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The paper is devoted to the theoretical problem of designing a robust asymptotic tracking control system for a rotational
motion of a 2DOF underactuated linear mechanical system with parametric uncertainties. The mathematical formulation of
the problem is motivated by the attitude control problem of an earth observation satellite with a solar panel. It is assumed
that all the parameters of the plant model are uncertain and the plant single input is additively disturbed by an unknown
constant torque. By employing the general regulator theory in the state space setup combined with the concept of the
structured singular value, we develop a robustly stabilizing and robustly asymptotically tracking error feedback controller.
The rotation of the main rigid body of the mechanical system is to asymptotically track a harmonically changing reference
signal. The obtained theoretical results are successfully tested on two numerical examples and computations are performed
in Matlab.

Keywords: underactuated 2DOF mechanical system, rotational motion control, robust asymptotic tracking, robust error
feedback controller.

1. Introduction
The underactuated mechanical systems have established
themselves as an important class of mechanical systems
with broad applications in engineering; see, e.g., the
survey by Liu and Yu (2013) and the references cited
therein. Numerous examples of such systems appear
in the spacecraft engineering and robotics and generate
challenging control problems. In order to deal with the
problem of controlling spacecrafts, many approaches have
been developed and a good overview is given by Xie
et al. (2016). In particular, the robust control problems
for this class belong to the active field of research
within the control community and several interesting
control algorithms have been proposed (Almeida et al.,
2015; Ordaz et al., 2024; Mohsenipour et al., 2013;

*Corresponding author

Muñoz-Arias, 2019; Ohtani et al., 2011; Sumithra and
Vadivel, 2021; Wang and Li, 2012; Iannelli et al., 2022).

As a motivating example for this paper, we bring the
attitude control problem of an Earth observation satellite
with an appendage. These satellites are to perform
complicated tasks with a demand for high reliability
and accuracy (Wang et al., 2020). However, the close
interference between the flexible structure of elastic
appendages like solar panels and the structure of the
satellite itself can be a major factor in lowering the
accuracy of performance Angeletti et al. (2020; 2021).
The precise mathematical model of dynamics of a satellite
with appendages reveals an infinite number of oscillation
modes but in the real life we can always select just a
few modes which are excited by the satellite operation
(see, e.g., Narkiewicz et al., 2020; 2024; Angeletti et al.,
2021). Usually, an observing satellite, which images a
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Fig. 1. Simplified model of a satellite with a solar panel.

sequence of adjacent pieces of field, performs a periodical
motion around a constant axis. In such a case, only one
mode is dominant. In this simplified case the satellite
can be interpreted as two rigid bodies with a viscoelastic
interconnection, rotating around the y-axis, as shown in
Fig. 1.

The motion of this mechanical system, referred to as
the plant, can be described by two second order ODEs

ΣG :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Iα̈(t) = k(β(t)− α(t))

+b(β̇(t)− α̇(t)) + u(t) ,

pβ̈(t) = −k(β(t)− α(t))

−b(β̇(t)− α̇(t)) ,

(1)

where ΣG is used to denote the plant mathematical model,
(u(t))t≥0 ⊂ R is an input torque applied to the main body,
(α(t))t≥0 ⊂ R is the main body rotation (measured out-
put), (β(t))t≥0 ⊂ R is the panel rotation, I is the main
body rotational inertia, p is the panel rotational inertia, k
is the stiffness coefficient of the interconnection, b is the
friction coefficient. According to the physical meaning of
the parameters we assume that I > 0, p > 0, k > 0 and
b > 0. At some places we also consider b = 0 just to see
how the lack of friction influences the properties of the
system. Since the input u appears in one equation, from a
theoretical point of view the model ΣG is an example of a
2DOF underactuated mechanical system.

Our aim is to develop a robust control algorithm
which makes the orientation α to track asymptotically
a periodically changing reference signal αr, in the
presence of significant parametric uncertainties of the
plant model ΣG. The results will be based on the robust
general regulator theory in the state space setup (Isidori
et al., 2003), which is an extension of the multivariable
regulator theory (Francis and Wonham, 1975). The main
difference between our approach and the robust control
theory based on the μ-synthesis (see, e.g., Zhou and
Doyle, 1998; Scherer, 2001), is that the controller, due
to its structure, has only to guarantee robust stability and
then the robustness of the performance follows. However,
in the analysis of the robustness of the stability we

will also use of the concept of the structured singular
value μ (Scherer, 2001; Zhou and Doyle, 1998). We
emphasize here that the exact asymptotic tracking we
consider does not fit as a performance criterion in the
μ-synthesis problem since it cannot be expressed in terms
of H∞-norm minimization.

The paper is organized into six sections. Section 1 is
an introduction to the subject including the introduction of
the plant state space model and a preliminary formulation
of the control problem. In Section 2 we make precise in
mathematical terms what is the robust control problem
we intend to solve. Section 3 is devoted to the
characterization of a structure of the robust controller
and here the regulator equation and the internal model
principle appear. As our original contribution we prove
that the regulator equation has a solution and this solution
is unique. Moreover, we find this solution explicitly.
We show that if the controller is robustly stabilizing,
then it also provides robust asymptotic tracking. One
such controller, based on the full order state observer, is
proposed. In Section 4 we transform the plant model
with uncertain parameters to the form involving the
upper fractional transformation, which is essential in the
considerations to follow. In general, that section is
devoted to the robustness analysis of a controller which
stabilizes the nominal plant. We show that scaling of the
structured singular value allows us to define bounds for
uncertain parameters which guarantee the robustness of
the internal stability and asymptotic tracking.

Section 5 presents results of numerical computations
showing the effectiveness of the obtained theoretical
results. The Matlab package with its several toolboxes is
used as the computational environment. Some discussion
and final remarks are contained in Section 6 which
concludes the paper.

