ui and output yi in
the interval range from 0 to q − 1 it is possible to find its
unique initial condition x0.

Theorem 3. The discrete-time linear system (1)–(2) is
observable if and only if one the following conditions is
satisfied:

(i)

rank

⎡

⎢⎢⎢⎣

C
CA

...
CAn−1

⎤

⎥⎥⎥⎦ = n, (6)

(ii)

rank

[
Inz −A

C

]
= n, z ∈ C (7)

where C is the field of complex numbers.

Definition 3. The pair (A,B) for m = 1 is in the con-
trollable canonical Frobenius if

A =

⎡

⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1

⎤

⎥⎥⎥⎥⎥⎦
,

B =

⎡

⎢⎢⎢⎣

1
0
...
0

⎤

⎥⎥⎥⎦

(8)

or

A =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎤

⎥⎥⎥⎥⎥⎦
,

B =

⎡

⎢⎢⎢⎣

0
...
0
1

⎤

⎥⎥⎥⎦ .

(9)

Definition 4. The pair (A,C) for p = 1 is in the observ-
able canonical Frobenius if

A =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎤

⎥⎥⎥⎥⎥⎦
,

C = [ 1 0 . . . 0 ]

(10)

or

A =

⎡

⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1

⎤

⎥⎥⎥⎥⎥⎦
,

C = [ 0 . . . 0 1 ].

(11)

The canonical forms of controllable pair (A,B) for
m >1 and the canonical forms of the observable pairs
(A,C) for p >1 are given by Antsaklis and Michel (1997),
Kaczorek (1992), Kailath (1980), Mitkowski (2019) and
Zak (2003).
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The transfer matrix of the system (1)–(2) has the
form

T (z) = C[Inz −A]−1B +D. (12)

Definition 5. The matrix A ∈ R
n×n is called nilpotent if

there exists an integer 0 < q ≤ n such that Aq = 0.

Theorem 4. (Gantmacher, 1959) The matrix equation

PX = Q, P ∈ R
n×p, Q ∈ R

n×q (13)

has a solution X if and only if

rank[ P Q ] = rankP. (14)

Theorem 5. (Gantmacher, 1959) If the condition (14) is
satisfied then the solution X ∈ R

p×q of the matrix equa-
tion (13) for P ∈ R

n×p is given by

X =
{
PT [PPT ]−1

+(Iq − PT [PPT ]−1P )K1

}
Q

(15)

or
X = K2[PK2]

−1Q, (16)

where K1 and K2 are real matrices.

Definition 6. (Kaczorek, 1992) The following operations
are called the elementary operations on the real matrix
A ∈ R

n×n:

• multiplication of the i-th row (column) by a real a �=
0,

• addition of the j-th row (column), multiplied by a
number b �= 0, to the i-th row (column),

• interchange of any two rows (columns).

The elementary operations do not change the rank of the
matrix A (Kaczorek, 1992).

3. Proposed method for analysis of
discrete-time SISO linear systems

Let x̄i ∈ R
n, ūi ∈ R

m, ȳi ∈ R
p be respectively the new

state, input and output vectors of the discrete-time system
(1)–(2) and

[
x̄i+1

ȳi

]
= M

[
xi+1

yi

]
,

detM �= 0, i = 0, 1, . . . (17)

and
[

xi

ui

]
= N

[
x̄i

ūi

]
,

detN �= 0, i = 0, 1, . . . (18)

where M ∈ R
(n+p)×(n+p), N ∈ R

(n+m)×(n+m).
From (17) and (18) we have

[
x̄i+1

ȳi

]
= M

[
xi+1

yi

]
= M

[
A B
C D

] [
xi

ui

]

= M

[
A B
C D

]
N

[
x̄i

ūi

]

=

[
Ā B̄
C̄ D̄

] [
x̄i

ūi

]
, i = 0, 1, . . .

(19)
where [

Ā B̄
C̄ D̄

]
= M

[
A B
C D

]
N. (20)

Case 1: M = In+p. In this case (20) has the form

[
A B
C D

]
N =

[
Ā B̄
C̄ D̄

]
(21)

and it has a solution if the condition of Theorem 4 is
satisfied.

