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e-mail: novotny@lncc.br

The robustness to topological perturbations in geometrical domains filled by a fluid flowing in Stokes–Darcy regime is
considered. The cost functional is given by the energy dissipation in the fluid. The topological perturbation is carried out by
the nucleation of an infinitesimal circular obstacle, which can be considered as a small measurement device. Our approach
is based on the topological derivative method, which has been previously employed in the shape and topology optimization
problems. The topological derivative (TD) measures the sensitivity of a given shape functional with respect to topological
domain perturbations. The TD is used to determine the location of the small device placement, through a distributed control
problem. By taking into account the effect of the disturbance term or uncertain input data in the TD expression, the problem
of robustness to topological perturbation for the energy functional can be formulated as a minimax optimization problem
with a pointwise observation. Numerical examples illustrate the efficiency of the proposed topological derivative method.
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1. Introduction

Problems of shape and topological sensitivity in fluids
mechanics has been a topic of interest of several studies

*Corresponding author

(see, e.g., Amstutz, 2006; Guillaume and Hassine, 2008;
Dziri et al., 2004; Moubachir and Zolesio, 2006; Dziri and
Zolésio, 2011). Based on these works, we can conclude
that the geometric design has a significant impact on
relevant quantities describing the fluid flow, like vorticity,
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energy of system and drag forces. In this paper, our
objective is to desensitize the energy functional with
respect to a topological perturbation, which in this context
represents a small circular obstacle within the fluid flow.
Instead of studying the problem in a domain with a
topological singularity, our approach consists of acting
on the topological derivative by a distributed control, and
taking in consideration the effect of a disturbance source
term in the system. This approach leads to a minimax
problem defined on the unperturbed domain. Our model
is governed by the Stokes–Darcy system which describes
the fluid flow with a slow motion in porous media. The
topological perturbation is performed by inserting a small
inclusion in the geometrical domain, also known by the
volume penalization method (see, e.g., Krzyzanowski et
al., 2024).

Closer works to our problem have been presented in
the framework of insensitizing (or desensitizing) control,
which goes back to the book (Lions, 1992), where the
notion of the sentinel was introduced. Intuitively, an
insensitizing control serves to neutralize a perturbation in
some system according to a given cost functional. The
sentinel method was generalized in several directions. We
mention here the works of Dáger (2006), Guerrero (2007)
and Gueye (2013), analyzing the problem of insensitizing
for the wave equation, Stokes and Navier–Stokes
systems, respectively. All these papers have dealt with
perturbations in initial or boundary conditions. The case
where the perturbation is prescribed on the boundary
was discussed recently by Ervedoza et al. (2022) for the
parabolic case. The authors applied the shape derivative
to describe the sensitivity with respect to boundary
variations (see Sokołowski and Zolésio, 1992). We
point out that the existence of insensitizing control is
equivalent to the problem of controllability of a coupled
system which involves the state and its adjoint state. In
this paper, we introduce a relaxed problem in the sense
that instead of looking for an exact desensitizing control
for the energy functional with respect to topological
perturbations, we seek a control such that the topological
derivative evaluated where the obstacle will be created
becomes as close as possible to zero.

Since our approach is based on the topological
derivative concept, let us recall some results in topological
sensitivity analysis that are available in the literature.
The topological derivative was rigorously introduced
by Sokołowski and Żochowski (1999). Considering
its applications in shape optimization, it has been the
subject of study for many models. For semilinear
elliptic problems, the reader is referred to the works
of Amstutz (2006) and Iguernane et al. (2009) and
more recently the paper by Sturm (2020). The
topological sensitivity for the compliance functional in
linear elasticity was discussed by Garreau et al. (2001).
For variational inequalities and contact problems, the

reader may refer to the paper by Giusti et al. (2015).
In fluid mechanics, we mention the papers by Amstutz
(2005), Hassine and Masmoudi (2004) or Guillaume and
Hassine (2008), where the authors derive TD expression
for Navier–Stokes, Stokes and quasi-Stokes systems,
respectively. Applications of the TD in inverse problems
of detecting an unknown geometric object from a given
measurements are discussed by Caubet and Dambrine
(2012) or Kovtunenko and Kunisch (2014). Concerning
the theoretical development of the topological asymptotic
analysis, the reader is referred to the monograph by
Novotny and Sokołowski (2012). More recently, Novotny
et al. (2019) discussed the numerical methods and
applications of the topological derivative for several
problems.

It is well know that the topological derivative
depends on initial data of the system in consideration.
Therefore, the question of robustness to parameters arises
naturally in numerical methods of shape optimization. Let
us mention some works in this context. Hlaváček et al.
(2009) discuss the continuity of the topological derivative
for an elasticity system, with respect to Lamé coefficients
and traction forces. Recently, Leugering et al. (2022)
demonstrated that the TD for the Helmholtz equation is
robust to frequency and boundary conditions. The upper
and lower bounds of the TD with respect to initial data
can be interpreted respectively as the worst-case design
and the maximum-range design. Therefore, in this paper
we deal with robustness issues with respect to topological
perturbations in geometrical domains filled by a fluid
flowing in Stokes–Darcy regime.

