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Discrete mechanics and optimal control (DMOC) is a numerical optimal control framework capable of solving robot trajec-
tory optimization problems. This framework has advantages over other direct collocation and multiple-shooting schemes. In
particular, it works with a reduced number of decision variables due to the use of the forced discrete Euler–Lagrange (DEL)
equation. Also, the transcription mechanism inherits the numerical benefits of variational integrators (i.e., momentum and
energy conservation over a long time horizon with large time steps). We extend the benefits of DMOC to solve trajectory
optimization problems for highly articulated robotic systems. We provide analytical evaluations of the forced DEL equation
and its partial differentiation with respect to decision variables. The Lie group formulation of rigid-body motion and the use
of multilinear algebra allow us to efficiently handle sparse tensor computations. The arithmetic complexity of the proposed
strategy is analyzed, and it is validated by solving humanoid motion problems.
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1. Introduction

Robot trajectory optimization represents an active
research area. The problem to be solved consists of
generating dynamically feasible robot motions under a
wide variety of constraints such as torque and joint limits,
obstacle avoidance, contacts, dynamic balance, among
others. The aim of this work is to take advantage
of variational integrators (Marsden and West, 2001) to
formulate the underlying trajectory optimization problem
in terms of discrete mechanics and optimal control
(DMOC) (Ober-Blöbaum et al., 2011). Unlike previous
works (Johnson and Murphey, 2009; Johnson et al., 2015),
which are computationally expensive due to nested loops
and multiple conditionals that must be handled with
scalar operations, we propose a multivariable formulation
that avoids the inherent sparsity of DMOC. The impact
of the proposed sparsity-free DMOC is more notorious
for tree-like kinematic structures (e.g., humanoid robots)
in terms of arithmetic complexity and computational
performance.

*Corresponding author

1.1. Problem formulation. Let us formulate an
optimal control problem (OCP) as follows: Given a highly
articulated robotic system with n degrees of freedom
(DoF) and a state vector

x =

[
q
q̇

]
∈ R

2n, (1)

where {q, q̇} ∈ R
n are the robot configuration, and joint

velocities, respectively, find a control law (if it exists) that
leads the system from its initial state to a final one by
solving the following OCP:

minimize
u(t)∈U

∫ tf

t0

C(x(t),u(t), t) dt, (2)

subject to ẋ(t) = fx(x(t),u(t), t),

g(x(t),u(t), t) ≤ 0,

xlb ≤ x(t) ≤ xub,

x(t0) = x0, x(tf ) = xf ,

(3)

where U ⊂ R
n defines the admissible control domain,

C(·) stands for the integrand of the cost functional to be
minimized, g(·) ∈ R

p contains the set of path constraints,
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and ẋ(t) = fx(x(t),u(t), t) stands for the robot’s
dynamics expressed in its state equation form. The initial
and final time are expressed as t0 and tf , respectively. The
constraint vectors xlb ∈ R

2n and xub ∈ R
2n are the lower

and upper bounds of the system’s state, and {x0,xf} ∈
R

2n are the initial and final states, respectively.
The continuous OCP stated in (2) and (3) could be

transformed into a nonlinear program (NLP), such that the
robot’s equations of motion become defect constraints to
be satisfied as follows:

minimize
z

J(z),

subject to cl ≤ c(z) ≤ cu,

zl ≤ z ≤ zu,

(4)

where J is the cost function, c(z) ∈ R
ncns is a stack of

defect, path, and boundary constraints as Φ, Υ, and e,
respectively. Lower and upper bounds over constraints are
cU and cL, respectively. The vector of decision variables
is z = [x�

0 . . .x�
N−1u

�
0 . . .u�

N−1]
� ∈ R

3nN where xk

and uk represent the state and control input evaluated at
time step k, respectively, and k iterates from 0 to N − 1.
The vectors zl and zu denote the lower and upper bounds
of z, respectively. The number of discrete points is N .

Since the NLP stated in (4) turns out to be
a large-scale optimization problem that demands an
important amount of computation, it is desirable to
analytically evaluate the robot’s equations of motion
together with their partial derivatives for decreasing
the computation time without affecting the numerical
sensitivity of the solution.

1.2. Related work. The maturity of direct collocation
and shooting methods has been translated into
out-of-the-box numerical optimal control (NOC) solvers
(Houska et al., 2011; Andersson et al., 2019; Agamawi
and Rao, 2020). In general, they transcribe the
original continuous optimal control problem into
a nonlinear program (NLP), such that the system
dynamics become defect constraints to be satisfied
(Kelly, 2017; Betts, 2010). It has been well established
that direct methods offer superior convergence properties
compared to indirect transcription mechanisms, that are
sensitive to initial conditions (Rao, 2009). Regardless of
the preferred transcription method, there exist two main
strategies known as multiple shooting and collocation.
Thus, significant work has been done to develop
sophisticated NOC frameworks for solving small to
medium size optimal control problems based on direct
methods. As a result, out-of-the-box optimal control
solvers are now available such as ACADO toolkit (Houska
et al., 2011), DirCol5i (Kelly, 2019), MUSCOD-II
(Leineweber et al., 2003), PSOPT (Becerra, 2010),
CasADi (Andersson et al., 2019) and CGPOPS (Agamawi
and Rao, 2020). Some of them are open-source projects

such as PSOPT and CasADi. ACADO toolkit is no
longer supported while MUSCOD-II and CGPOPS are
commercial options. All of them have been conceived
to solve general purpose optimal control problems with
special attention to chemical (Leineweber et al., 2003)
and aerospace (Betts and Erb, 2003) engineering. Other
trajectory optimization strategies have been suggested for
linear systems for Liu et al. (2022).

Recent efforts have been dedicated to develop
robot trajectory optimization strategies based on direct
shooting and collocation (Howell et al., 2019; Mastalli
et al., 2020; Hereid and Ames, 2017; Cardona-Ortiz
et al., 2020). In particular, the direct shooting strategy
introduced by Mayne (1966), known as differential
dynamic programming (DDP), has been widely applied
for robot motion generation (Budhiraja et al., 2018;
Howell et al., 2019; Mastalli et al., 2020), and it
is sparsity-free by design. However, path constraints
together with simple state and control bounds cannot be
added to the problem in a straightforward manner.

On the other hand, variational integrators have been
suggested for computing the robot’s equations of motion
in generalized coordinates (Johnson and Murphey, 2009),
and their linearization has been studied for control
design purposes, e.g., the LQR for moving an articulated
marionette robot (Johnson et al., 2015). Special attention
has been given to improve the computational demands
to calculate the discrete Euler–Lagrange (DEL) equation
and its linearization for generating dynamically feasible
robot motions (Lee et al., 2020; Fan et al., 2018). It
is important to mention that recursive algorithms are
based on the geometric and spatial algebra formulations
(Park et al., 2018; Featherstone, 2014). In particular,
the geometric and variational integrators approaches
could work together to cope with geometric discrete
optimal control problems over Lie groups (Kobilarov and
Marsden, 2011).