Before we start with formal considerations, we need
to introduce and explain the basic notation which used in
the paper:

• t ∈ [0,∞) denotes the time variable,

• R: the space of real numbers, R
n: the space of

n-dimensional real vectors, R
n×m: the space of

(n×m)-dimensional matrices,

• C: the space of complex numbers, Cn and C
n×m -

analogously as in the real case,

• C−: the open left half plane, jR: the imaginary axis,
∅: an empty set,

• (α(t))t≥0 ⊂ R: a function of t ≥ 0 taking values
in R, α̇(t), α̈(t): time derivatives,

• det(A): the determinant of A, σ(A): the spectrum
(the set of eigenvalues) of A, σmax(A): the
maximum singular value of A,
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• for the state space model
{
ẋ = Ax+Bu,

y = Cx+Du

the matrix [
A B
C D

]

is called the state space matrix and
(

A B
C D

)

is used to denote its transfer function, i.e., C(sI −
A)−1B +D,

• [ · ]T denotes the transpose of a vector or matrix.

1.1. Basic formulation of the control problem. In
practice, all the physical parameters I , p, k and b in the
plant modelΣG, given by (1), cannot be measured exactly,
so we assume that they are uncertain. More precisely,
real values of the parameters I , p, k and b are assumed
to belong to known intervals, i.e.,

I ∈ (Imin, Imax) , p ∈ (pmin, pmax) ,
k ∈ (kmin, kmax) , b ∈ (bmin, bmax) ,

(2)

where

Imax > Imin ≥ 0, pmax > pmin ≥ 0,
kmax > kmin ≥ 0, bmax > bmin ≥ 0,

are known. By introducing nominal (mean) values I(0),
p(0), k(0) and b(0), defined as

I(0) =
Imin + Imax

2
, p(0) =

pmin + pmax

2
,

k(0) =
kmin + kmax

2
, b(0) =

bmin + bmax

2
,

(3)

and the weight coefficients

WI =
Imax − Imin

2
, Wp =

pmax − pmin

2
,

Wk =
kmax − kmin

2
, Wb =

bmax − bmin

2
,

(4)

we can express the uncertain real parameters in the addi-
tive forms

I(δI) = I(0) +WIδI , p(δp) = p(0) +Wpδp ,
k(δk) = k(0) +Wkδk , b(δb) = b(0) +Wbδb ,

(5)

where δI , δp, δk and δb are normalized uncertainties, i.e.,

|δI | < 1 , |δp| < 1 , |δk| < 1 , |δb| < 1 . (6)

It is convenient to interpret the nominal values of
parameters I(0), p(0), k(0) and b(0) as the results of real

measurements or computations. Then, the corresponding
weights WI , Wp, Wk and Wb describe bounds on the
errors of these measurements and define the ends of the
corresponding intervals (2) as follows:

Imin = I(0)−WI , pmin = p(0)−Wp,

Imax = I(0) +WI , pmax = p(0) +Wp,

kmin = k(0)−Wk, bmin = b(0)−Wb,

kmax = k(0) +Wk, bmax = b(0) +Wb.

(7)

For simplicity of notation, we also introduce the joint
uncertainty δ := (δI , δp, δk, δb), and to emphasize that
parameters are uncertain, we rewrite the plant (1) in the
more explicit form

ΣG(δ) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I(δI)α̈(t) = k(δk)(β(t) − α(t))

+b(δb)(β̇(t)− α̇(t)) + u(t) ,

p(δp)β̈(t) = −k(δk)(β(t) − α(t))

−b(δb)(β̇(t)− α̇(t)) ,
(8)

and refer to ΣG(δ) as the uncertain plant model or uncer-
tain plant, for brevity. What is essential, we also assume
that the input torque (u(t))t≥0 ⊂ R consists of a control
torque (τ(t))t≥0 ⊂ R and an unknown disturbance torque
(d(t))t≥0 ⊂ R, i.e.,

u(t) = τ(t) + d(t) , t ≥ 0 , (9)

where d(t) = d0 = const for t ≥ 0, with an unknown
magnitude d0 ∈ R.

The only measured signal is the rotational
displacement α and we want the plant output (α(t))t≥0

to track the reference signal (αr(t))t≥0 ⊂ R of the form

αr(t) = a sin(ωrt+ ϕ) , t ≥ 0 , (10)

where a ∈ R and ϕ ∈ R are allowed to be unknown but
ωr > 0 has to be known. If we define the control error
(e(t))t≥0 ⊂ R as follows:

e(t) = α(t) − αr(t) , t ≥ 0 , (11)

then we can formulate the control goal as asymptotic
tracking of the reference signal αr by the uncertain plant
output α, i.e.,

lim
t→∞ e(t) = 0 , (12)

for all disturbances d(t) ≡ d0 ∈ R. We want to achieve
the goal (12) by developing the dynamic error feedback
controller

ΣK :

{
ẋK = AKxK +BKe , xK(0) = xK0 ,

τ = CKxK +DKe ,

(13)
where (xK(t))t≥0 ⊂ R

nK , nK is the order of the
controller and the error e is the only signal available to
the controller.
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[
A(δ) B(δ)
C 0

]

:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0
0 0 0 1 0

−k(δk)

I(δI)

k(δk)

I(δI)
− b(δb)

I(δI)

b(δb)

I(δI)

1

I(δI)
k(δk)

p(δp)
−k(δk)

p(δp)

b(δb)

p(δp)
− b(δb)

p(δp)
0

1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (17)
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Fig. 2. Error feedback control system.

It immediately follows that the control system we
want to design is the error feedback control system, shown
in Fig. 2, and we also want the controller ΣK to achieve
the control goal (12) for every uncertain plant (8) and
every constant disturbance d0 ∈ R.

1.2. Plant state space model. We will mainly employ
the state space methods, so we start with a state space
model of the plant ΣG(δ). Since the plant is a 2DOF
mechanical system, it is convenient to introduce the
following state variables with obvious physical meanings:

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

α
β
α̇

β̇

⎤

⎥
⎥
⎦ . (14)

Then we get the plant state space model

ΣG(δ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x3,
ẋ2 = x4,

ẋ3 = −k(δk)

I(δI)
x1 +

k(δk)

I(δI)
x2

− b(δb)

I(δI)
x3 +

b(δb)

I(δI)
x4 +

1

I(δI)
u,

ẋ4 =
k(δk)

p(δp)
x1 − k(δk)

p(δp)
x2 +

b(δb)

p(δp)
x3

− b(δb)

p(δp)
x4,

α = x1,
(15)

which can be written in the compact form

ΣG(δ) :

{
ẋ = A(δ)x +B(δ)u , x(0) = x0 ,
α = Cx ,

(16)

where A(δ), B(δ) and C are defined in (17) and ΣG(δ) is
again referred to as the uncertain plant model or uncertain
plant, for brevity. We also write

ΣG(0) :

{
ẋ = A(0)x+B(0)u , x(0) = x0 ,
α = Cx ,

(18)
for δ = 0 ((δk, δI , δp, δb) = (0, 0, 0, 0)), where ΣG(0) is
referred to as the nominal plant model or nominal plant,
for brevity.