The rest of this paper is structured as follows. In
Section 2, we introduce some notation and we describe
our model of optimal control. The existence of robust
control is discussed in Section 3. In Section 4, we
derive the optimality conditions in terms of the adjoint
state for robust control. Numerical results are presented
in Section 5. Finally, some conclusions are drawn in
Section 6.

2. Problem formulation

Let us briefly recall the definition of the topological
gradient and some preliminary results in topology
optimization. Suppose that J (Ω) is an integral functional
depending on the solution of the boundary value problem
defined in Ω ⊂ R

N . For a small parameter � > 0,
consider the perforated domain Ω� := Ω \B�(x0), where
B�(x0) is the closed ball of radius � and center x0, and
with the boundary Γ� . The topological derivative of the
functional J (Ω) is defined by the following asymptotic
expansion:

J (Ω�) = J (Ω) + f(�)T (x0) + o(f(�)), (1)
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where J (Ω) is the functional evaluated for the given
original domain and J (Ω�) for a perturbed domain
obtained by introducing a topological perturbation of
size �. The term f(�) > 0 is a regularizing function
which depends on dimension N . The remainder o(f(�))
contains all terms of higher order than f(�), i.e.,

lim
�→0

o(f(�))

f(�)
= 0.

The function x0 �→ T (x0) is called the topological
derivative of J at x0. The topological derivative T (x0)
provides information for creating a small hole located at
x0. Actually, if T (x0) < 0 then J (Ω�) < J (Ω) for
sufficiently small �. Therefore, in order to decrease the
functional J , we have to create a hole (or an obstacle)
inside the geometrical domain where T is most negative.
More generally, the function T can be used as a descent
direction in topology optimization and, unlike classical
shape optimization, it allows us to modify the topology
of the domain during the optimization process; see, for
example, the works of Garreau et al. (2001) or Hassine
and Masmoudi (2004) for applications in elasticity and
fluid mechanics, and that of Caubet and Dambrine (2012)
for applications in inverse problems of detecting an
obstacle immersed in a fluid. Through the previous
analysis, we deduce that the best position to place a hole
B� in Ω, regarding the shape functional J , corresponds to

x = argmin
x∈Ω

T (x).

Suppose that we have an arbitrary infinitesimal
topological singularityB�(x0) not necessary located at x,
(x0 �= x); we can take, for example,

x0 = argmax
x∈Ω

T (x),

which is the most undesirable situation. The issue that we
will address in our paper is as follows:

How can we reduce the impact of the topological
perturbationB�(x0) on the cost functional J ?

In other words, we look for a control that makes the shape
functional J less sensitive with respect to the topological
singularity at x0. Note that the problem of insensitizing
control has been the subject of several communications,
specially when the perturbation is prescribed in the initial
or boundary conditions (see, e.g., Ervedoza et al., 2022;
Guerrero, 2007; Gueye, 2013; Lions, 1992). The abstract
problem given above will become clearer after fixing
the boundary value problem, which is in our case the
stationary Stokes–Darcy system.

Let Ω be the fluid domain in R
N (N = 2 or3), with

C2 smooth boundary Γ := ∂Ω. The fluid is described by

its velocity y and pressure p satisfying the Stokes–Darcy
equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μΔy +∇p+ ηy = hχω

+uχω1 + τχω2 inΩ,
div y = 0 inΩ,

y = 0 onΓ,

(2)

where μ stands for the kinematic viscosity coefficient, η
is the inverse permeability and h is a given source term.
The control and the disturbance terms are given by u, τ ,
respectively. The characteristic functions of ω, ω1, ω2 ⊂
Ω are respectively denoted by χω, χω1 , χω2 . For
simplicity, the following notation is used for functional
spaces

L2(Ω) := L2(Ω)N ,

H1
0(Ω) := H1

0 (Ω)
N ,

C(Ω) := C(Ω)N ,

Hdiv(Ω) := {ϕ ∈ H1
0(Ω), divϕ = 0},

L2
0(Ω) := {ϕ ∈ L2(Ω),

∫

Ω

ϕdx = 0}.