DMOC, which is based on variational integrators,
has been successfully applied for robot motion generation
under different conditions (Sun et al., 2016; Zhang et al.,
2018; Manns and Mombaur, 2017; Manchester et al.,
2019). The methods proposed by Sun et al. (2016)
treated the walking gait of five degrees of freedom planar
biped robots (i.e., support and swing legs). In DMOC,
holonomic constraints are studied by Leyendecker et al.
(2010), and non-holonomic constraints have been also
considered to solve trajectory optimization problems for
car-like vehicles as described by Kobilarov and Sukhatme
(2007). The multi-phase DMOC method proposed by
Zhang et al. (2018) demonstrates how to optimize the
trajectories of quadrotor aerial vehicles. In the context
of contact dynamics, the method proposed by Manchester
et al. (2019) deals with linear complementarity conditions
for robot motion generation under contact constraints.
Following the same vein, the main contributions of
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our work are twofold. First, the inherent sparsity of
DMOC, when highly articulated robots come to play, is
carefully removed. Second, efficient recursive algorithms
are proposed to analytically evaluate the robot’s DEL
equation and its linearization.

The paper is organized as follows. First, DMOC is
briefly described in Section 2. In Section 3, we apply
Lie groups and algebras for robot motion to analytical
evaluate the partial derivatives of robot’s DEL equation
with respect to decision variables. In Section 4 we use
multilinear algebra to avoid naive tensor calculations, i.e.,
sparsity. Numerical results are provided in Section 5.
Finally, some concluding remarks are given in Section 6.

2. Variational integrators and DMOC
Variational integrators can be used to obtain the robot’s
equations of motion. Since the robot is considered as a
non-conservative mechanical system subject to external
forces, we apply the d’Alembert–Lagrange principle as
follows:

δ

∫ tf

t0

L (q(t), q̇(t)) dt

+

∫ tf

t0

F (q(t), q̇(t),u(t)) · δq(t) dt = 0, (5)

where L is the Lagrangian function of a mechanical
system defined as L(q(t), q̇(t)) = K(q(t), q̇)(t) −
U(q(t)), such that K(q(t), q̇(t)) and U(q(t)) are the
kinetic and potential energies (Marsden and West, 2001).
The second term in (5) represents the virtual work exerted
on the mechanical system, where F (q(t), q̇(t),u(t)) ∈
R

n stands for the Lagrangian control force and the
variation of q(t) is denoted by δq(t) (Ober-Blöbaum
et al., 2011). Thus, variational integrators are derived
from the discrete version of equation (5) such that

Ld(qk, qk+1) ≈
∫ (k+1)Δt

kΔt

L(q(t), q̇(t)) dt, (6)

where q(t) is discretized into N segments qk|Nk=0, and Ld

is known as the discrete Lagrangian. This function can be
defined by any quadrature rule. In this work we apply the
midpoint approximation

Ld(qk, qk+1) = L (qd, q̇d)Δt, (7)

such that

qd =
qk + qk+1

2
, q̇d =

qk+1 − qk
Δt

with Δt as the time increment. Similarly, the virtual work
is approximated with a combination of a midpoint and

forward rectangle rules as follows:

F d(qk, qk+1,uk)(δqk + δqk+1)

≈
∫ (k+1)Δt

kΔt

F (q(t), q̇(t),u(t)) · δq(t)dt, (8)

where F d is known as the discrete Lagrangian control
force,

F d(qk, qk+1,uk) = F (qd, q̇d,ud)Δt. (9)

such that ud is the control input approximation given by a
numerical integration rule.

The discrete d’Alembert–Lagrange principle stands
for

N−1∑
k=0

(
D1Ld(qk, qk+1) · δqk+D2Ld(qk, qk+1) · δqk+1

)

+
N−1∑
k=0

F d(qk, qk+1,uk) · (δqk + δqk+1) = 0, (10)

for all variations δq(t) of q(t) that vanish at endpoints
q0 and qN . The slot derivative is denoted as Di, which
represents the partial differentiation of Ld with respect to
its i-th argument. By applying a discrete integration by
parts, we obtain

N−1∑
k=1

(
D2Ld(qk−1, qk) +D1Ld(qk, qk+1)

+ F d(qk−1, qk,uk) + F d(qk, qk+1,uk)
) · δqk = 0.

(11)
From the fact that (11) must hold for all variations δqk,
the forced discrete Euler–Lagrange (DEL) equation is

D2Ld(qk−1, qk) +D1Ld(qk, qk+1)

+ F d(qk−1, qk,uk) + F d(qk, qk+1,uk) = 0.
(12)

The computation of slot derivatives in (12) uses the chain
rule to differentiate (7). Therefore,

D1Ld(qk, qk+1) =

(
∂L

∂qd

∂qd

∂qk

+
∂L

∂q̇d

∂q̇d

∂qk

)
Δt,

=
1

2

∂L

∂qd

Δt− ∂L

∂q̇d

, (13)

D2Ld(qk, qk+1) =

(
∂L

∂qd

∂qd

∂qk+1

+
∂L

∂q̇d

∂q̇d

∂qk+1

)
Δt,

=
1

2

∂L

∂qd

Δt+
∂L

∂q̇d

. (14)

Notice that the form of (13) and (14) depends on the
quadrature rule, in this case the midpoint rule.



86 C. Villanueva-Piñon and G. Arechavaleta

2.1. Direct transcription. The trajectory optimization
problem stated in (4) implies the fulfillment of the robot’s
equations of motion along the optimized trajectory. For
DMOC this means that the forced DEL equation given in
(12) must be satisfied. Thus, a vector of stacked defect
constraints is defined as

Φ =

⎡
⎢⎢⎢⎣

f1(q0, q1, q2,u1)
f2(q1, q2, q3,u2)

...
fN−1(qN−2, qN−1, qN ,uN−1)

⎤
⎥⎥⎥⎦ , (15)

where fk corresponds to (12), such that k iterates from
1 to N − 1 for guaranteeing the feasibility of system
dynamics along the optimized trajectory.

Similarly to the discrete Lagrangian defined in (6)
and (7), discrete variational principles can be applied to
evaluate the functional (2) at each time step as

Cd(qk, qk+1,uk) ≈
∫ (k+1)Δt

kΔt

C(q(t), q̇(t),u(t)) dt. (16)

Then, the expression (16) is used to obtain the discrete
version of (2), i.e., the cost function in (4), as

J(qk,uk) =

N−1∑
k=0

Cd(qk, qk+1,uk),

Cd(qk, qk+1,uk) = C (qd, q̇d,ud)Δt.