Case 2: N = In+m. In this case (20) has the form

[
Ā B̄
C̄ D̄

]
= M

[
A B
C D

]
(22)

and after transposition we obtain

[
A B
C D

]T
MT =

[
Ā B̄
C̄ D̄

]T
. (23)

The solution MT of (23) can be found using Theorem 5.
Therefore, Case 2 has been reduced to Case 1.

Knowing the desired poles and zeros of the
transfer matrix, we choose the corresponding matrices
Ā, B̄, C̄, D̄. The choice of these matrices Ā, B̄, C̄ in
canonical Frobenius form is recommended.

The details of this approach will be shown on the
following simple numerical examples.

Example 1. Consider the system (1)–(2) with the
matrices

A =

[
0 1
1 1

]
, B =

[
1
0

]
,

C = [ 1 0 ], D = [0].

(24)

The desired asymptotically stable system has stable poles
z1 = −0.6 and z2 = 0.2, and zero z = 0.3. In this case
the desired matrices have the forms

Ā =

[
0 1
0.12 0.4

]
, B̄ =

[
0
1

]
,

C̄ = [ 0.3 1 ], D̄ = [0].

(25)



62 T. Kaczorek and Ł. Sajewski

Compute the matrix N . In this case the desired
transfer function of the system has the form

T̄ (z) = C̄[I2z − Ā]−1B̄ + D̄

= [ 0.3 1 ]

[
z −1
−0.12 z − 0.4

]−1 [
0
1

]

+ [0]

=
z − 0.3

z2 + 0.4z − 0.12
.

(26)

Using (21), (24) and (25), we obtain

N =

[
A B
C D

]−1 [
Ā B̄
C̄ D̄

]

=

⎡

⎣
0 1 1
1 1 0
1 0 0

⎤

⎦
−1 ⎡

⎣
0 1 0
0.12 0.4 1
0.3 1 0

⎤

⎦

=

⎡

⎣
0.3 1 0
0.9 −0.6 1
−0.9 1.6 −1

⎤

⎦ .

(27)

�
Example 2. Given the system (1)–(2) with the matrices
(24). The desired transfer function of the system has poles
z1 = −0.2, z2 = 0.3 and zero z = 0.2. The matrices of
the desired system have the forms

Ā =

[
0 0.1
1 0.06

]
, B̄ =

[
1
0

]
,

C̄ = [ 0.2 1 ] , D̄ = [0].

(28)

since (z−z1)(z−z2) = (z+0.2)(z−0.3) = z2−0.1z−
0.06.

Using (24) and (28), we obtain

M =

[
Ā B̄
C̄ D̄

] [
A B
C D

]−1

=

⎡

⎣
0 0.1 1
1 0.06 0
0.2 1 0

⎤

⎦

⎡

⎣
0 1 1
1 1 0
1 0 0

⎤

⎦
−1

=

⎡

⎣
1 −0.9 0.9
0 0.06 0.94
0 1 −0.8

⎤

⎦ .

(29)

The considerations can be easily extended to the case with
nonzero matrices D and D̄. �

4. Extension to discrete-time MIMO linear
systems

Consider the discrete-time linear system (1)–(2) with the
transfer matrix (12) and unstable poles and zeros. Let the
transfer matrix

T̄ (z) = C̄[Inz − Ā]−1B̄ + D̄ (30)

of the system

x̄i+1 = Āx̄i + B̄ūi, (31)
ȳi = C̄x̄i + D̄ūi (32)

where Ā ∈ R
n×n, B̄ ∈ R

n×m, C̄ ∈ R
p×n and D̄ ∈

R
p×m, have the desired stable pole and zeros.

We are looking for a matrix N ∈ R
(n+m)×(n+m)

satisfying the matrix equation (21). From Theorem 4 the
matrix equation (21) has a solution N if

rank
[

A B
C 0

Ā B̄
C̄ D̄

]

= rank
[

A B
C 0

]
. (33)

Therefore, the following result has been proven.

Theorem 6. Given matrices A,B,C,D and Ā, B̄, C̄, D̄
a matrix N satisfying the matrix equation (21) exists if
and only if the condition (33) is satisfied.