The existence of solutions for the Stokes–Darcy
system is well known; one can check that for all h, u, τ ∈
L2(Ω), there exists a unique pair (y, p) ∈ Hdiv(Ω) ×
L2
0(Ω) which is a solution of (2) (see, e.g., Boyer and

Fabrie, 2005; Galdi, 2011). The energy dissipation
functional of the system (2) is defined as follows:

Eu,τ (Ω) = μ

∫

Ω

|∇y|2 dx+

∫

Ω

η|y|2 dx. (3)

The topological perturbation of the geometrical domain
is defined by inserting an inclusion B�(x0) in Ω, where
B�(x0) � Ω \ (ω ∪ ω1 ∪ ω2) is the closed ball of radius �
and center x0, and with the boundary Γ� . More precisely
Ω� is defined through the penalization coefficient η� :=
ηγ� (see Krzyżanowski et al., 2024), where γ� is a
piecewise constant function given by

γ�(x) =

{
1 in Ω \B�,

γ in B�.
(4)

Here γ > 0 is the contrast parameter. Therefore, as γ →
+∞, we have |y||B�

≡ 0; see Fig. 1.
We write (y�, p�) for the unique solution of the

system (2) with the perturbation η�:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μΔy� +∇p� + η�y� = hχω

+uχω1 + τχω2 inΩ,
div y� = 0 inΩ,

y� = 0 onΓ.

(5)
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Fig. 1. Singular domain Ω�.

The topological derivative for the shape functional
E is derived by Sá et al. (2016). To be more clear,
in Appendix we will briefly present the proof of the
following asymptotic expansion:

Eu,τ (Ω�)− Eu,τ (Ω) = f(�)Tu, τ (x0) + o(f(�)), (6)

where the topological derivative Tu, τ and the function
f(�) are given by

Tu,τ (x0) = (1− γ)η|y(x0)|2,
f(�) = meas(B�).

(7)

For γ ≥ 1, we have Tu, τ ≤ 0, which means that
creating an infinitesimal inclusion inside Ω will decrease
the energy functional Eu, τ . Suppose that τ is fixed in
L2(ω2). Our aim is to reduce the effect of singularity in
the geometrical domain for energy dissipation Eu, τ , i.e.,
minimize the gap between Eu, τ (Ω�) and Eu, τ (Ω) by a
distributed control u. This problem can be formulated as
follow :

min
u∈L2(ω1)

|(Eu,τ (Ω�)− Eu,τ (Ω))|.

Observe that if |Tu,τ (x0)| ≤ |Tu,τ (x0)|, ∀u ∈ L2(ω1),
then for � small enough, we have

|E u,τ (Ω�)− E u, τ (Ω)| ≤ |Eu,τ (Ω�)− Eu,τ (Ω)|. (8)

The last remark motivates us to introduce the
following cost functional:

J (u, τ) =
1

2
|y(x0)|2 +

α

2

∫

ω1

|u|2 dx

− β

2

∫

ω2

|τ |2 dx,
(9)

where α, β > 0 are the regularization parameters.
The cost functional J is simultaneously minimized with
respect to the control u and maximized with respect
to the disturbance term τ . The control u serves to
influence the topological derivative at x0 and make it
as close as possible to zero, while τ is considered to
increase the robustness of the control. Therefore, the

worst-case disturbance corresponds to the maximum of J
with respect to τ . The rest of this article is devoted to the
analysis of the following minimax problem:

⎧
⎨

⎩

min
u∈ L2(Ω)

max
τ∈L2(Ω)

J (u, τ)

subject to (2).
(10)

Remark 1. The regularity results for the Stokes system
can be easily adapted to the system (2) (see, e.g., Galdi,
2011, Thm. IV.6.1.) thus according to the assumptions on
Ω, for each h ∈ L2(ω), u ∈ L2(ω1), and τ ∈ L2(ω2),
we have y ∈ H1

0(Ω) ∩ H2(Ω), and by the embedding
theorem we conclude that y ∈ C(Ω). Therefore, the
topological derivative T , which is the pointwise term in
the cost functional (9), is well defined.

It is well known that minimax problems are closely
related to the existence of a saddle points. More precisely,
we have the following definition for robust control.

Definition 1. The triple (u, τ, y), where y = y(u, τ), is a
solution to the robust control problem if (u, τ) is a saddle
point of the cost functional J , i.e.,

J (u, τ) ≤ J (u, τ ) ≤ J (u, τ ), ∀(u, τ) ∈ L2(Ω),

or equivalently

J (u, τ ) = min
u∈ L2(Ω)

max
τ∈ L2(Ω)

J (u, τ)

= max
τ∈L2(Ω)

min
u∈ L2(Ω)

J (u, τ).

3. Existence of robust control
In this section, we study the existence of a robust control
for the problem (10). The first works dealing with
robustness of control go back to the work by Bewley
et al. (2000), who introduced a general framework for
robust control for the Navier–Stokes problem. For optimal
control problems with pointwise observations, the reader
may refer to the PhD thesis of Brett (2014). The existence
of a saddle point for the functional J is an application of
the following proposition.