Variational integrators are also used to obtain discrete
path constraints as a set of algebraic equations acting on
the discrete curve. The vector of stacked constraints is

Υ =

⎡
⎢⎢⎢⎣

gd0

gd1

...
gdN−1

⎤
⎥⎥⎥⎦ ∈ R

pN (17)

where

gdk
(qk, qk+1,uk) ≈

∫ (k+1)Δt

kΔt

g(x(t),u(t)) dt ∈ R
p, (18)

such that p is the number of constraints at each node
of the discrete curve given by {qk}Nk=0. Now, the
boundary conditions appearing in (3), i.e., {q(t0), q̇(t0)}
and {q(tf ), q̇(tf )}, should be consistent with the discrete
representation. Notice that joint velocities are not directly
available in (12). However, joint velocities can be
transformed into momentum by applying the standard
Legendre transform

(q, q̇)→ (q,p) = (q, D2L(q, q̇)). (19)

From (12), the discrete Legendre transform implies
(Ober-Blöbaum et al., 2011):

(qk−1, qk)→ (qk,pk) =(qk, D2Ld(qk−1, qk)

+ F d(qk−1, qk,uk−1),

(qk−1, qk)→ (qk−1,pk−1) =(qk−1,−D1Ld(qk−1, qk)

− F d(qk−1, qk,uk−1).

By equating the continuous and discrete momenta, the
following momentum conditions are obtained:

D2L(q(t0), q̇(t0)) +D1Ld(q0, q1)

+F d(q0, q1,u0) = 0, (20)
−D2L(q(tf ), q̇(tf )) +D2Ld(qN−1, qN )

+F d(qN−1, qN ,uN−1) = 0, (21)

where the expression (20) could be rewritten as p(t0) −
p0 = 0 and (21) as p(tf )−pN = 0. In addition, boundary
conditions related to the initial and final configurations
can be directly expressed as

q(t0)− q0 = 0, (22)
q(tf )− qN = 0. (23)

The stack of boundary conditions is represented as e =
[e�0 , e�N ]� ∈ R

4n where e0 contains the expressions (20)
and (22), while eN considers (21) and (23).

2.2. Sparsity patterns of first-order terms. Since
the NLP solver asks for first-order information of the
problem, the computation of the constraint Jacobian,
denoted as ∂c(z)

∂z , is of great importance. Its sparse
structure follows the patterns

⎧⎨
⎩

∂f i

∂zk
∈ R

n×2n if i = k,

0 otherwise,⎧⎨
⎩
∂gdi

∂zk
∈ R

p×2n if i = k,

0 otherwise,⎧⎨
⎩

∂e

∂qk

∈ R
2n×n if k = 0 or k = N,

0 otherwise,
∂e

∂uk
∈ R

2n×n = 0,

where zk = [q�
k ,u

�
k ]

� ∈ R
2n. Figure 1(a)

illustrates the structure of ∂c(z)/∂z with N = 8 for a
tree-like mechanism depicted in Fig. 1(b). Note that the
patterns form dense blocks that correspond to the partial
derivatives of the system dynamics with respect to the
discrete robot configuration and control at k − 1, k and
k + 1 as

∂fk

∂zk−1:k+1

=
[

∂f k

∂q
k−1

∂fk

∂uk−1

∂f k

∂q
k

∂fk

∂uk

∂f k

∂q
k+1

∂fk

∂uk+1

]
,

(24)
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(a) (b)

Fig. 1. Sparsity of the constraint Jacobian depends on the number of constraints, discretization points, and degrees of freedom of the
articulated rigid-body system. The sparsity of the constraint Jacobian due to the DMOC transcription: it is observed that each
block along Jacobian’s diagonal also contains the induced sparsity of the articulated rigid-body system (a). A 4 DoF open-chain
rigid-body system composed by 5 bodies and 4 axes of admissible motion denoted by si: the body labeled with 0 is fixed, and
it corresponds to the root of the tree-like kinematic mechanism (b).

where the partial derivatives are calculated as follows:

∂fk

∂qk−1

= D1D2Ld(qk−1, qk)

+D1F d(qk−1, qk,uk−1), (25)
∂fk

∂qk

= D2D2Ld(qk−1, qk)

+D1D1Ld(qk, qk+1)

+D1F d(qk, qk+1,uk), (26)
∂fk

∂uk
= D3F d(qk, qk+1,uk), (27)

∂fk

∂qk+1

= D2D1Ld(qk, qk+1)

+D2F d(qk, qk+1,uk). (28)

Note that second slot derivatives appear in (25), (26) and
(28). Thus, the chain rule of differentiation is employed
to obtain the following expressions:

D1D1Ld(qk, qk+1) =
1

4

∂2L(·)
∂qd∂qd

Δt− 1

2

∂2L(·)
∂q̇d∂qd

− 1

2

∂2L(·)
∂qd∂q̇d

+
∂2L(·)
∂q̇d∂q̇d

1

Δt
,

(29)

D2D1Ld(qk, qk+1) =
1

4

∂2L(·)
∂qd∂qd

Δt+
1

2

∂2L(·)
∂q̇d∂qd

− 1

2

∂2L(·)
∂qd∂q̇d

− ∂2L(·)
∂q̇d∂q̇d

1

Δt
,

(30)

D1D2Ld(qk, qk+1) =
1

4

∂2L(·)
∂qd∂qd

Δt− 1

2

∂2L(·)
∂q̇d∂qd

+
1

2

∂2L(·)
∂qd∂q̇d

− ∂2L(·)
∂q̇d∂q̇d

1

Δt
,

(31)

D2D2Ld(qk, qk+1) =
1

4

∂2L(·)
∂qd∂qd

Δt+
1

2

∂2L(·)
∂q̇d∂qd

+
1

2

∂2L(·)
∂qd∂q̇d

+
∂2L(·)
∂q̇d∂q̇d

1

Δt
.

(32)

3. Computation of robot dynamics
The aim here is to describe a geometric procedure to
analytically evaluate the robot equations of motion based
on variational integrators. The geometric procedure
involves the use of matrix Lie groups SO(3) and
SE(3) and their associated algebra that are employed in
robotics to represent articulated rigid bodies (Johnson and
Murphey, 2009; Park et al., 2018). From the geometric
formulation, a recursive and sparsity-free computation of
the robot dynamics can be performed.

3.1. Discrete Lagrangian computation. The discrete
Lagrangian L(qd, q̇d) is defined as

L(qd, q̇d) = K(qd, q̇d)− U(qd), (33)

where K(qd, q̇d) and U(qd) represent respectively the
kinetic and potential energies of the robotic system
composed by articulated rigid bodies. Thus, the kinetic
energy can be calculated through the chain of rigid bodies
as

K(qd, q̇d) =
1

2

∑
i

νi(qd, q̇d)
�M iνi(qd, q̇d), (34)

where M i ∈ R
6×6 and νi ∈ R

6 are the inertia matrix
and twist of the i-th body, respectively. The twist νi =
[vT

i ωT
i ]

T ∈ R
6 contains the linear and angular velocities

of i-th body, vi ∈ R
3 and ωi ∈ R

3, respectively. From
the following recursion, the twist can be computed as

νi(qd, q̇d) = Ad
G

λ(i)
i

νλ(i)(qd, q̇d) + siq̇di ∈ R
6, (35)



88 C. Villanueva-Piñon and G. Arechavaleta

where si ∈ R
6 stands for the axis of motion expressed

in local coordinates (i.e., the reference frame attached
to the i-th body), q̇di is the i-th discrete joint velocity,
and Ad

G
λ(i)
i

is known as the Adjoint operator, which
expresses the twist νλ(i) in the i-th reference frame of
the corresponding rigid body. The Adjoint operator is
constructed by means of G ∈ SE(3) that encodes the
position and orientation of the rigid body (Selig, 2004;
Park et al., 2018). Notice that the body parent of the i-th
body towards the root is denoted by λ(i). For example,
according to Fig. 1(b), λ(2) = λ(3) = 1, which means
that bodies labeled as 2 and 3 have the same body parent,
i.e., their predecessor.