For the uncertain plant ΣG(δ) the controllability of
(A(δ), B(δ)) can be checked by means of the controlla-
bility matrix W (δ) and the observability of (C,A(δ)) - by
means of the observability matrix V (δ). Namely,

detW (δ) = − k2(δk)

I4(δI)p2(δp)
�= 0 ,

detV (δ) = −k2(δk)

I2(δI)
�= 0 ,

(19)

for all δI , δp, δk and δb satisfying (6), where determinants
have been computed by means of the Matlab Symbolic
Math Toolbox (MathWorks, 2020c). In particular, the
nominal plant ΣG(0) is also controllable and observable.

2. Robust control problem
In order to design a suitable controller we employ the
general regulator theory (see, e.g., Saberi et al., 2000).
The essential feature of this approach is that we assume
the reference signal and the disturbance are generated by
a known dynamical system, called the exosystem, which
is aggregated with the plant model.

2.1. Exosystem. The reference signal of the form
αr(t) = a sin(ωrt + ϕ) is generated by the dynamical
system

⎧
⎨

⎩

ṙ1 = r2 , r1(0) = a sinϕ ,
ṙ2 = −ω2

rr1 , r2(0) = aωr cosϕ ,
αr = r1,

(20)

where ωr > 0 has to be known, a ∈ R and ϕ ∈ R may be
unknown. In turn, the disturbance of the form d(t) ≡ d0
is generated by the dynamical system

{
ḋ = 0 · d , d(0) = d0 ,
d = 1 · d , (21)
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where d0 ∈ R is unknown. Combining (20) and (21), we
get a dynamical system ΣS , called the exosystem,

ΣS :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙ1 = r2 r1(0) = a sinϕ ,
ṙ2 = −ω2

rr1 , r2(0) = aωr cosϕ ,

ḋ = 0 · d , d(0) = d0 ,
αr = r1 ,
d = 1 · d ,

(22)

i.e.,

ΣS :

⎧
⎨

⎩

ẇ = Sw , w(0) = w0 ,
αr = Trw ,
d = Tdw ,

(23)

where

w =

⎡

⎣
r1
r2
d

⎤

⎦ , S =

⎡

⎣
0 1 0

−ω2
r 0 0

0 0 0

⎤

⎦ ,

Tr =
[
1 0 0

]
, Td =

[
0 0 1

]
.

(24)

The characteristic polynomial of S is given by

det(λI − S) = λ(λ2 + ω2
r) , (25)

with eigenvalues (the spectrum)

σ(S) = {0, jωr,−jωr} , (26)

so that the system ΣS satisfies σ(S) ∩ C− = ∅.

2.2. Robust control system. Recall that we consider
the error feedback control system shown in Fig. 2, where
the uncertain plant ΣG(δ) is described by (16) and the
uncertainties δ = (δI , δp, δk, δb) satisfy (6). It allows us
to define the real uncertainty matrix

Δ(δ) =

⎡

⎢
⎢
⎣

δk 0 0 0
0 δb 0 0
0 0 δI 0
0 0 0 δp

⎤

⎥
⎥
⎦ ∈ R

4×4 , (27)

with the constraints (6), and since we can write

Δ(δ) =

⎡

⎢
⎢
⎣

δk + j0 0 0 0
0 δb + j0 0 0
0 0 δI + j0 0
0 0 0 δp + j0

⎤

⎥
⎥
⎦ ,

(28)
we also have that Δ(δ) ∈ C

4×4. Thus we define the un-
certainty structure set Δc ⊂ C

4×4 as follows:

Δc := {Δ(δ) ∈ C
4×4 : σmax(Δ(δ)) < 1} , (29)

where σmax(Δ(δ)) is the maximum singular value of
Δ(δ). Moreover, for the plant input u we have

u = τ + d , (30)

where τ is the control torque and d = d0 is a disturbance
torque. The exosystem ΣS , generating the reference αr

and the disturbance d, is given by (23) and the error
feedback controllerΣK is described by (18) with the error
e given by

e = α− αr . (31)

If we put together Eqns. (16), (30), (18) and (31),
then we obtain the basic model of the error feedback
control system, denoted by Σe(δ), with αr and d as two
external signals, and taking the form

Σe(δ) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ = (A(δ) +B(δ)DKC)x
+B(δ)CKxK −B(δ)DKαr

+B(δ)d , x(0) = x0 ,
ẋK = BKCx+AKxK −BKαr ,

xK(0) = xK0 ,
e = Cx− αr ,

(32)

where Δ(δ) ∈ Δc. The error feedback control system
Σe(δ) with zero inputs, i.e., αr ≡ 0 and d ≡ 0, and
without the output equation, is referred to as the unforced
closed loop system Σuf (δ), and its description takes the
form

Σuf (δ) :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = (A(δ) +B(δ)DKC)x
+B(δ)CKxK , x(0) = x0 ,

ẋK = BKCx+AKxK ,
xK(0) = xK0 ,

(33)
where Δ(δ) ∈ Δc. If we now take into account that the
reference αr and the disturbance d are generated by the
exosystem ΣS and combine Eqns. (23) and (32), then we
obtain a complete state space model of the error feedback
control system Σe(δ), which is referred to as the closed
loop system Σcl(δ), and has the form

Σcl(δ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = (A(δ) +B(δ)DKC)x
+B(δ)CKxK +B(δ)(Td −DKTr)w ,
x(0) = x0 ,

ẋK = BKCx+AKxK

−BKTrw , xK(0) = xK0 ,
ẇ = Sw , w(0) = w0 ,
e = Cx− Trw ,

(34)
where Δ(δ) ∈ Δc.