Proposition 1. (Ekeland and Temam, 1999, p. 173) Let
J be a functional defined on U1 × U2, where U1, U2 are
reflexive Banach spaces. If J satisfies the conditions

1. ∀κ ∈ U2, σ �→ J (σ, κ) is convex lower semicontin-
uous,

2. ∀σ ∈ U1, κ �→ J (σ, κ) is concave upper semicon-
tinuous,

3. ∃κ0 ∈ U2, lim‖σ‖→+∞ J (σ, κ0) = +∞,

4. ∃σ0 ∈ U1, lim‖κ‖→+∞ J (σ0, κ) = −∞,



On robustness to a topological perturbation in fluid mechanics 73

then the functional J has at least one saddle point (σ, κ).

Our main result of this section is given by the
following theorem.

Theorem 1. For sufficiently large β, (β > β0 > 0) , there
exists at least one saddle point (u, τ ) ∈ L2(Ω) × L2(Ω)
of the functional J .

Proof. We apply Proposition 1 with U1 = U2 = L2(Ω).
We need to verify all the assumptions for the functionalJ .
First, we point out that the mappings u → y(u, τ), τ →
y(u, τ) are affine and continuous from L2(Ω) to H2(Ω).
This is a direct result of the classical energy estimate:

‖y‖H2(Ω) + ‖p‖L2
0(Ω) ≤ K(‖u‖L2(ω2) + ‖τ‖L2(ω2)).

Therefore, we deduce immediately that J is lower
(and upper) semicontinuous with respect to u (and τ).
For convexity and concavity, we can use the second
derivatives of J with respect to u and τ ; thus, we must
check that d 2

uJ (ξ, ξ) > 0 and d 2
τJ (ξ, ξ) < 0, ∀ξ ∈

L2(Ω) \ {0}. The operators τ → y(u, τ), u → y(u, τ)
are Fréchet differentiable and their derivatives θξ :=
duy(u, τ)(ξ) and ψξ := dτy(u, τ)(ξ) obey the systems

⎧
⎪⎨

⎪⎩

−μΔθ +∇υ + η θ = ξχω1 in Ω,

div θ = 0 in Ω,

θ = 0 on Γ,

(11)

⎧
⎪⎨

⎪⎩

−μΔψ +∇κ+ η ψ = ξχω2 in Ω,

div ψ = 0 in Ω,

ψ = 0 on Γ.

(12)

Now the first and second derivatives of the functional
J in the direction ξ are given by

duJ (ξ) = y(x0) · θξ(x0) + α〈u , ξ〉L2(ω1), (13)

d 2
uJ (ξ, ξ) = |θξ(x0)|2 + α‖ξ‖2L2(ω1)

, (14)

dτJ (ξ) = y(x0) · ψξ(x0)− β〈τ , ξ〉L2(ω2), (15)

d 2
τJ (ξ, ξ) = |ψξ(x0)|2 − β‖ξ‖2L2(ω2)

. (16)

From (14) we conclude that J is convex with respect to
u. On the other hand, (ψ, κ) is the solution of the first
Stokes system in (11), so we have the H2-regularity for
the velocity ψ (see, e.g., Boyer and Fabrie, 2005; Galdi,
2011). Moreover, there exists C1 > 0 depending only on
Ω, such that

‖ψξ‖H2(Ω) + ‖κ‖L2
0(Ω) ≤ C1‖ξ‖L2(ω2). (17)

Recall that the space H2(Ω) is continuously
embedded in C(Ω). Thus, the following estimate holds:

|ψξ(x0)| ≤ ‖ψξ‖C(Ω) ≤ C‖ξ‖L2(ω2), (18)

where C = C1 · C2 , C1 is given in (17) and C2 is the
embedding constant. By the expression of d2τJ (ξ, ξ) from
(16) and the estimate (18), we deduce that

d2τJ (ξ, ξ) ≤ (C2 − β)‖ξ‖2L2(ω2)
.

Therefore, d2τJ (ξ, ξ) < 0, for β > β1 , with β1 > C2.
Taking τ = 0, the coercivity of J (u, 0) is a consequence
of the following estimate:

J (u, 0) ≥ α

2
‖u‖2L2(ω1)

.

For the last condition, observe that we have the same
estimate (18) for the state y, i.e.,

|y(0, τ)(x0)| ≤ ‖y(0, τ)‖C(Ω)

≤ C0(‖τ‖L2(ω2) + ‖h‖L2(ω)),

which leads to

J (0, τ) ≤
(
C2

0

2
− β

2

)

‖τ‖2L2(ω2)

+ C2
0‖τ‖L2(ω2) · ‖h‖L2(ω) +

C2
0

2
‖h‖2L2(ω).

Thus for β > β2, with β2 > C2
0 , the last condition in

Proposition 1 follows immediately. Finally, by setting
β0 = max{β1, β2}, we recover both the concavity and
coercivity of the cost functional J with respect to τ . �

4. Optimality conditions
In this section, we formulate the first-order optimality
conditions in terms of the adjoint state. Since we have no
constraints on controlu and disturbance term τ , the couple
(τ , u) is characterized by the Euler–Lagrange equations:

duJ (ξ) = 0 and dτJ (ξ) = 0.