The evaluation of the potential energy in (33) can be
obtained from the following expression:

U(qd) =
∑
i

mi g
�ri(qd), (36)

where g ∈ R
3 is the gravity vector, mi is the mass of

the i-th body along the kinematic chain, and ri(qd) ∈
R

3 represents the center of mass (CoM) in terms of the
discrete configuration. Since the CoM in (36) is expressed
in the inertial frame, its computation implies[

ri(qd)
1

]
= Gi

0(qd)

[
rbi

1

]
, (37)

where rbi ∈ R
3 is the CoM of the i-th body expressed in

local coordinates, and Gi
0(qd) represents the product of

exponentials formula (Brockett, 2005), which encodes the
local transformations along the robot kinematics from the
inertial to the i-th reference frames attached to the robot
as

Gi
0(qd) = G1

0(0) e
[s1]q1G2

1(0) e
[s2]q2 · · ·Gi

i−1(0) e
[si]qi ,
(38)

where e[si]qi is the matrix exponential map, [si] is the
matrix form of the screw axis of motion expressed in
local coordinates, qi is the i-th element of the robot
configuration, and Gi

i−1(0) is the i-th reference frame
home configuration (for details, see the work of Park et
al., (2018)).

3.2. Computation of the DEL equation. The
evaluation of (12), which is the DEL equation, implies
the partial differentiation of the discrete Lagrangian with
respect to qd and q̇d as it is observed in (13) and (14). As
a remark, hereafter we omit the explicit dependence on qd

and q̇d in terms like ri and νi for readability purposes.
By plugging (34), (35) and (36) in (33), the expressions of
the resulting partial differentiation are
∂L

∂qd

=
∑
i

(
ν�
i M i

∂νi

∂qd

− mi g
� ∂ri

∂qd

)
∈ R

n, (39)

∂L

∂q̇d

=
∑
i

(
νT
i M i

∂νi

∂q̇d

)
∈ R

n. (40)

The partial derivatives of (35) with respect to qd

and q̇d in (39) and (40), respectively, can be analytically
obtained
∂νi

∂qd

= Ad
G

λ(i)
i

∂νλ(i)

∂qd

− adsi νi
∂qdi

∂qd

∈ R
6×n, (41)

∂νi

∂q̇d

= Ad
G

λ(i)
i

∂νλ(i)

∂q̇d

+ si
∂q̇di

∂q̇d

∈ R
6×n, (42)

where
∂qdi

∂qd

∈ R
1×n,

∂q̇di

∂q̇d

∈ R
1×n

are the i-th rows of

∂qd

∂qd

∈ R
n×n,

∂q̇d

∂q̇d

∈ R
n×n,

respectively. The operator adsi is known as the Lie
bracket (Selig, 2004; Park et al., 2018). Also note that
the screw si is constant, since it is expressed in its local
reference frame. In addition, the computation of (39)
requires the partial differentiation of (37) with respect to
qd.

Write the time derivative of (37) as
[
ṙi

0

]
= Gi

0[νi]

[
rbi
1

]
. (43)

Therefore, the time derivative of the CoM stands for

ṙi = Ri
0 (vi + [ωi]rbi) , (44)

where Ri
0 ∈ SO(3). Observe that the linear and

angular velocities, vi and ωi, respectively, are elements
of the twist νi defined in (35). Consequently, the partial
differentiation of (37) with respect to qd can be performed
by applying (44) and (35) such that

∂ri
∂qd

= Ri
0 (v̄i − [rbi ]ω̄i) , (45)

where {v̄i, ω̄i} ∈ R
3×n are the linear and angular

elements of the following twist-like expression

ν̄i =

[
v̄i

ω̄i

]
= Ad

G
λ(i)
i

ν̄λ(i) + si
∂qdi

∂qd

∈ R
6×n. (46)

3.3. Sparse computation of the DEL equation. First,
let us introduce the use of the colon operator; that refers
to indexing and accessing the data of matrix A ∈ R

m×n

similar to MATLAB language style. Thus, A:,n refers to
the n-th column of A. Also, let us define the partitioned
matrix as follows. Given two matrices A1 and A2 of
adequate dimensions, they are horizontally or vertically
stacked with the partitioned matrix notation as

A =
[
A1

∣∣ A2

]
or A =

[
A1

A2

]
. (47)
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Algorithm 1. DEL equation computation.
1: /* Initialization*/
2: ∂L

∂qd
← 01×n ∂L

∂q̇d
← 01×n

3: for i← 1 to n do
4: /* Compute Eqn. (51)*/
5: ∂L

∂qd
[:, 1:i]← ∂L

∂qd
[:, 1:i]

+ν�i Mi
∂νi
∂qd

[:, 1:i] − mig
� ∂ri

∂qd
[:, 1:i]

6: /* Compute Eqn. (52)*/
7: ∂L

∂q̇d
[:, 1:i]← ∂L

∂q̇d
[:, 1:i] + ν�i Mi

∂νi
∂q̇d

[:, 1:i]

8: end for
9: return ∂L

∂qd
, ∂L
∂q̇d

Now, consider an example to observe the avoidable
operations with zero elements when i = 1 in (41):

∂ν1

∂qd

=

[
∂ν1

∂qd1 �
���

0
∂ν1

∂qd2 �
���

0
∂ν1

∂qd3 �
���

0
∂ν1

∂qd4

]
. (48)

This happens due to the fact that νi only depends on the
predecessor joints along the kinematic chain of the robot
up to the current i-th body as deduced from (35). To
overcome the unnecessary calculations, the chain rule for
partial differentiation can be applied as follows:

∂νi

∂qd

=
∂νi

∂qd1:i

∂qd1:i

∂qd

, (49)

where ∂νi

∂qd1:i

∈ R
6×i gathers dense terms (i.e. non-zero)

while
∂qd1:i

∂qd
∈ R

i×n contains sparse terms. Then, we
recursively collect dense terms as

∂νi

∂qd1:i

= Ad
G

λ(i)
i

∂νλ(i)

∂qd1:i

− adsi νi
∂qdi

∂qd1:i

,

=
[
Ad

G
λ(i)
i

∂νλ(i)

∂q
d1:i−1

∣∣ − adsi νi

]
.

(50)

The same procedure applies for (42) and (45) to collect
dense terms. As a result, (39) and (40) can be rewritten by
means of the partitioned notation where dense and sparse
terms are clearly identified:

∂L

∂qd

=
∑
i

[
ν�
i M i

∂νi

∂qd1:i

−mi g
� ∂ri

∂qd1:i

∣∣ 01×κ
]
,

(51)
∂L

∂q̇d
=

∑
i

[
ν�
i M i

∂νi

∂q̇d1:i

∣∣ 01×κ
]
, (52)

where κ = n−i. Algorithm 1 illustrates the procedure for
avoiding unnecessary arithmetic operations to compute
(51) and (52). In particular, the vector addition at
each iteration only operates with dense terms since zero
elements are directly assigned in the initialization step.