The desired matrix N satisfying (21) can be
computed using of the following procedure.

Procedure 1.

Step 1. Knowing the transfer matrix T (z) compute its
matrices A,B,C in the Frobenius canonical forms
and the matrix D.

Step 2. Knowing the transfer matrix T̄ (z) compute its
matrices Ā, B̄, C̄ in the Frobenius canonical forms
and the matrix D̄.

Step 3. Using (21) compute the desired matrix N .

Example 3. For the matrix

T (z) =

[ 1
z+2

1
z−1

1
z−2

1
z+1

]
(34)

find a matrix N such that the desired transfer matrix with
stable poles and zeros has the form

T̄ (z) =

[ 1
z+0.2

1
z+0.3

1
z+0.4

1
z−0.2

]
. (35)

Using Procedure 1, we obtain what follows.

Step 1. The matrices A,B,C,D of the transfer matrix
(34) written in the form

T (z) =

[ 1
z2+z−2 0

0 1
z2−z−2

] [
z − 1 z + 2
z + 1 z − 2

]
(36)

are

A =

⎡

⎢⎢⎣

0 1 0 0
2 −1 0 0
0 0 0 1
0 0 2 1

⎤

⎥⎥⎦ , B =

⎡

⎢⎢⎣

0 0
1 0
0 0
0 1

⎤

⎥⎥⎦ ,

C =

[ −1 1 1 2
1 1 −2 1

]
, D =

[
0 0
0 0

]
.

(37)
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Step 2. The matrices Ā, B̄, C̄, D̄ of the transfer matrix
(35) written in the form

T̄ (z) =

[ 1
z2+0.5z+0.06 0

0 1
z2+0.2z−0.08

]

×
[

z + 0.3 z + 0.2
z − 0.2 z + 0.4

] (38)

are

Ā =

⎡

⎢⎢⎣

0 1 0 0
−0.06 −0.5 0 0
0 0 0 1
0 0 0.08 −0.2

⎤

⎥⎥⎦ ,

B̄ =

⎡

⎢⎢⎣

0 0
1 0
0 0
0 1

⎤

⎥⎥⎦ ,

C̄ =

[
0.3 1 −0.2 1
−0.2 1 0.4 1

]
,

D̄ =

[
0 0
0 0

]
.

(39)

Step 3. The matrix equation (21) in this case has the form
⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
2 −1 0 0 1 0
0 0 0 1 0 0
0 0 2 1 0 1
−1 1 1 2 0 0
1 1 −2 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
N

=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−0.06 −0.5 0 0 1 0
0 0 0 1 0 0
0 0 0.08 −0.2 0 1
0.3 1 −0.2 1 0 0
−0.2 1 0.4 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

(40)

and its solution

N =

⎡

⎢⎢⎢⎢⎢⎢⎣

−0.4 0 0 2 0 0
0 1 0 0 0 0
−0.1 0 −0.2 1 0 0
0 0 0 1 0 0
0.74 0.5 0 −4 1 0
0.2 0 0.48 −3.2 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
(41)

is nonsingular, i.e., det N �= 0. �

5. Reduction of discrete-time linear systems
with controllable (A,B) and observable
(A,C) to systems with nilpotent matrices

To simplify the notation, the proposed method will be
presented for the SISO systems with matrices in the

following canonical forms:

A =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

⎤

⎥⎥⎥⎥⎥⎦
∈ R

n×n,

B =

⎡

⎢⎢⎢⎣

0
...
0
1

⎤

⎥⎥⎥⎦ ∈ R
n×1,

C = [ 1 0 . . . 0 ] ∈ R
1×n.

(42)
Note that the above pair (A,B) is controllable and the pair
(A,C) is observable.

The desired matrices Ā, B̄, C̄ of the nilpotent system
have the forms

Ā =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎦
∈ R

n×n,

B̄ =

⎡

⎢⎢⎢⎣

0
...
0
1

⎤

⎥⎥⎥⎦ ∈ R
n×1,

C̄ = [ 1 0 . . . 0 ] ∈ R
1×n.