The derivatives duJ , anddτJ are given by (13) and (15).
The pointwise observation in the cost functional J leads
to singular sources on the right-hand side of the adjoint
equation

⎧
⎪⎨

⎪⎩

−μΔv +∇q + ηv = yδx0 in Ω,

div v = 0 in Ω,

v = 0 on Γ.

(19)

Here δx0 represents the Dirac measure concentrated at x0.
If we test the adjoint problem with the function θ,

defined by the weak solution of the auxiliary system (11),
we get

∫

Ω

θ · y dδx0 =

∫

ω1

v · ξ dx, (20)
∫

Ω

ψ · y dδx0 =

∫

ω2

v · ξ dx. (21)
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Replacing (20) and (21) in expressions of (13) and (15),
respectively, we find

duJ = (v + αu)
∣
∣
ω1
, (22)

dτJ = (v − βτ)
∣
∣
ω2
. (23)

The source term of the adjoint state (19) belongs to
the space of bounded Borel measures in Ω, denoted by
M(Ω)N , which can be identified with the dual space of
continuous functions. By the Sobolev embedding theorem
it follows that δx0 ∈ W −1,s(Ω) for s < N/(N − 1),
where W −1,s(Ω) is the dual space of W1,s′

0 (Ω), and s′

is the Hölder conjugate of s, i.e., 1
s + 1

s′ = 1. The
Stokes problem with W −1,s(Ω) source term is discussed
in Chapter 4 of the monograph by Galdi (2011). The result
can immediately be generalized to the Stokes–Darcy
system. Therefore, the existence and uniqueness for the
adjoint state follow from the following result.

Lemma 1. (Galdi, 2011, p. 284) Assume that 1 < s <∞
and f ∈ W −1,s(Ω). Then the problem

〈∇v : ∇ϕ〉+ η〈v, ϕ〉
− 〈q, divϕ〉+ 〈div v, π〉 = 〈f, ϕ〉 (24)

has a unique weak solution (v, q) ∈ W1,s
0 (Ω) × Ls

0(Ω),
for all (ϕ, π) ∈ W 1,s′(Ω)× Ls′(Ω).

Now, we can formulate the first-order necessary and
sufficient optimality conditions as follows:

Proposition 2. Suppose that α and β are sufficiently
large and s ∈

(
2N
N+2 ,

N
N−1

)
. If (τ , u) is a solution to the

robust control problem (10), then

u = − 1

α
vχω1 , τ =

1

β
vχω2 , (25)

where ((y, p), (v, q)) ∈
[(

H1
0(Ω) ∩ H 2(Ω)

)
× L2

0(Ω)
]
×

[W 1,s
0 (Ω)×Ls

0(Ω)], is the unique solution to the following
coupled system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μΔy +∇p+ ηy = hχω

− 1

α
vχω1 +

1

β
vχω2 inΩ,

−μΔv +∇q + ηv = yδx0 in Ω,

div y = 0 , div v = 0 inΩ,

y = v = 0 onΓ.

(26)

Proof. From the Euler–Lagrange equations (22) and (23)
and the embedding

W1,s(Ω) ↪→ L2(Ω), s ∈
(

2N

N + 2
,

N

N − 1

)

,

we can deduce the expression of the robust control given
in (25). The existence of the solution for the optimality
system (26) follows directly from Theorem 1. In addition,
for α, β large enough, this solution is unique. Indeed,
suppose that ui, τi , i = 1, 2, be two solutions of problem
(10), and (yi, vi) be the associated solution of system
(26). By linearity, the difference (y1 − y2, v1 − v2) also
solves the optimality system for h ≡ 0. Moreover, by the
stability estimate and (25) we get

‖y1 − y2‖H2(Ω) ≤ C(‖u1 − u2‖L2(ω1)

+ ‖τ1 − τ2‖L2(ω2))

≤ C
( 1

α
+

1

β

)
‖v1 − v2‖L2(Ω)

≤ C
( 1

α
+

1

β

)
‖v1 − v2‖W1,s

0 (Ω), (27)

where C denotes a generic positive constant. For v1 − v2,
we have the estimate

‖v1 − v2‖W1,s
0 (Ω) ≤ C|y1(x0)− y2(x0)|

≤ C‖y1 − y2‖C(Ω)

≤ C‖y1 − y2‖H2(Ω). (28)

Combining this with (27), we get

‖v1 − v2‖W1,s
0 (Ω)

≤ C
( 1

α
+

1

β

)
‖v1 − v2‖W1,s

0 (Ω). (29)

Thus, for α, β large enough such that

C
( 1

α
+

1

β

)
< 1,

the solution of problem (26) is unique. �

Remark 2. From the relations (25), we deduce that
the robust control can be evaluated by scaling the adjoint
state with the regularized parameters −1/α and 1/β.
Therefore, if we set ω1 = ω2, the coefficient 1

β − 1
α

is the one that yields the balance between control and
disturbance directions.