4. Linearization of the DEL equation
The aim is to analytically proceed with the linearization
of the DEL equation. The algorithms suggested by
Johnson and Murphey (2009) or Johnson et al. (2015)
perform scalar operations. By contrast, our multivariable
formulation of the discrete Euler–Lagrange equation and
its linearization allows us to directly differentiate with
respect to the vectors of generalized position and velocity,
respectively. In particular, the expressions (39) and (40)
should be differentiated with respect to qd and q̇d ∈
R

n. However, their computation implies second partial
derivatives where third-order tensors appear. Since tensor
operations are computationally demanding, the proposed
strategy applies the tensor operations defined in Section
4.1 to isolate dense from sparse elements. Once the
sparsity patterns are identified, only dense operations are
computed in a recursive manner, as described in Section
4.2. As a result, the arithmetic complexity is reduced. The
impact of the proposed factorization is more notorious for
tree-like kinematic structures (e.g., humanoid robots) due
to the fact that νi and ri of the i-th body only depend
on the predecessor joints along the kinematic chain of the
robot.

4.1. Tensor notation. Let B ∈ R
6×m×p be a

third-order tensor and a a given vector belonging to R
6.

Then
C = a� B ∈ R

m×p, (53)

is the tensor contraction where each element of the
resulting matrix is computed as

Ck,l =
∑
α

aα Bα,k,l, (54)

where (53) involves p matrix-vector products between
6-by-m slide ofB and the vectora. Notice that capitalized
calligraphic letters refer to tensor objects. Now, let us
denote by ◦ the product of a vector b ∈ R

p and a matrix
A ∈ R

6×m such that
C = b ◦ A ∈ R

6×m×p, (55)

where the scalar-matrix product of each element of b and
A is stored as a slice of the resulting tensor C. Therefore,
the elements of C are expressed as

Cj,k,l = bl Aj,k . (56)

Similarly, the tensor operation denoted by ◦̄ stands for

C = A ◦̄ b ∈ R
6×p×m, (57)

where the matrix-scalar product is stored in the resulting
tensor C as

Cj,k,l = Aj,l bk. (58)

The next tensor operation is denoted �, which stands
for

C = A� B ∈ R
6×m×q, (59)
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where A ∈ R
m×p and B ∈ R

6×p×q . This tensor
operation implies 6 matrix-matrix products between A ∈
R

m×p and a slice of B given by B ∈ Rp×q. The resulting
matrices are stored as slices of tensor C. The scalar form
of (59) is

Cj,k,l =
∑
α

Ak,α Bj,α,l . (60)

The following tensor operation denoted by ◦⊗ is

C = A ◦⊗B ∈ R
6×p×m , (61)

where A ∈ R
6×p×q and B ∈ R

q×m. This tensor
operation implies 6 matrix-matrix products between a
slice of A given by A ∈ R

p×q and B. The resulting
matrices are stored as slices of tensor C. The scalar form
of (61) is

Cj,k,l =
∑
α

Aj,k,α Bα,l . (62)

Let us define a cross-product-like operation as
follows: C = A⊗̃B ∈ R

3×n×n, (63)

where A ∈ R
3×n and B ∈ R

3×n. The operator
⊗̃ transforms the k-th column of matrix A into its
skew-symmetric form [A:,k] ∈ SO(3) to be multiplied by
B, and the resulting matrix is stored as a slice of tensor C
as C:,:,l ← [A:,k]B. (64)

4.2. Second order partial derivatives of DEL. The
partial derivatives of the system dynamics with respect to
qd and q̇d imply the evaluation of (29)–(32). Thus, second
order partial derivatives arise by differentiating (39) and
(40) with respect to qd and q̇d as follows:

∂2L

∂qd∂qd

=
∑
i

[
∂ν�

i

∂qd

M i
∂νi

∂qd

+ ν�
i M i �

∂2νi

∂qd∂qd

− mi g
� � ∂2ri

∂qd∂qd

]
, (65)

∂2L

∂qd∂q̇d

=
∑
i

[
∂ν�

i

∂qd

M i
∂νi

∂q̇d

+ ν�
i M i � ∂2νi

∂qd∂q̇d

]
, (66)

∂2L

∂q̇d∂q̇d

=
∑
i

[
∂ν�

i

∂q̇d

M i
∂νi

∂q̇d

]
, (67)

∂2L

∂q̇d∂qd

=
∂2L

∂qd∂q̇d

�
, (68)

where ∂2νi

∂qd∂qd
and ∂2νi

∂q
d
∂q̇

d

are third-order tensors

belonging to R
6×n×n while ∂2ri

∂q
d
∂q

d
belongs to R

3×n×n.
The operator � refers to tensor contraction (53).

According to the Schwarz symmetry theorem for
matrices composed by second order partial derivatives

(see the work of Carlier (2022, pp. 65–69) for more
details), expression (68) can be easily evaluated by
transposing (66). Note that expressions (41) and (42) can
be used to recursively compute the partial derivatives as

∂2νi

∂qd∂qd

=Ad
G

λ(i)
i

�
∂2νλ(i)

∂qd∂qd

− adsi �
(
∂qdi

∂qd

◦Ad
G

λ(i)
i

∂νλ(i)

∂qd

+
∂νi

∂qd

◦̄∂qdi

∂qd

)
, (69)

∂2νi

∂qd∂q̇d

=Ad
G

λ(i)
i

�
∂2νλ(i)

∂qd∂q̇d

− adsi �
(
∂qdi

∂qd

◦Ad
G

λ(i)
i

∂νλ(i)

∂q̇d

)
, (70)

where the operators ◦ and ◦̄ in (69)–(70) apply (55) and
(57), respectively. Note that the second partial derivative
of the CoM with respect to qd can be obtained by partially
differentiating (45) with respect to qd as

∂2ri
∂qd∂qd

= Ri
0 �

(
[ω̄i]⊗̃(v̄i − [rbi ]ω̄i)

+

(
∂v̄i

∂qd

− [rbi ]�
∂ω̄i

∂qd

))
,

(71)

where ∂v̄i/∂qd ∈ R
3×n×n and ∂ω̄i/∂qd ∈ R

3×n×n are
the linear and angular elements of a tensor obtained by
partially differentiating the recursive twist-like expression
given in (46) with respect to qd as

∂ν̄i

∂qd

=

[
∂v̄i

∂q
d

∂ω̄i

∂q
d

]

= Ad
G

λ(i)
i

�
∂ν̄λ(i)

∂qd

− ∂qdi

∂qd

◦ adsi ν̄i.