(43)

For matrices (42) and (43) compute a nonsingular
matrix N ∈ R

(n+1)×(n+1) satisfying the equation
[

Ā B̄
C̄ 0

]
N =

[
A B
C 0

]
. (44)

It is easy to check that for matrices (42) and (43)

rank
[

Ā B̄
C̄ D̄

]
= rank

[
A B
C 0

]
= n+ 1. (45)

By Theorem 4 the matrix equation (44) has a unique
nonsingular solution N if the condition (45) is satisfied.
Therefore, from (21) and (44) we have the following
theorem.

Theorem 7. If matrices A,B,C have the canonical form
(42) and matrices Ā, B̄, C̄ the canonical form (43) then
Eqn. (44) has unique solution

N =

[
A B
C 0

]−1 [
Ā B̄
C̄ 0

]
. (46)
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Knowing the matrices (42) and the desired matrices
(43) the matrix N can be computed using the following
procedure.

Procedure 2.

Step 1. For given matrices (42) compute the matrix
[

A B
C 0

]
∈ R

(n+1)×(n+1). (47)

Step 2. Knowing the matrices (43) compute the matrix
[

Ā B̄
C̄ 0

]
∈ R

(n+1)×(n+1). (48)

Step 3. Using (46) compute the matrix N ∈
R

(n+1)×(n+1).

Example 4. For the following matrices in canonical
forms

A =

[
0 1
−2 −3

]
, B =

[
0
1

]
, C = [ 1 0 ]

(49)
and the matrices

Ā =

[
0 1
0 0

]
. B̄ =

[
0
1

]
, C̄ = [ 1 0 ] (50)

compute the matrix N .
In this case the condition (45) is satisfied since

rank
[

A B
C 0

Ā B̄
C̄ 0

]

= rank

⎡

⎣
0 1 0 0 1 0
−2 −3 1 0 0 1
1 0 0 1 0 0

⎤

⎦

= rank
[

Ā B̄
C̄ 0

]

= rank

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ = 3.

(51)

Using Procedure 2 and (49), (50) we obtain what
follows.

Step 1. Using (47) and (49) we obtain the nonsingular
matrix

[
A B
C 0

]
=

⎡

⎣
0 1 0
−2 −3 1
1 0 0

⎤

⎦ . (52)

Step 2. Using (48) and (50) we obtain the nonsingular
matrix

[
Ā B̄
C̄ 0

]
=

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ . (53)

Step 3. Using (46), (52) and (53) we obtain the
nonsingular matrix

N =

[
A B
C 0

]−1 [
Ā B̄
C̄ 0

]

=

⎡

⎣
0 1 0
−2 −3 1
1 0 0

⎤

⎦
−1 ⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦

=

⎡

⎣
1 0 0
0 1 0
2 3 1

⎤

⎦ .

(54)

The considerations can be extended to the case of m >1
and p >1. �

6. Matrix decomposition approach
Consider the matrix equation

XAY = B, (55)

for given nonsingular matrices A ∈ R
n×n, B ∈ R

n×n

and unknown matrices X ∈ R
n×n, Y ∈ R

n×n. For given
matrices A and B the problem consists in finding matrices
X and Y .

The presented solution method is based on the
factorization of matrices A and B,

A = A1A2, B = B1B2, (56)

where

A1 =

⎡

⎢⎢⎣

ā11 0 . . . 0 0
ā21 ā22 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ān,1 ān,2 . . . ān,n−1 ān,n

⎤

⎥⎥⎦ ,

A2 =

⎡

⎢⎢⎣

a11 a12 . . . a1,n−1 a1,n
0 a22 . . . a2,n−1 a2,n
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 an,n

⎤

⎥⎥⎦ ,

(57)

B1 =

⎡

⎢⎢⎣

b̄11 0 . . . 0 0
b̄21 b̄22 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b̄n,1 b̄n,2 . . . b̄n,n−1 b̄n,n

⎤

⎥⎥⎦ ,

B2 =

⎡

⎢⎢⎣

b11 b12 . . . b1,n−1 b1,n
0 b22 . . . b2,n−1 b2,n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 bn,n

⎤

⎥⎥⎦

(58)

Using (56), Eqn. (55) can be written in the form

XA1A2Y = B1B2 (59)

and then
XA1 = B1, A2Y = B2, (60)
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where the matrices A1 and A2 are nonsingular.
Solving the matrix equations (60), we obtain

X = B1A
−1
1 Y = A−1

2 B2. (61)

From the above considerations we deduce the following
procedure for computation of the solution X and Y for
given matrices A and B.