5. Numerical examples
In this section, we present two numerical experiments
to illustrate our theoretical findings. We recall that
the numerical computation of the optimal control draws
on two approaches, namely: discretize-then-optimize
and shapeoptimize-then-discretize, (see, e.g., Tröltzsch,
2024). In our case, we will adopt the second path, and
we will focus on the numerical solution of the optimality
system (26). We employ the finite elements method to
discretize the coupled system (26).
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The numerical simulations to be presented are
conducted in two dimension using the FEniCS package,
(Logg et al., 2012). We use a P2 − P1 Taylor-Hood
element method to solve the Stokes–Darcy equations
(Szabó and Babuška, 2011). For discretization, we use
a family of triangulations {Th}h>0 for the geometrical
domain Ω, the mixed finite element approximation for
the optimality system (26) can reduce to the following
problem. Find [(ỹ, p̃), (ṽ, q̃)] in [V ×Q]2 such that

〈∇ỹ,∇ϕ̃〉+ 〈ηỹ, ϕ̃〉 − 〈p̃, div ϕ̃〉+ 〈div ỹ, r̃〉

+
1

α
〈ṽ, ϕ̃〉 − 1

β
〈ṽ, ϕ̃〉+ 〈∇ṽ,∇ς̃〉+ 〈ηṽ, ς̃〉

− 〈qh, div ς̃〉+ 〈div ṽ, λ̃〉+ 〈ỹ(x0), ς̃(x0)〉
= 〈h, ϕ̃〉, ∀[(ϕ̃, r̃), (ς̃ , λ̃)] ∈ [V ×Q]2.

The finite dimensional subspaces V and Q of H1
0(Ω) and

L2
0(Ω) are defined by

V =
{
yh ∈ C(Ω), yh|K ∈ P

2
2 , ∀K ∈ Th

and yh|Γ = 0
}
,

Q =
{
ph ∈ C(Ω), ph|K ∈ P1, ∀K ∈ Th

and
∫

Ω

ph dx = 0
}
,

respectively. The singular term in the right-hand-side of
adjoint state is handled using the following regularization:

δx0 ≈ ε

π(‖x− x0‖2 + ε2)
,

where ε is sufficiently small. Finally, the kinematic
viscosity μ and the inverse permeability η are equal to
1. In order to validate the theoretical results we have to
follow these steps:

1. Solve the uncontrolled Stokes–Darcy system in
reference domain Ω and compute the energy E(Ω).

2. Solve the uncontrolled Stokes–Darcy system in
perturbed domain Ω� and compute the energy E(Ω�).

3. Solve the optimality system (26) and evaluate the
the robust control (u, τ) by the relations (25); then
compute Eu,τ (Ω).

4. Solve the Stokes–Darcy system in Ω� with robust
control and compute Eu,τ (Ω�).

Example 1. Consider the geometrical domain given by
the unit square Ω =]0, 1[×]0, 1[. The control u is acting
on ω1 = Bε1(x1), where ε1 = 0.25, x1 = (0.7, 0.7)�,
and the disturbance term τ is supported in the subdomain
ω2 = Bε2(x2), where ε2 = 0.25, x2 = (0.3, 0.3)�. The
topological perturbation B�(x0) of size � = 0.01, will

Table 1. Comparison of the energy gap for different contrast pa-
rameters in Example 1.

Contrast |E(Ω�)− E(Ω)| |Eu,τ (Ω�)− Eu,τ (Ω)|
γ = 1010 2.77452× 10−5 3.89782× 10−10

γ = 105 2.77960× 10−5 2.94058× 10−10

γ = 102 2.79900× 10−5 1.91397× 10−12

be located at x0 = (0.3, 0.8)�. The right hand-side h =
(h1, h2)

� in system (2) is given by a rotational vector field
of the form

h1(x, y) = y, h2(x, y) = −x,

whose support is given by ω := ω3 = Bε3(x3), with
x3 = (0.8, 0.2)� and ε3 = 0.15. The geometrical
domain and its discretization are represented in Fig. 2.
The control and the disturbance parameters are given by
α = 108, β = 105. For the contrast parameter, we test
three values: γ = 1010, γ = 105 and γ = 102. The
graphical representations are performed in the first case
γ = 1010.

The mesh here is refined to 12681 cells. The flow in
the perturbed domain is shown in Fig. 3 (a). As expected,
if we plot |y| over the line x′2 = 0.8 (x′2 is the vertical
axis in the Cartesian coordinates), see Fig. 3 (b), we find
y|B�

≈ 0. The optimal state y(u, τ ) and the adjoint state v
given by the optimality system (26) are presented in Fig.
4. The control serves to bring the topological derivative
as close as possible to zero at the point x0, which is
equivalent to drive the state to zero at x0. In our case,
we found the following result:

y(0.303, 0.809) = (3.89, 7.096)� × 10−6.