Now we make precise what is an error feedback
controller ΣK we are looking for. We require the
controller (18) to guarantee the following two conditions
to hold:

RIS: Robust internal stability. The error feedback control
system Σe(δ) is said to be robustly internally sta-
ble if the unforced closed loop system Σuf (δ) is
asymptotically stable for all Δ(δ) ∈ Δc, i.e., for all
x(0) = x0 and xK(0) = xK0 we have

lim
t→∞

[
x(t)
xK(t)

]

= 0 , Δ(δ) ∈ Δc . (35)
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RAT: Robust asymptotic tracking (or robust regulation).
The error feedback control system Σe(δ) is said to
satisfy the robust asymptotic tracking condition if for
all w(0) = w0, x(0) = x0 and xK(0) = xK0 the
closed loop system Σcl(δ) satisfies

lim
t→∞ e(t) = 0 , Δ(δ) ∈ Δc . (36)

Every error feedback controller ΣK which
guarantees RIS and RAT is said to be a robust con-
troller. We easily see from (33) that RIS holds if and only
if

σ

([
A(δ) +B(δ)DKC B(δ)CK

BKC AK

])

⊂ C− ,

Δ(δ) ∈ Δc . (37)

Examination of RIS is a hard task and this problem will
be solved in Section 4. Before that, in Section 3, we show
how to deal with RAT under the assumption that RIS is
already guaranteed.

3. Characterization of a robust controller
We know from Section 1.2 that for b ≥ 0 the
pair (A(δ), B(δ)) is controllable and (C,A(δ)) is
observable for all Δ(δ) ∈ Δc. Hence, for every
fixed Δ(δ) ∈ Δc there always exists a controller
(AK(δ), BK(δ), CK(δ), DK(δ)) (possibly, dependent
of δ) satisfying

σ

([
A(δ) +B(δ)DK(δ)C B(δ)CK(δ)

BK(δ)C AK(δ)

])

⊂ C− .

(38)
However, if we have a controller (AK , BK , CK , DK),
independent of δ, and such that RIS holds, i.e.,

σ

([
A(δ) +B(δ)DKC B(δ)CK

BKC AK

])

⊂ C− ,

Δ(δ) ∈ Δc , (39)

then from the robust general regulator theory (Isidori
et al., 2003) we can derive the following necessary and
sufficient conditions for the robust asymptotic tracking
RAT.

3.1. Fundamental result. In order to keep the
presentation complete, we provide all the results with
proofs.

Theorem 1. If for a given controller ΣK the error
feedback control system Σe(δ) satisfies RIS, then RAT

holds if and only if there exist matrices Π(δ) ∈ R
4×3,

Γ(δ) ∈ R
1×3 and Σ(δ) ∈ R

nK×3 such that

RE :

{
A(δ)Π(δ) −Π(δ)S +B(δ)Γ(δ) +B(δ)Td = 0 ,
CΠ(δ) − Tr = 0 ,

(40)
and

IMP :

{
Γ(δ) = CKΣ(δ) ,
Σ(δ)S = AKΣ(δ) ,

(41)

for all Δ(δ) ∈ Δc. If this is the case, then ΣK is a robust
controller.

Proof. Let (39) hold. For the closed loop system (34) we
introduce new state variables

⎡

⎣
p
q
w

⎤

⎦ =

⎡

⎣
I 0 −Π
0 I −Σ
0 0 I

⎤

⎦

⎡

⎣
x
xK

w

⎤

⎦ , (42)

where Π ∈ R
4×3 and Σ ∈ R

nK×3 can be arbitrary, and
obtain an equivalent state space model

Σcl(δ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ = (A(δ) +B(δ)DKC)p+B(δ)CKq
+(A(δ)Π −ΠS +B(δ)CKΣ
+B(δ)Td +B(δ)DK(CΠ− Tr))w ,
p(0) = x0 −Πw0 ,

q̇ = BKCp+AKq
+(AKΣ− ΣS +BK(CΠ− Tr))w ,
q(0) = xK0 − Σw0 ,

ẇ = Sw , w(0) = w0 ,
e = Cp+ (CΠ− Tr)w ,

(43)
where Δ(δ) ∈ Δc. The crucial role in the proof is played
by the following system of two matrix equations:

[
A(δ) +B(δ)DKC B(δ)CK

BKC AK

] [
Π(δ)
Σ(δ)

]

−
[

Π(δ)
Σ(δ)

]

S =

[
B(δ)(Td −DKTr)

BKTr

]

, (44)

and
CΠ(δ) − Tr = 0 , (45)

where the pair (Π(δ),Σ(δ)), with Π(δ) ∈ R
4×3 and

Σ(δ) ∈ R
nK×3, denotes any solution to this system. In

general, this solution does not have to exist. The important
problem of the existence of this solution is dealt with
further on in Sections 3.2 and 3.3.

If we now assume that a solution (Π(δ),Σ(δ)) exists,
then (43) simplifies to the form

Σcl(δ) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṗ = (A(δ) +B(δ)DKC)p+B(δ)CKq ,
p(0) = x0 −Π(δ)w0 ,

q̇ = BKCp+AKq ,
q(0) = xK0 − Σ(δ)w0 ,
ẇ = Sw , w(0) = w0 ,
e = Cp ,

(46)
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and, due to RIS (see (39)),

lim
t→∞ e(t)

= lim
t→∞

[
C 0

]

× exp(

[
A(δ) +B(δ)DKC B(δ)CK

BKC AK

]

t)

×
[

p(0)
q(0)

]

= 0 , Δ(δ) ∈ Δc ,

(47)

which implies RAT. On the other hand, since

σ(

[
A(δ) +B(δ)DKC B(δ)CK

BKC AK

]

) ∩ σ(S) = ∅ ,
(48)

for every Δ(δ) ∈ Δc, for every right hand side the
Sylvester equation (44) has a unique solution

[
Π(δ)
Σ(δ)

]

for all Δ(δ) ∈ Δc. This equation and the RAT condition,
applied to the system (43), imply that

lim
t→∞ e(t)

= lim
t→∞

[
C 0

]

× exp(

[
A(δ) +B(δ)DKC B(δ)CK

BKC AK

]

t)

×
[

x0 −Π(δ)w0

xK0 − Σ(δ)w0

]

+ lim
t→∞(CΠ(δ) − Tr) exp(St)w0

= lim
t→∞(CΠ(δ) − Tr) exp(St)w0 = 0 ,

(49)

and, since σ(S)∩C− = ∅, we get CΠ(δ)−Tr = 0. Thus
we have got (44) and (45).