Procedure 3.

Step 1. Using the above procedure compute the matrices
A1, A2 and B1, B2 satisfying (56).

Step 2. Using (61) compute the solution X and Y of
Eqn. (60).

The following results will be used in the further
considerations.

Lemma 1. Every nonsingular matrix A ∈ R
n×n can

be decomposed into the product A = A1A2 of the lower
triangular matrix

A1 =

⎡

⎢⎢⎣

ā11 0 . . . 0 0
ā21 ā22 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ān,1 ān,2 . . . ān,n−1 ān,n

⎤

⎥⎥⎦ (62)

and upper triangular matrix

A2 =

⎡

⎢⎢⎣

a11 a12 . . . a1,n−1 a1,n
0 a22 . . . a2,n−1 a2,n
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 an,n

⎤

⎥⎥⎦ (63)

The lemma will be illustrated by the following simple
numerical example.

Example 5. Decompose the nonsingular matrix

A =

⎡

⎣
1 2 1
2 1 2
1 1 2

⎤

⎦ (64)

into lower and upper triangular matrices. �
Applying elementary row operations to the matrix

(64), we obtain

⎡

⎣
1 0 0
−2 1 0
−1 −1 3

⎤

⎦

⎡

⎣
1 2 1
2 1 2
1 1 2

⎤

⎦

=

⎡

⎣
1 2 1
0 −3 0
0 0 3

⎤

⎦ (65)

and the desired decomposition of the matrix (64) is
⎡

⎣
1 2 1
2 1 2
1 1 2

⎤

⎦

=

⎡

⎣
1 0 0
−2 1 0
−1 −1 3

⎤

⎦
−1 ⎡

⎣
1 2 1
0 −3 0
0 0 3

⎤

⎦

=

⎡

⎣
1 0 0
2 1 0
1 0.33 0.33

⎤

⎦

⎡

⎣
1 2 1
0 −3 0
0 0 3

⎤

⎦ .

(66)

Lemma 2. The product of two lower (upper) triangular
matrices is also a lower (upper) triangular matrix.

Example 6.

A = A1A2 =

⎡

⎣
1 0 0
2 1 0
1 2 1

⎤

⎦

⎡

⎣
2 0 0
−1 1 0
1 −2 1

⎤

⎦

=

⎡

⎣
2 0 0
3 1 0
1 0 1

⎤

⎦ .

(67)

�

Lemma 3. The inverse matrix of the nonsingular trian-
gular matrix (62) or (63) has the same triangular form

A−1
1 =

⎡

⎢⎢⎣

â11 0 . . . 0 0
â21 â22 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ân,1 ân,2 . . . ân,n−1 ân,n

⎤

⎥⎥⎦ ,

A−1
2 =

⎡

⎢⎢⎣

ã11 ã12 . . . ã1,n−1 ã1,n
0 ã22 . . . ã2,n−1 ã2,n
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 ãn,n

⎤

⎥⎥⎦

(68)

Example 7.

A−1
1 =

⎡

⎣
1 0 0
2 1 0
1 3 1

⎤

⎦
−1

=

⎡

⎣
1 0 0
−2 1 0
5 −3 1

⎤

⎦ ,

A−1
2 =

⎡

⎣
1 2 3
0 1 2
0 0 1

⎤

⎦
−1

=

⎡

⎣
1 −2 1
0 1 −2
0 0 1

⎤

⎦ .