(72)

It is important to point out that the direct computation
of (65)–(67) does not consider the induced sparsity of
the mechanical system. Consequently, it does not avoid
unnecessary arithmetic operations. We cope with this
problem by factorizing dense and sparse terms. The
factorization makes use of the tensor operations described
in Section 4.1. Let us sketch the proposed factorization to
evaluate (69). From the chain rule, it is possible to rewrite
(69) as

∂2νi

∂qd∂qd

=
∂qd1:i

∂qd

�
� ∂2νi

∂qd1:i
∂qd1:i

◦⊗ ∂qd1:i

∂qd

, (73)

where
∂2νi

∂qd1:i
∂qd1:i

∈ R
6×i×i

is the dense part of the tensor while

∂qd1:i

∂qd

∈ R
i×n
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contains sparse terms. The same procedure can be
applied to (70)-(72) for grouping dense terms. Then,
simple algebraic manipulation is performed to factorize
expression (65) for obtaining the following sparsity-free
computation:

∂2L

∂qd∂qd

=
∑
i

∂qd1:i

∂qd

� (
∂ν�

i

∂qd1:i

M i
∂νi

∂qd1:i

+ ν�
i M i � ∂2νi

∂qd1:i
∂qd1:i

− mi g
� � ∂2ri

∂qd1:i
∂qd1:i

)
∂qd1:i

∂qd

.

(74)

The Hessian matrix (74) encodes the sparsity-free
computation of two tensors within an iterative process.

Consequently, the outer sparse term
∂q

d1:i

∂qd
in (74) does

not have to be computed. The same factorization
strategy is applied to rewrite expressions (66) and
(67). Algorithm 2 illustrates the computation of the
linearization of DEL equations. The factorization used in
(73) isolates dense and sparse components of a third-order
tensor that appears in (65). Thus, the sparsity due to
successors of the i-th body along the kinematic chain is
eliminated. From lines 6 to 8 of Algorithm 2 the dense
term ∂2νi

∂qd1:i∂qd1:i
is computed in a recursive manner. It

can be observed that these lines share the structure of
expression (69). The only difference is on the elimination
of the inner sparsity observed in (69) due to vector ∂qdi

∂qd
that contains one and zeros. Similarly, from lines 18 to
22 of Algorithm 2, the same strategy for removing sparse
terms has been applied to compute (65)–(68).

5. Results
This section focuses on validating the performance and
numerical accuracy of the proposed sparsity-free DMOC
strategy with analytical evaluation of the forced DEL
equation and its linearization. First, we quantify the
arithmetic complexity to compute the linearization of
the DEL equation. Then, we evaluate the accuracy of
optimized trajectories in terms of the discretization error.
In particular, we compare a classic direct collocation
method provided in CasADi (Andersson et al., 2019)
against the proposed sparsity-free DMOC strategy. Also,
we illustrate the use of DMOC to generate dynamically
feasible humanoid motions. Finally, we show numerical
comparisons to evaluate the forced DEL equation and its
linearization between the methods introduced by Johnson
and Murphey (2009) as well as Johnson et al. (2015)
versus the proposed strategy.

5.1. Arithmetic complexity. The arithmetic
complexity has been considered to obtain a quantitative
comparison of evaluating the forced DEL and its

Table 1. Arithmetic complexity: total number of cumulative
scalar multiplications and additions to evaluate the
forced DEL and its linearization versus the proposed
sparsity-free strategy for a set of 50 serial robots.

Multiplications Additions
Forced DEL 345917700 305599650

Exploiting sparsity 121569975 107366475
Average reduction 64.8[%] 64.8[%]

Table 2. Arithmetic operations to compute sparsity-free second-
order terms for 1 ≤ i ≤ n, where n is the number of
DoF. The reduction is 64%.

Exploiting sparsity
Second-order terms Multiplications Additions

∂2νi
∂qd1:i∂qd1:i

84i2 + 36i 72i2 + 30i

∂2νi
∂qd1:i∂q̇d1:i

78i2 + 36i 66i2 + 30i

∂2Li

∂qd∂qd
15i2 + 36i 8i2 + 37i+ 30

∂2Li

∂qd∂q̇d
& ∂2Li

∂q̇d∂qd
12i2 + 36i+ 36 7i2 + 35i+ 30

∂2Li

∂q̇d∂q̇d
6i2 + 36i 5i2 + 30i

linearization with and without sparsity exploitation.
Table 5.1 shows the number of arithmetic operations
in both cases together with the corresponding average
reduction. The quantities in Table 5.1 have been obtained
by considering 50 serial robots with n = {1, 2, . . . , 50}
degrees of freedom (DoF). Figure 2 presents the number
of multiplications and additions as a function of the
number of DoF for both cases. Table 5.1 provides the
number of arithmetic operations to evaluate individual
second-order terms as a function of the robot’s DoF.

5.2. DMOC accuracy against trapezoidal collocation.
The accuracy of optimized robot trajectories depends on
several factors such as the number of discrete points
N , the size of time increment Δt, and the number of
decision variables z, among others. Here, the accuracy is
calculated by measuring the violation of system dynamics
along optimized robot trajectories. In other words, the
error is estimated by assessing how well the optimized
trajectories satisfy the system dynamics between discrete
points.

5.2.1. Evaluating DMOC accuracy. Transcription
methods commonly approximate the state x(t) with cubic
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Algorithm 2. Differentiation of DEL equations.
1: /* Initialization*/
2: ∂2L

∂qd∂qd
← 0n×n, ∂2L

∂q̇d∂qd
← 0n×n, ∂2L

∂qd∂q̇d
← 0n×n, ∂2L

∂q̇d∂q̇d
← 0n×n

3: for i← 1 to n do
4: ∂2νi

∂qd∂qd
← 06×n×n, ∂2νi

∂qd∂q̇d
← 06×n×n, ∂ν̄i

∂qd
← 06×n×n, ∂2ri

∂qd∂qd
← 03×n×n

5: /* Compute Eqn. (69) */
6: ∂2νi

∂qd∂qd
[:, 1:i−1, 1:i−1]← Ad

G
λ(i)
i

� ∂2νλ(i)

∂qd∂qd
[:, 1:i−1, 1:i−1]

7: ∂2νi
∂qd∂qd

[:, 1:i−1, i]← − adsi �Ad
G

λ(i)
i

∂νλ(i)

∂qd
[:, 1:i−1]

8: ∂2νi
∂qd∂qd

[:, i, :]← − adsi
∂νi
∂qd

[:, 1:i]
9: /* Compute Eqn. (70) */

10: ∂2νi
∂qd∂q̇d

[:, 1:i−1, 1:i−1]← Ad
G

λ(i)
i

� ∂2νλ(i)

∂qd∂q̇d
[:, 1:i−1, 1:i−1]

11: ∂2νi
∂qd∂q̇d

[:, 1:i−1, i]← − adsi �Ad
G

λ(i)
i

∂νλ(i)

∂q̇d
[:, 1:i−1]

12: /* Compute Eqn. (72) */
13: ∂ν̄i

∂qd
[:, 1:i−1,1:i−1]← Ad

G
λ(i)
i

� ∂ν̄λ(i)

∂qd
[:, 1:i−1,1:i−1]