Now let us notice that by substituting (45) into (44)
we get an equivalent system of equations
⎧
⎨

⎩

A(δ)Π(δ) −Π(δ)S +B(δ)CKΣ(δ) +B(δ)Td = 0 ,
AKΣ(δ)− Σ(δ)S = 0 ,
CΠ(δ) − Tr = 0 ,

(50)
and if we introduce Γ(δ) = CKΣ(δ), then (50) can be
equivalently written as (40) and (41). �

The relation (40) is referred to as the regulator equa-
tion and hence we denote it, shortly, as RE. The second
relation (41) is referred to as the internal model principle
and hence we denote it as IMP. The latter relation reflects
the fact that the dynamics of the exosystem appears in the
controller (Francis and Wonham, 1975). In Section 3.2
we prove that in our case RE has a unique solution

(Π(δ)),Γ(δ)) and in Section 3.3 we show how to choose
a controller (AK , BK , CK , DK) such that for every Γ(δ)
there exists a matrix Σ(δ) satisfying IMP. Let us also
notice that the existence of a solution to RE is independent
of the existence of a solution to IMC.

3.2. Analysis of RE. The results proved in the previous
subsection can be derived from the general regulator
theory (Isidori et al., 2003). However, the usual difficulty
is in showing if the regulator equation RE admits a
solution. As our original contribution we prove that for the
uncertain plant ΣG(δ) and the exosystem ΣS the regulator
equation RE has a solution and this solution is unique.
Moreover, we find this solution explicitly.

Theorem 2. If b(δb) > 0 or b = 0 and k(δk) �=
p(δp)ω

2
r , then there exists a unique pair (Π(δ),Γ(δ)),

where Π(δ) ∈ R
4×3 and Γ(δ) ∈ R

1×3, such that

RE :

{
A(δ)Π(δ) −Π(δ)S +B(δ)Γ(δ) +B(δ)Td = 0 ,
CΠ(δ) − Tr = 0 ,

(51)
for all Δ(δ) ∈ Δc. Moreover, by introducing

Π(δ) =

⎡

⎢
⎢
⎣

π11 π12 π13

π21 π22 π23

π31 π32 π33

π41 π42 π43

⎤

⎥
⎥
⎦ ,

Γ(δ) =
[
γ1 γ2 γ3

]
,

(52)

and omitting δ, δI , δp, δk, δb in the notation, we obtain the
following explicit expressions:

π11 = 1,
π12 = 0,
π13 = 0,

π21 =
k2 + (b2 − pk)ω2

r

b2ω2
r + (k − pω2

r)
2
,

π22 =
−bpω2

r

b2ω2
r + (k − pω2

r)
2
,

π23 = 0,
π31 = 0,
π32 = 1,
π33 = 0,

π41 =
bpω4

r

b2ω2
r + (k − pω2

r)
2
,

π42 =
k2 + (b2 − pk)ω2

r

b2ω2
r + (k − pω2

r)
2
,

π43 = 0,

(53)
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and

γ1 = − ω2
r

b2ω2
r + (k − pω2

r)
2
(b2ω2

r(p+ I)

+kp(k − pω2
r) + I(k − pω2

r)
2),

γ2 =
bp2ω4

r

b2ω2
r + (k − pω2

r)
2
,

γ3 = −1.

(54)

Proof. We can convert RE to the equivalent system of
algebraic equations (more details on such a transformation
can be found in the work of Emirsajłow et al. (2023))

Mvec (Π,Γ) = N , (55)

where vec (Π,Γ) denotes the single column matrix build
by columns of Π and Γ stacking up on each other. If
I > 0, p > 0, k > 0 and b > 0, then after tedious
computations, supported by the Matlab Symbolic Math
Toolbox (MathWorks, 2020c) we obtain

detM = b2ω2
r + (k − pω2

r)
2 �= 0 , (56)

and if b = 0, then for k �= pω2
r we still get detM �= 0.

In both cases we can invert M and solve the system (55)
to get a unique solution vec (Π,Γ) = M−1N , i.e., (53)
and (54). Again, these computations have been supported
by the Matlab Symbolic Math Toolbox. �

3.3. Special structure of a controller and IMP.
In this subsection we show that every controller
(AK , BK , CK , DK), which is independent of δ and has
a special structure, guarantees that for every Γ(δ) there
exists a matrix Σ(δ) such that IMP holds. We follow the
general ideas of Isidori et al. (2003).

Recall that the matrix S of the exosystem ΣS has the
form (see (22) and (23))

S =

⎡

⎣
0 1 0

−ω2
r 0 0

0 0 0

⎤

⎦ . (57)

The characteristic polynomial of S, which is also minimal,
is given by

ΛS(λ) = λ3 + ω2
rλ . (58)

Hence, S satisfies the equation

ΛS(S) = S3 + ω2
rS = 0 (59)

and, for any matrix Γ ∈ R
1×3, we have

ΓS3 = −ω2
rΓS . (60)

If we define the following two matrices:

P :=

⎡

⎣
0 1 0
0 0 1
0 −ω2

r 0

⎤

⎦ , R :=
[
1 0 0

]
, (61)

then one can check that the matrix

V (Γ) :=

⎡

⎣
Γ
ΓS
ΓS2

⎤

⎦ ∈ R
3×3 (62)

satisfies the system of the two matrix equations
{

Γ = RV (Γ) ,
V (Γ)S = PV (Γ) .

(63)

In proving (63) we have to use (60). One can also
see that if Γ depends on δ so does V (Γ). Moreover, the
characteristic polynomial of P , which is also minimal, is
given by

ΛP (λ) = λ3 + ω2
rλ , (64)

so that σ(P ) = σ(S).

Lemma 1. Let (Π(δ),Γ(δ)) be a solution of RE (see (51)).
For every controller ΣK of the order nK , which is inde-
pendent of δ and has the form

AK =

[
P 0
0 Av

]

∈ R
nK×nK ,

BK =

[
Q
Bv

]

∈ R
nK×1,

CK =
[
R Cv

] ∈ R
1×nK ,

DK = Dv ∈ R
1×1 ,

(65)

where P ∈ R
3×3, R ∈ R

1×3 are given by (61) and Q ∈
R

3×1, Av ∈ R
(nK−3)×(nK−3), Bv ∈ R

(nK−3)×1, Cv ∈
R

1×(nK−3), Dv ∈ R
1×1 are arbitrary, there always exists

a matrix Σ(δ) ∈ R
nK×3 such that IMP holds (see (41)).