(69)

�

Example 8. For given nonsingular matrices

A =

[
3 2
2 2

]
, B =

[
13 9
12 12

]
(70)

compute the solution X ∈ R
2×2 and Y ∈ R

2×2 of
Eqn. (55).
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Using Procedure 3 in this case we obtain what
follows.
Step 1. For the matrix A given by (70) we obtain

[
1 −1
0 1

] [
3 2
2 2

]
=

[
1 0
2 2

]
(71)

and

A =

[
3 2
2 2

]
=

[
1 −1
0 1

]−1 [
1 0
2 2

]

= A1A2,

(72)

where

A1 =

[
1 1
0 1

]
, A2 =

[
1 0
2 2

]
. (73)

In a similar way, for the matrix B we obtain

B1 =

[
2 3
0 4

]
, B2 =

[
2 0
3 3

]
. (74)

Step 2. The solution of XA1 = B1 for given A1 and B1

has the form

X = B1A
−1
1 =

[
2 3
0 4

] [
1 1
0 1

]−1

=

[
2 1
0 4

] (75)

and the solution of A2Y = B2 has the form

Y = A−1
2 B2 =

[
1 0
2 2

]−1 [
2 0
3 3

]

=

[
2 0
−0.5 1.5

]
.

(76)

It is easy to check that X and Y given by (75) and
(76) constitute the solution of (55) for matrices (70) since

XAY =

[
2 1
0 4

] [
3 2
2 2

] [
2 0
−0.5 1.5

]

=

[
13 9
12 12

] (77)

�
For given matrices

S =

[
A B
C D

]
(78)

and

S̄ =

[
Ā B̄
C̄ D̄

]
(79)

the desired matrices M and N satisfying the equation

MSN = S̄ (80)

can be computed using the following procedure.

Procedure 4.
Step 1. For the matrix (78) compute the matrices S1, S2

satisfying the equation

S = S1S2, (81)

where

S1 =

⎡

⎢⎢⎣

ŝ11 0 . . . 0 0
ŝ21 ŝ22 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ŝn,1 ŝn,2 . . . ŝn,n−1 ŝn,n

⎤

⎥⎥⎦ ,

S2 =

⎡

⎢⎢⎣

s11 s12 . . . s1,n−1 s1,n
0 s22 . . . s2,n−1 s2,n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 sn,n

⎤

⎥⎥⎦

(82)

Step 2. For the matrix (79) compute the matrices S̄1, S̄2

satisfying the equation

S̄ = S̄1S̄2, (83)

where

S̄1 =

⎡

⎢⎢⎣

ˆ̄s11 0 . . . 0 0
ˆ̄s21 ˆ̄s22 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ˆ̄sn,1 ˆ̄sn,2 . . . ˆ̄sn,n−1 ˆ̄sn,n

⎤

⎥⎥⎦ ,

S̄2 =

⎡

⎢⎢⎣

s̄11 s̄12 . . . s̄1,n−1 s̄1,n
0 s̄22 . . . s̄2,n−1 s̄2,n
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 s̄n,n

⎤

⎥⎥⎦

(84)

Step 3. Compute the matrices

M = S̄1S
−1
1 , N = S−1

2 S̄2. (85)

Example 9. For given matrices

A =

⎡

⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 2 0
0 0 0 1

⎤

⎥⎥⎦ , B =

⎡

⎢⎢⎣

0 0
1 0
0 1
0 0

⎤

⎥⎥⎦ ,

C =

[
0 1 0 0
0 0 −2 0

]
, D =

[
0 0
0 0

]
(86)

and

Ā =

⎡

⎢⎢⎣

1 −0.06 0 0
0 −0.5 0 0
0 0 1 −0.05
0.3 0 −0.2 0.4

⎤

⎥⎥⎦ ,

B̄ =

⎡

⎢⎢⎣

0 0
1 0
0 0
0 0

⎤

⎥⎥⎦ ,

C̄ =

[
0 0.5 0 0.1
0 0 0 −0.2

]
,

D̄ =

[
0 0
0 1

]

(87)
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Compute matrices M and N satisfying Eqn. (80).
Using Procedure 4, we obtain what follows.