14: ∂ν̄i
∂qd

[:, :, i]← adsi ν̄i[:, 1:i]
15: /* Compute Eqn. (71) */
16: ∂2ri

∂qd∂qd
[:, 1:i, 1:i]← Ri

0 �
(
[ω̄i [:, 1:i]]⊗̃(v̄i [:, 1:i]− [rbi ]ω̄i [:, 1:i]) + ( ∂ν̄i∂qd

[1:3, 1:i, 1:i]− [rbi ]� ∂ν̄i
∂qd

[4:6, 1:i, 1:i])
)

17: /* Compute Eqn. (65), (66) and (67) */
18: ∂2L

∂qd∂qd
[1:i, 1:i]← ∂2L

∂qd∂qd
[1:i, 1:i] +

∂ν�
i

∂qd
[:, 1:i]Mi

∂νi
∂qd

[:, 1:i] + ν�i Mi � ∂2νi
∂qd∂qd

[:, 1:i,1:i]−mi g
� � ∂2ri

∂qd∂qd
[:, 1:i, 1:i]

19: ∂2L
∂qd∂q̇d

[1:i, 1:i]← ∂2L
∂qd∂q̇d

[1:i, 1:i] +
∂ν�

i

∂qd
[:, 1:i]Mi

∂νi
∂q̇d

[:, 1:i] + ν�i Mi � ∂2νi
∂qd∂q̇d

[:, 1:i,1:i]

20: ∂2L
∂q̇d∂q̇d

[1:i, 1:i]← ∂2L
∂q̇d∂q̇d

[1:i, 1:i] +
∂ν�

i

∂q̇d
[:, 1:i]Mi

∂νi
∂q̇d

[:, 1:i]

21: end for
22: /* Compute Eqn. (68) */

23: ∂2L
∂q̇d∂qd

← ∂2L
∂qd∂q̇d

�

24: return ∂2L
∂qd∂qd

, ∂2L
∂q̇d∂qd

, ∂2L
∂qd∂q̇d

, ∂2L
∂q̇d∂q̇d

B-splines while the control u(t) is approximated with
linear splines (Betts, 2010). The error can be defined as

ηk =

∫ tk+1

tk

|ε(s)|ds, (75)

with
ε(t) = ¯̇x(t)− fx(x̄(t), ū(t)), (76)

as the local error at step k, and the bar refers to
time-varying profiles evaluated with the corresponding
interpolation. In addition, ¯̇x(t) is the time-derivative of
the interpolated state x̄(t). Since DMOC solves for robot
configuration q(t), momentum p(t) and control input
u(t), it is not possible to directly utilize (76). Thus, the
standard Legendre transform (19) is used to get q̇(t) from
p(t) as

q̇(t) = H(q(t))−1p(t), (77)

where H(q(t)) ∈ Rn×n is the generalized inertia matrix.

5.2.2. DMOC versus trapezoidal collocation. A
relatively simple optimal control problem has been
considered to compare the convergence efficiency of

DMOC (with the simplest variational integrator known
as the midpoint rule) versus trapezoidal collocation,
which is a classic direct collocation method available in
CasADi. It is also important to mention that CasADi
computes analytical derivatives by means of automatic
differentiation techniques, while the proposed DMOC
strategy computes analytical derivatives with sparsity-free
recursive algorithms. In both cases, the optimization
solver IPOPT is used (Biegler and Zavala, 2009), which
is the one that requests the evaluation of the system
dynamics and its linearization at any time. The system
dynamics corresponds to the equations of motion of a
serial robot with 3 DoF. The final time was 5 seconds, and
the cost function stands for the L2-norm of control inputs
as

Jd(uk) =

N−1∑
k=0

||uk||2. (78)

Table 5.2.2 reports the number of iterations, the
optimal cost function, and the error accuracy while
increasing the number of discrete points. It is clear that
the proposed DMOC strategy arrives at a better local
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Fig. 2. Scalar operations between the forced DEL and its lin-
earization versus the proposed sparsity-free strategy.

minimum in fewer iterations and with higher accuracy
than the trapezoidal collocation.

5.3. DMOC-based humanoid motion generation.
The proposed DMOC solver has been executed on a
laptop with standard computation capabilities, Intel i7 at
2.60 GHz. The optimized trajectories are directly sent
to the NAO robot (a tree-like kinematic structure with
24 DoF) in the simulation environment CoppeliaSim for
validating that the robot is balanced (Rohmer et al., 2013).

Since NAO is a biped robot, its equilibrium is
handled by means of its centroidal momentum, which
consists of summing the momenta of all robot bodies, and
then the resulting momentum is projected onto a reference
frame attached to the robot’s center of mass (Orin et al.,
2013). According to the midpoint approximation, the
centroidal momentum is evaluated as

μk(qk, qk+1) = μ

(
qk + qk+1

2
,
qk+1 − qk

Δt

)
Δt.

(79)
Thus, the cost function (4) has been chosen as

Jd(qk, qk+1, uk) =
N−1∑
k=0

||μk||2 + ||qk+1 − qk||2. (80)

Figure 3 shows a motion sequence for the humanoid

robot NAO reaching a desired posture while maintaining
its balance through one foot contact.

Table 4 shows the computational performance of
DMOC to get optimized trajectories for the NAO robot
with different resolutions (i.e., N = {20, 30, 40, 50}). For
comparison purposes, the same optimization problems
have been solved by computing the forced DEL equation
and its linearization with the methods introduced by
Johnson and Murphey (2009) as well as Johnson et al.
(2015). Moreover, Table 5 shows the computational
time to evaluate the constraint Jacobian in DMOC with
finite differences, the methods introduced by Johnson and
Murphey (2009) as well as Johnson et al. (2015), and the
proposed sparsity-free strategy. It is observed how much
time is saved with our methods for different sizes of the
problem.

To evaluate the accuracy of the proposed DMOC
strategy, three different trajectory optimization problems
were solved according to three resolutions N =
{30, 60, 100}. For each resulting trajectory, the sum of
errors between discrete points (75) was computed. The
average error is shown in Table 6. As is expected, it
decreases when the number of discrete points increases
due to the mesh refinement. Finally, it is important to
mention that, for the specific case of NAO robot, the
reduction of arithmetic operation was 65%.

6. Conclusions
We have provided efficient algorithms for analytically
evaluating the forced DEL equation and its linearization,
which are requested to solve DMOC for robot trajectory
optimization problems. The proposed derivation enables
the possibility to exploit the sparsity of the constraint
Jacobian associated with DMOC, which turns to be
important when highly articulated rigid-body systems
are considered. In particular, geometric and multilinear
operators allowed us to factorize dense and sparse
terms in a recursive manner. The numerical validation
involved the arithmetic complexity and the accuracy of the
optimized trajectories in terms of mesh refinement and the
computational performance.

Future research is targeted at analytically computing
higher-order terms of the DEL equation in order to
evaluate sufficient conditions for optimality. Also, it
is desirable to implement the proposed strategy on
real robotic platforms. Thus, model uncertainties and
disturbances should be considered as suggested by
Aguilar-Ibanez et al. (2024).
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Fig. 3. DMOC-based optimized trajectory for the humanoid robot NAO reaching a desired posture while maintaining its balance
through one-foot contact.