Proof. In order to see this, we define

Σ(δ) =

[
V (Γ(δ))

0

]

∈ R
nK×3 (66)

and substitute it into (41), which gives
⎧
⎪⎪⎨

⎪⎪⎩

Γ(δ) =
[
R Cv

]
[

V (Γ(δ))
0

]

,

[
V (Γ(δ))

0

]

S =

[
P 0
0 Av

] [
V (Γ(δ))

0

]

.

(67)
After simple manipulations we obtain

{
Γ(δ) = RV (Γ(δ)) ,

V (Γ(δ))S = PV (Γ(δ)) ,
(68)

which, by (63), holds for all Δ(δ) ∈ Δc. �
Summing up, Theorem 2 and Lemma 1 show that

RE has a unique solution and if the controller ΣK has the
structure (65), then IMP holds, too. It remains to set the
free parameters Q,Av, Bv, Cv, Dv in (65) such that ΣK

will guarantee RIS. If this is done, then RAT will follow.
The development of an appropriate stabilizing controller
is accomplished in the next subsection and its robustness
is analyzed in Section 4.
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3.4. Construction of a stabilizing controller. In this
subsection we develop a controller ΣK based on the
full order state observer of some modified plant. We
obviously assume that parameters (AK , BK , CK , DK) of
the controller ΣK are described by the formulas (65) of
Lemma 1, where P ∈ R

3×3 and R ∈ R
1×3 are given

by (61) and Q ∈ R
3×1, Av ∈ R

(nK−3)×(nK−3), Bv ∈
R

(nK−3)×1, Cv ∈ R
1×(nK−3), Dv ∈ R

1×1 are to be
chosen. If we partition the state xK of the controller ΣK

as follows:

xK(t) =

[
w(t)
v(t)

]

,

(w(t))t≥0 ⊂ R
3 , (v(t))t≥0 ⊂ R

nK−3 , (69)

then

ΣK :

⎧
⎨

⎩

ẇ = Pw +Qe ,
v̇ = Avv +Bve ,
τ = Rw + Cvv +Dve .

(70)

The controller (70) consists of two parallel systems

Σw :

{
ẇ = Pw +Qe ,
yw = Rw ,

(71)

and

Σv :

{
v̇ = Avv +Bve ,
yv = Cvv +Dve ,

(72)

with the joint output

τ = yw + yv = Rw + Cvv +Dve . (73)

The above structure of ΣK leads to the error feedback
control system as shown in Fig. 3.

The matrices P and R are already given and if we
are able to find Q ∈ R

3×1, Av ∈ R
(nK−3)×(nK−3), Bv ∈

R
(nK−3)×1, Cv ∈ R

1×(nK−3), Dv ∈ R
1×1 that guarantee

RIS, i.e.,

σ
(
[

A(δ) +B(δ)DKC B(δ)CK

BKC AK

]
) ⊂ C− ,

Δ(δ) ∈ Δc , (74)

then RAT will follow and ΣK will be a robust controller.
If we now substitute (65) into (74), then we get

σ

(⎡

⎣
A(δ) +B(δ)DvC B(δ)R B(δ)Cv

QC P 0
BvC 0 Av

⎤

⎦

)

⊂ C− ,

(75)
for all Δ(δ) ∈ Δc, which is equivalent to say that the
unforced closed loop system Σuf (δ) (the error feedback
control system of Fig. 3 with αr ≡ 0, d ≡ 0 and no
output), i.e.,

Σuf (δ) :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = (A(δ) +B(δ)DvC)x +B(δ)Rw
+B(δ)Cvv , x(0) = x0 ,

ẇ = QCx+ Pw , w(0) = w0 ,
v̇ = BvCx+Avv , v(0) = v0 ,

(76)

�

ΣG(δ)
�

Σw

�

�

Σv

�

� �

�

yw

yv

� αeαr �
�τ u

d

Fig. 3. Error feedback control system.

�

�

�

�

�

Σw

�
�

ΣG(δ)
αyv u

d ≡ 0

τ

yw

Fig. 4. Uncertain modified plant Σm(δ).

is asymptotically stable for all Δ(δ) ∈ Δc.
Let us now define a system Σm(δ), referred to as the

uncertain modified plant and shown in Fig. 4.

One can notice that Σm(δ) is a part of the unforced closed
loop system Σuf (δ), has order nm = 7, and is described
by the equations

Σm(δ) :

⎧
⎨

⎩

ẋ = A(δ)x +B(δ)Rw +B(δ)yv ,
ẇ = QCx+ Pw ,
α = Cx ,

(77)
where yv is the input and α is the output. Moreover,
the unforced closed loop system (76) can be viewed as
an interconnection of the uncertain modified plant Σm(δ)
and the output feedback subcontroller

Σv :

{
v̇ = Avv + Bvα ,
yv = Cvv +Dvα ,

(78)

of order nK − 3. For simplicity of the notation, we can
write Σm(δ) as follows:

Σm(δ) :

{
ξ̇ = Am(δ)ξ +Bm(δ)yv ,
α = Cmξ ,

(79)

where

ξ =

[
x
w

]

,

with the state space matrix

[
Am(δ) Bm(δ)
Cm 0

]

=

⎡

⎣
A(δ) B(δ)R B(δ)
QC P 0
C 0 0

⎤

⎦ .