The last step consists in checking the energy gap, or the
estimate (8). The energy functionals associated to (u ≡
0, and τ ≡ 0) in Ω and Ω� are respectively denoted by
E(Ω) and E(Ω�). The quantitative results are summarized
in Table 1. As intended, by a robust control (u, τ ), we
can determine the minimum energy gap with respect to
the topological perturbation. �

Example 2. Consider the enclosed Stokes–Darcy flow in
the unit circle, Ω = BR(O), R = 1 and O = (0, 0)�. The
control term acts in the ball ω1 = Bε1(x1), where ε1 =
0.4 and x1 = (0, 0.5)�. The disturbance and the source
terms are supported in ω2 = Bε2(x2), where ε2 = 0.4 and
x2 = (0,−0.5)�. The obstacle of size � = 0.01 is located
at x0 = (0.7, 0)�. The corresponding design domain is
shown in Fig. 5. The right hand-side h = (h1, h2)

� of
system (2) is given by

h1(x, y) = 0, h2(x, y) = −1.
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(a) (b)

Fig. 2. Example 1: geometrical domain Ω (a), plot of the mesh for Ω (b).

(a) (b)

Fig. 3. Example 1: streamline for the Stokes–Darcy flow in Ω� with γ = 1010 (a), plot over the line y = 0.8 (b).

(a) (b)

Fig. 4. Example 1: streamline for the controlled state y(u, τ) (a), streamline for the adjoint state v (b).
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(a) (b)

Fig. 5. Example 2: geometrical domain Ω (a), plot of the mesh for Ω (b).

(a) (b)

Fig. 6. Example 2: streamline for the Stokes–Darcy flow in Ω� with γ = 1010 (a), plot over the line y = 0 (b).

(a) (b)

Fig. 7. Example 2: streamline for the controlled state y(u, τ ) (a), streamline for the adjoint state v (b).
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Table 2. Comparison of the energy gap for different contrast pa-
rameters in Example 2.

Contrast |E(Ω�)− E(Ω)| |Eu,τ (Ω�)− Eu,τ (Ω)|
γ = 1010 0.00149909 9.47862× 10−6

γ = 105 0.00151717 7.52874× 10−6

γ = 102 0.00159826 5.33838× 10−8

The penalization parameters are fixed as follows: α =
108, β = 105. Again, three values for the contrast
parameter are considered: γ = 1010, γ = 105 andγ =
102. The mesh in Fig. 5 is refined to 16242 elements. 6(a)
shows the streamline for the velocity field in the perturbed
domain Ω�. The curve in Fig. 6(b), represents |y| over the
line x′2 = 0, and we observe that at the obstacle location
x0 = (0.7, 0)� we have y|B�

≈ 0. Figure 7 presents
the optimal state y(u, τ) and the adjoint state v. The
quantitative results obtained for the energy functional are
reported in Table 2.

6. Conclusion

In this paper, a new method that leads to insensitivity
of the energy functional with respect to topological
perturbation is presented. The model problem in fluid
mechanics is governed by the Stokes–Darcy equations.
A penalization approach is used to deal with the no-slip
boundary condition on the infinitesimal obstacle. Our
approach is based on the resolution of a minimax
auxiliary problem, where the cost functional involves
point evaluations of the state. This study can naturally
be generalized in several directions, in particular for
elliptic linear problems, where the theory of topological
sensitivity is successfully developed. For nonlinear
problems, it is well known that the topological derivative
depends on the direct and adjoint states and probably
their gradients. In this case, our approach leads to an
optimal control problem for a cascade system, i.e., a
coupled system which includes the nonlinear state and its
costate, with a control term acting partially through the
state equation. This issue is currently under development
and will be the subject for a forthcoming work. For the
nonsteady case, several important questions arise, such
as the asymptotic behavior of optimal control in long
time horizon and the turnpike properties (see, e.g., Gugat
and Lazar, 2023; Gugat and Sokołowski, 2023). For
time-dependent problems, the strategy used in this article
requires further analysis, especially the expression of the
topological derivative which remains in question in the
nonstationary case.
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Sá, N.L., Amigo, R.R., Novotny, A.A. and Silva, N.E.
(2016). Topological derivatives applied to fluid flow
channel design optimization problems, Structural and Mul-
tidisciplinary Optimization 54: 249–264.
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Appendix

In this section, we will derive the asymptotic expansion
(6). In general, several methods are devoted to calculate
the topological derivative expression, for example the
adjoint methods. We refer the reader to Baumann
and Sturm (2022), who give a comprehensive review
about this approach. The topological derivative can
also be derived as a singular limit of the shape
derivative. This method is widely used, especially for
the energy functionals, see the monograph by Novotny
and Sokołowski (2012) and the references therein. The
common step among all of these methods is to perform
the asymptotic analysis of the state with respect to the
parameter �. In our case, we will see that the penalization
of the no-slip boundary condition enormously simplifies
the asymptotic analysis for the y� and E(Ω�) as well.