Step 1. The matrix (78) for (86) has the form

S =

[
A B
C D

]
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 −1 0 0 1 0
0 0 2 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 −2 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
(88)

and can be decomposed to

S1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

S2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 −1 0 0 1 0
0 0 2 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(89)

Step 2. The matrix (79) for (87) has the form

S̄ =

[
Ā B̄
C̄ D̄

]

=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −0.06 0 0 0 0
0 −0.5 0 0 1 0
0 0 1 −0.05 0 0
0.3 0 −0.2 0.4 0 0
0 0.5 0 0.1 0 0
0 0 0 −0.2 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

(90)

and can be decomposed to

S̄1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0.3 −0.036 −0.2 1 0 0
0 −1 0 0.256 1 0
0 0 0 −0.513 0.019 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

S̄2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −0.06 0 0 0 0
0 −0.5 0 0 1 0
0 0 1 −0.05 0 0
0 0 0 0.39 0.036 0
0 0 0 0 0.99 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

(91)

Step 3. Matrices (85) have the form

M = S̄1S
−1
1

=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0.3 −0.036 −0.2 1 0 0
0 0 0 0.256 1 0
0 0.019 1 −0.513 0.019 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

N = S−1
2 S̄2

=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −0.06 0 0 0 0
0 −0.5 0 0 −0.009 0
0 0 0.5 −0.025 0 −0.5
0 0 0 0.39 0.036 0
0 0 0 0 0.99 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

(92)

and they satisfy (77). In this example the LU factorization
method has been used (Schwarzenberg-Czerny, 1995).

�

7. Concluding remarks
A new approach to design discrete-time linear systems
with desired poles and zeros of their transfer matrices
has been proposed. Conditions have been established
under which the transfer matrices have the desired stable
poles and zeros. Procedures for computation of the
matrices of the system with desired poles and zeros of
the transfer matrices have been proposed and illustrated
by simple numerical examples. The reduction of the
discrete-time systems with controllable pair (A,B) and
observable pairs (A,C) with nilpotent matrix A has been
also considered.

The proposed approach can be easily implemented
in practice. It can be extended to continuous-time and
discrete-time fractional linear systems (Kaczorek, 1992;
Klamka, 1991).
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Discrete-time sliding mode control of linear systems
with input saturation, International Journal of Applied
Mathematics and Computer Science 30(3): 517–528, DOI:
10.34768/amcs-2020-0038.

Zak, S. (2003). Systems and Control, Oxford University Press,
New York.

Tadeusz Kaczorek received his MSc, PhD and
DSc degrees in electrical engineering from the
Warsaw University of Technology in 1956, 1962
and 1964, respectively. In 1971 he became a pro-
fessor and in 1974 a full professor at the same
university. Since 2003 he has been a professor at
the Bialystok University of Technology. In 1986
he was elected a corresponding member and in
1996 a full member of the Polish Academy of
Sciences. In 2004 he was elected an honorary

member of the Hungarian Academy of Sciences. He has been granted
honorary doctorates by 13 universities. His research interests cover sys-
tems theory, especially singular multidimensional systems, positive mul-
tidimensional systems, singular positive 1D and 2D systems, as well as
positive fractional 1D and 2D systems. He is the initiator of research
in the field of singular 2D, positive 2D and positive fractional linear
systems. He has published 28 books (eight in English) and over 1200
scientific papers. He has also supervised 70 PhD theses.

Łukasz Sajewski (born 1981 in Poland) received
his MSc, PhD and DSc degrees in electrical en-
gineering from the Bialystok University of Tech-
nology in 2006, 2009 and 2018, respectively. At
present he works at the Faculty of Electrical En-
gineering there. His main scientific interests fo-
cus on control theory, especially descriptor, pos-
itive, continuous-discrete and fractional systems.
He has published over 70 scientific papers and
one book.

Received: 20 November 2023
Revised: 15 March 2024
Re-revised: 20 March 2024
Accepted: 24 March 2024


	Introduction
	Basic definitions and theorems for linear discrete-time systems
	Proposed method for analysis of discrete-time SISO linear systems
	Extension to discrete-time MIMO linear systems
	Reduction of discrete-time linear systems
with controllable (A,B) and observable
(A,C) to systems with nilpotent matrices
	Matrix decomposition approach
	Concluding remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