(80)
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Σm(δ)

Σv

�

�

αyv

Fig. 5. Σuf (δ) as an interconnection of Σm(δ) and Σv

The interconnection of Σm(δ) and Σv is shown in Fig. 5.
What we have to do now is to choose the

subcontroller (78) such that the resulting closed loop
system, i.e., the unforced closed loop system Σuf (δ),
described by (76), is asymptotically stable for all Δ(δ) ∈
Δc. In order to develop such a controller, we will start
with checking that the uncertain modified plant Σm(δ) is
controllable and observable. First we choose Q ∈ R

3×1

such that the pair (P,Q) is controllable. One possible
choice is to take

Q =
[
1 1 1

]T
, (81)

which gives

det
[
Q PQ P 2Q

]
= −(ω2

r + 1)2 �= 0 , (82)

and (81) applies throughout the work. The controllability
matrix, computed by means of the Symbolic Math
Toolbox of Matlab (MathWorks, 2020c),

Wm(δ)

=
[
Bm(δ) Am(δ)Bm(δ) · · · A6

m(δ)Bm(δ)
]

gives

det(Wm(δ)) =
k3(δk)(ω

2
r + 1)2

I7(δI)p5(δp)

(
b2(δb)ω

2
r

+ (k(δk)− p(δp)ω
2
r)

2
) �= 0 ,

(83)

for all k(δk) > 0, I(δI) > 0, p(δp) > 0 and b(δb) > 0,
which means that the pair (Am(δ), Bm(δ)) is controllable
for all Δ(δ) ∈ Δc. If b = 0, then the extra condition
k(δk) �= p(δp)ω

2
r is required for controllability. Similarly,

the observability matrix

Vm(δ) =
[
Cm CmAm(δ) · · · CmA6

m(δ)
]T

satisfies

det(Vm(δ)) = − k3(δk)

I5(δI)p3(δp)

(
b2(δb)ω

2
r

+ (k(δk)− p(δp)ω
2
r)

2
) �= 0 ,

(84)

for all k(δk) > 0, I(δI) > 0, p(δp) > 0 and b(δb) > 0,
which means that the pair (Cm, Am(δ)) is observable for
all Δ(δ) ∈ Δc. If b = 0, then the extra condition k(δk) �=
p(δp)ω

2
r is required for observability.

We start with the nominal case, i.e., with zero
uncertainties, by setting δ = 0, i.e., (δk, δI , δp, δb) =
(0, 0, 0, 0). In this case the modified plant is denoted
by Σm(0) and called the nominal modified plant. It is
described as

Σm(0) :

{
ξ̇ = Am(0)ξ +Bm(0)yv ,
α = Cmξ .

(85)

For the nominal modified plant Σm(0) we will construct
a stabilizing controller (Av, Bv, Cv, Dv), based on a full
order state observer. It is clear that the final controller
ΣK (given by (65)) will provide the asymptotic stability
for the unforced closed loop system Σuf (0) as well
as the asymptotic tracking for the closed loop system
Σcl(0), or, in other words, the internal stability and
asymptotic tracking for the error feedback control system
with the nominal plant ΣG(0). Once we have a stabilizing
controller ΣK for the nominal plant, we will analyze
its robustness for the uncertain plant ΣG(δ) with the
uncertainty structure set Δc, using the structured singular
value.

3.4.1. Controller based on the full order observer.
For Σm(0), with the state space model (85), the full order
Luenberger state observer is of the order nm = 7 and has
the form (see, e.g., Williams and Lawrence, 2007)

˙̃
ξ = (Am(0)− LCm)ξ̃ +Bm(0)yv + Lα , (86)

with

ξ̃ =

[
x̃
w̃

]

and the output injection gain matrix L ∈ R
7×1 such that

σ(Am(0)− LCm) ⊂ C− , (87)

where the spectrum can be freely assigned (by
observability of Σm(0)). If we now apply the feedback
control law

yv = −F ξ̃, (88)

with the state feedback gain matrix F ∈ R
1×7 satisfying

σ(Am(0)−Bm(0)F ) ⊂ C− , (89)

where the spectrum can be freely assigned (by
controllability of Σm(0)), then the resulting closed loop
system with the nominal plant Σm(0), the observer (86)
and the control law (88) is internally stable (Williams and
Lawrence, 2007).
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1
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Fig. 6. Block diagram of the plant ΣG(δ).
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Fig. 7. Block diagram of the plant ΣG(δ) with normalized para-
metric uncertainties.

Combining (86) and (88), we obtain the subcontroller
Σv in the form

Σv :

{
˙̃
ξ = (Am(0)− LCm −Bm(0)F )ξ̃ + Lα ,

yv = −F ξ̃ ,
(90)

i.e., v = ξ̃ and

Av = Am(0)− LCm −Bm(0)F, Bv = L , (91)
Cv = −F, Dv = 0 .

From our considerations it follows that the final
controller (AK , BK , CK , DK) with

AK =

[
P 0
0 Av

]

∈ R
10×10, BK =

[
Q
Bv

]

∈ R
10×1,

CK =
[
R Cv

] ∈ R
1×10, DK = Dv ,

(92)
where matrices P , R are defined by (61), Q is given by
(81) and (Av, Bv, Cv, Dv) are given by (91), guarantees
the internal stability and the asymptotic tracking for the
error feedback control system with the nominal plant
ΣG(0). We have also proved that if this controller satisfies
RIS, then it also satisfies RAT.

In Section 4 we will show how to examine if this
controller guarantees the internal stability of the control
system with the uncertain plant ΣG(δ) for all Δ(δ) ∈ Δc.
By exploring the scaling feature of the structured singular
value we also develop a useful procedure allowing
to characterize the uncertain parameters bounds which
guarantee the robustness of this controller.

4. Robust internal stability

In this section we analyze the RIS condition by deriving
a test based on the structured singular value as defined by
Scherer (2001). For this purpose we will first develop a
suitable mathematical model of the uncertain plantΣG(δ).
This model uses the lower fractional transformation which
has been comprehensively described by Zhou and Doyle
(1998). Then we analyze the robustness of the internal
stability of the error feedback control system by making
use of the concept of structured singular value.

It is emphasized that computing structured singular
values for uncertain real parameters is a demanding
problem. However, an effective computational algorithm
of that measure is available within the Matlab Robust
Control Toolbox (MathWorks, 2020b).

4.1. Modelling the uncertain plant. The uncertain
plant ΣG(δ) is described by the state space model (15)
which corresponds to the diagram shown below in Fig. 6.

Using now the expressions (5) we can transform the
diagram from Fig. 6 to the form shown in Fig. 7.