Lemma A1. Let y and y� be the weak solutions to the
systems (2) and (5), respectively. Then, we have the fol-
lowing estimate:

‖y − y�‖H1
0(Ω) ≤ C�

N
2 +s, (A1)

where s ∈]0, 1], and C is a constant independent of the
parameter �.

Proof. The weak form for the Stokes–Darcy system (2)
in reference domain Ω is given by

μ

∫

Ω

∇y · ∇ϕ+

∫

Ω

ηy · ϕ

−
∫

Ω

m · ϕ = 0, ∀ϕ ∈ Hdiv(Ω), (A2)

wherem = hχω+uχω1 +τχω2 . In the perturbed domain
Ω�, the weak form of the system (5) reads

μ

∫

Ω�

∇y� · ∇ϕ+

∫

Ω�

η�y� · ϕ

−
∫

Ω�

m · ϕ = 0, ∀ϕ ∈ Hdiv(Ω). (A3)

Let us now subtract (A3) from (A2), to obtain

μ

∫

Ω

∇(y� − y) · ∇ϕ

+

∫

Ω

(η�y� − ηy) · ϕ = 0, ∀ϕ ∈ Hdiv(Ω). (A4)

Setting ϕ = y� − y in (A4), we get

μ

∫

Ω

|∇(y�−y)|2+
∫

Ω

(η�y�−ηy) · (y�−y) = 0. (A5)

The coefficient η� is defined piecewise in Ω�, hence
we have the following decomposition for the last integral:
∫

Ω

(η�y� − ηy) · (y� − y)

=

∫

Ω\B�

η|y� − y|2 +
∫

B�

η(γy� − y) · (y� − y)

=

∫

Ω

η�|y� − y|2 −
∫

B�

(1− γ)ηy · (y� − y). (A6)

After replacing in (A5), we get
∫

Ω

|∇(y� − y)|2 +
∫

Ω

η�|y� − y|2

=

∫

B�

(1− γ)ηy · (y� − y). (A7)

Using the Cauchy–Schwarz inequality and the
Lebesgue differentiation theorem (Bogachev and Ruas,
2007), p. 351, we find the following estimate:

μ

∫

Ω

|∇(y� − y)|2 +
∫

Ω

η�|y� − y|2

≤ C�
N
2 ‖y� − y‖L2(B�). (A8)

On other side, by the Hölder inequality and the Sobolev
embedding H1

0(B�) ↪→ L2(B�), we get

‖y� − y‖L2(B�) ≤ C�
N
2q

(∫

B�

|y� − y|2p
) 1

2p

= C�
N
2q ‖y� − y‖L2p(B�)

≤ C�s‖y� − y‖H1
0(Ω), (A9)

where 1
p + 1

q = 1, q ≥ N
2 , and s = N

2q . Using (A8) and
(A9), we obtain

μ

∫

Ω

|∇(y� − y)|2 +
∫

Ω

η�|y� − y|2

≤ C�
N
2 +s‖y� − y‖H1

0(Ω). (A10)

Finally, the estimate (A1) can be derived directly
from the coercivity inequality, i.e.,

c‖y� − y‖2H1
0(Ω)

≤ μ

∫

Ω

|∇(y� − y)|2 +
∫

Ω

η�|y� − y|2. (A11)

�

Now, let us go back to the shape functional E(Ω). By
setting ϕ = y� − y in the weak forms (A2) and (A3), we
obtain

E(Ω) = μ

∫

Ω

∇y� · ∇y +
∫

Ω

η�y� · y, (A12)

E(Ω�) = μ

∫

Ω

∇y� · ∇y +
∫

Ω

ηy� · y. (A13)
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In addition, we have

E(Ω�)− E(Ω)

=

∫

B�

(1− γ)ηy� · y

=

∫

B�

(1− γ)η|y|2 + (1− γ)η(y� − y) · y

(A14)

The first term gives the TD of E , while the second term is
a remainder of order o(�N ). More precisely, we have
∫

B�

η(y� − y) · y ≤ C�
N
2 ‖y� − y‖H1

0(B�)

≤ C�
N
2 ‖y� − y‖H1

0(Ω) = o(�N ),

(A15)

E(Ω�)− E(Ω) =
∫

B�

(1 − γ)η|y|2 + o(�N ). (A16)

Again, using the Lebesgue differentiation theorem we find
the topological derivative expression at x0, namely,

E(Ω�)− E(Ω) = meas(B�)(1 − γ)η|y(x0)|2

+ o(�N ).
(A17)
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