Table 3. Optimization report for a 3 DoF serial robot.
Trapezoidal / CasADi DMOC / Exploiting sparsity

N Iters Cost Error Iters Cost Error
20 18 1.20956 5.3091e-3 10 1.16425 3.8177e-4
50 18 1.17615 2.0953e-3 10 1.16425 2.3348e-5
100 17 1.17160 1.0375e-3 12 1.16663 2.8470e-6
150 17 1.17077 6.8972e-4 13 1.16767 8.3619e-7

Table 4. Computational time of DMOC to get optimized trajectories for a NAO robot with different resolutions.
Computational time in seconds

Method N = 20 N = 30 N = 40 N = 50
Johnson et al., 2015 290.21 655.44 907.19 1370.32
Exploiting sparsity 39.42 77.98 122.77 188.88

Table 5. Computational time to evaluate the constraint Jacobian in DMOC.
Jacobian evaluation in seconds

Methods Exploiting
N nz ncns Numerical Johnson et al., 2009; 2015 sparsity
30 1440 768 17.92 1.13 0.10
60 2880 1488 70.46 2.27 0.24

100 4800 2448 191.42 3.92 0.46

Table 6. Accuracy evaluation of DMOC.
Number of discrete points

Trajectory N = 30 N = 60 N = 100
1 1.136 1.814e-1 6.15e-2
2 1.479 1.94e-1 4.62e-2
3 1.547 2.186e-1 5.77e-2

References
Agamawi, Y.M. and Rao, A.V. (2020). CGPOPS: A

C++ software for solving multiple-phase optimal control
problems using adaptive Gaussian quadrature collocation
and sparse nonlinear programming, ACM Transactions on
Mathematical Software 46(3): 1–38.

Aguilar-Ibanez, C., Suarez-Castanon, M.S., Saldivar, B.,
Jimenez-Lizarraga, M.A., de Jesus Rubio, J. and
Mendoza-Mendoza, J. (2024). Algebraic active
disturbance rejection to control a generalized uncertain
second-order flat system, International Journal of Applied

Mathematics and Computer Science 34(2): 185–198, DOI:
10.61822/amcs-2024-0013.

Andersson, J.A., Gillis, J., Horn, G., Rawlings, J.B. and Diehl,
M. (2019). CasADi: A software framework for nonlinear
optimization and optimal control, Mathematical Program-
ming Computation 11(1): 1–36.

Becerra, V.M. (2010). Solving complex optimal control
problems at no cost with PSOPT, 2010 IEEE International
Symposium on Computer-Aided Control System Design,
Yokohama, Japan, pp. 1391–1396.

Betts, J.T. (2010). Practical Methods for Optimal Control
and Estimation Using Nonlinear Programming, SIAM,
Philadelphia.

Betts, J.T. and Erb, S.O. (2003). Optimal low thrust trajectories
to the moon, SIAM Journal on Applied Dynamical Systems
2(2): 144–170.

Biegler, L.T. and Zavala, V.M. (2009). Large-scale nonlinear
programming using IPOPT: An integrating framework



DMOC-based robot trajectory optimization with analytical first-order information 95

for enterprise-wide dynamic optimization, Computers &
Chemical Engineering 33(3): 575–582.

Brockett, R.W. (2005). Robotic manipulators and the product
of exponentials formula, in P.A. Fuhrmanni (Ed.), Mathe-
matical Theory of Networks and Systems, Springer, Berlin,
pp. 120–129.

Budhiraja, R., Carpentier, J., Mastalli, C. and Mansard, N.
(2018). Differential dynamic programming for multi-phase
rigid contact dynamics, 2018 IEEE–RAS 18th Interna-
tional Conference on Humanoid Robots (Humanoids), Bei-
jing, China, pp. 1–9.

Cardona-Ortiz, D., Paz, A. and Arechavaleta, G. (2020).
Exploiting sparsity in robot trajectory optimization with
direct collocation and geometric algorithms, 2020 IEEE
International Conference on Robotics and Automation
(ICRA), Paris, France, pp. 469–475.

Carlier, G. (2022). Classical and Modern Optimization, World
Scientific, London.

Fan, T., Schultz, J. and Murphey, T. (2018). Efficient
computation of higher-order variational integrators in
robotic simulation and trajectory optimization, in M.
Morales et al. (Eds), Algorithmic Foundations of Robotics,
Springer, Cham, pp. 689–706.

Featherstone, R. (2014). Rigid Body Dynamics Algorithms,
Springer, New York.

Hereid, A. and Ames, A.D. (2017). FROST∗: Fast robot
optimization and simulation toolkit, 2017 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), Vancouver, Canada, pp. 719–726.

Houska, B., Ferreau, H.J. and Diehl, M. (2011). ACADO
toolkit—An open-source framework for automatic control
and dynamic optimization, Optimal Control Applications
and Methods 32(3): 298–312.

Howell, T.A., Jackson, B.E. and Manchester, Z. (2019). ALTRO:
A fast solver for constrained trajectory optimization, 2019
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Macau, China, pp. 7674–7679.

Johnson, E.R. and Murphey, T.D. (2009). Scalable
variational integrators for constrained mechanical systems
in generalized coordinates, IEEE Transactions on Robotics
25(6): 1249–1261.

Johnson, E., Schultz, J. and Murphey, T. (2015). Structured
linearization of discrete mechanical systems for analysis
and optimal control, IEEE Transactions on Automation
Science and Engineering 12(1): 140–152.

Kelly, M. (2017). An introduction to trajectory optimization:
How to do your own direct collocation, SIAM Review
59(4): 849–904.

Kelly, M.P. (2019). DirCol5i: Trajectory optimization for
problems with high-order derivatives, Journal of Dynamic
Systems, Measurement, and Control 141(3).

Kobilarov, M.B. and Marsden, J.E. (2011). Discrete geometric
optimal control on Lie groups, IEEE Transactions on
Robotics 27(4): 641–655.

Kobilarov, M. and Sukhatme, G. (2007). Optimal control using
nonholonomic integrators, Proceedings 2007 IEEE Inter-
national Conference on Robotics and Automation, Rome,
Italy, pp. 1832–1837.

Lee, J., Liu, C.K., Park, F.C. and Srinivasa, S.S. (2020). A
linear-time variational integrator for multibody systems,
in K. Goldberg et al. (Eds), Algorithmic Foundations of
Robotics XII, Springer, Cham, pp. 352–367.
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Carla Villanueva-Piñon obtained her bache-
lor’s degree in mechatronics engineering in 2015
from Universidad Politécnica de Victoria. She re-
ceived her MSc degree in robotics and advanced
manufacturing from Centro de Investigación y
de Estudios Avanzados del IPN (CINVESTAV),
Saltillo, Mexico, in 2019. She is currently a
PhD student in robotics and advanced manufac-
turing at CINVESTAV. Her research interests in-
clude robot dynamics, robot trajectory optimiza-

tion, humanoid whole-body motion generation.

Gustavo Arechavaleta received his MS de-
gree from Tecnológico de Monterrey (ITESM),
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