In the latter diagram we have introduced four
fictitious signals zk, zb, zI , zp, entering the four
corresponding normalized uncertainties δk, δb, δI , δp
and four fictitious signals wk , wb, wI , wp, leaving
uncertainties, respectively. If we now cut out all
uncertainty blocks, then we obtain a state space model
of a system ΣΔ

G(0) with inputs wk, wb, wI , wp, u

and outputs zk, zb, zI , zp, α. The system ΣΔ
G(0) is

referred to as the uncertain plant without uncertainties
and simple computations show that its model has the
following compact form:

ΣΔ
G(0) :

⎧
⎨

⎩

ẋ = A(0)x+B1wΔ +B(0)u ,
zΔ = WC1x+WB1wΔ +WB(0)u ,
α = Cx ,

(93)
where

x =

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦ , zΔ =

⎡

⎢
⎢
⎣

zk
zb
zI
zp

⎤

⎥
⎥
⎦ , wΔ =

⎡

⎢
⎢
⎣

wk

wb

wI

wp

⎤

⎥
⎥
⎦ ,

(94)
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with explicit formulas

B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
1

I(0)

1

I(0)
− 1

I(0)
0

− 1

p(0)
− 1

p(0)
0 − 1

p(0)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

C1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0
0 0 −1 1

−k(0)

I(0)

k(0)

I(0)
− b(0)

I(0)

b(0)

I(0)
k(0)

p(0)
−k(0)

p(0)

b(0)

p(0)
− b(0)

p(0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

W =

⎡

⎢
⎢
⎣

Wk 0 0 0
0 Wb 0 0
0 0 WI 0
0 0 0 Wp

⎤

⎥
⎥
⎦ . (95)

Recall that in Section 2.2 we introduced the uncertainty
matrix Δ(δ) ∈ C

4×4 (see (27) and (28)) and the
uncertainty structure set Δc ⊂ C

4×4 (see (29)). Notice
that Δc ⊂ C

4×4 is a star-shaped set with center at zero.
The star-shape property means that

Δ(δ) ∈ Δc ⇒ γΔ(δ) ∈ Δc , γ ∈ [0, 1] . (96)

By introducing the block of uncertainties

ΣΔ(δ) : wΔ = Δ(δ)zΔ , (97)

we can model the uncertain plant ΣG(δ) (see (15)),
with uncertain parameters transformed to the additive
forms (5), as the interconnection shown in Fig. 8.

It is clear that ΣG(δ) is the upper fractional
transformation of ΣΔ

G(0) and ΣΔ(δ) (Zhou and Doyle,
1998), i.e.,

ΣG(δ) = Fu(Σ
Δ
G(0),ΣΔ(δ)) , (98)

and for this interconnection to be well-posed we require
the condition

det(I −WB1Δ(δ))

=
(
1 +

WI

I(0)
δI

)(
1 +

Wp

p(0)
δp

)
�= 0 ,

for |δk| < 1, |δb| < 1, |δI | < 1 and |δp| < 1, which
obviously holds. Briefly,

det(I −WB1Δ(δ)) �= 0 , Δ(δ) ∈ Δc . (99)

� ΣΔ
G(0) �

�

wΔ zΔ

u α

ΣΔ(δ)

�

Fig. 8. Model of the uncertain plant ΣG(δ).

ΣK

�
ΣΔ

G(0)� ����

�

�

ΣΔ(δ)

u

wΔ zΔ

d
�

ατeαr

−

Fig. 9. Model of the error feedback control system with an
uncertain plant ΣG(δ).

ΣΔ(δ)

ΣM

�

�

zΔwΔ

Fig. 10. Σuf (δ) as an interconnection of ΣM and ΣΔ(δ).

4.2. Control system with the uncertain plant. Since
the uncertain plant ΣG(δ) is modelled as in Fig. 8, the
error feedback control system can be reshaped as shown
in Fig. 9.

Recall that the controller ΣK has been designed to
stabilize the nominal plant ΣG(0) (see Section 3.4), which
means that

σ(

[
A(0) +B(0)DKC B(0)CK

BKC AK

]

) ∈ C− . (100)

First of all, let us notice that if in the error feedback
control system in Fig. 9 we assume αr ≡ 0 and d ≡ 0,
then the obtained unforced closed loop system Σuf (δ) can
be viewed as an interconnection of some system ΣM and
the block of uncertainties ΣΔ(δ) as it is shown in Fig. 10.

Simple computations show that ΣM is described by
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the following state space model:

ΣM :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = (A(0) +B(0)DKC)x
+B(0)CKxK +B1wΔ , x(0) = x0 ,

ẋK = BKCx+AKxK , xK(0) = xK0 ,
zΔ = W (C1 +B(0)DKC)x

+WB(0)CKxK +WB1wΔ .
(101)

One can check that if we now connect the system
ΣM and the uncertainty block ΣΔ(δ) by setting wΔ =
Δ(δ)zΔ, then after some manipulations we arrive at a very
complicated state space model, which is rather unsuitable
for the internal stability analysis. Although the internal
stability is essentially a state space concept, it can be
also examined by using transfer functions of the systems
involved instead of their state space models. However,
for such an analysis the state space models have to be
stabilizable and detectable.

The transfer function of ΣM is given by
⎛

⎝
A(0) +B(0)DKC B(0)CK B1

BKC AK 0
WC1 +WB(0)DKC WB(0)CK WB1

⎞

⎠

= W

⎛

⎝
A(0) +B(0)DKC B(0)CK B1

BKC AK 0
C1 +B(0)DKC B(0)CK B1

⎞

⎠

= WM̂0(s) , (102)

where W is the matrix of uncertainty weights and M̂0(s)

is an auxiliary transfer function. It is clear that WM̂0(s)
is stable (in the BIBO sense). Since Δ(δ) is just a static
matrix, it is also stable. In turn, detW �= 0 implies that
ΣM is stabilizable and detectable if and only if so is the
state space realization of M̂0(s). Actually, the internal
stability condition (100) can be used to show that the pair

(
[

A(0) +B(0)DKC B(0)CK

BKC AK

]

,

[
B1

0

]
)

(103)

is stabilizable and the pair
( [

C1 +B(0)DKC B(0)CK

]
,

[
A(0) +B(0)DKC B(0)CK

BKC AK

]
) (104)

is detectable.

Remark 1. For example, in order to show that (103) is
stabilizable, we can use the feedback gain matrix

−f

[
B1

0

]T

, f ∈ R . (105)

Since the spectrum

σ(f) = σ
(
[

A(0) +B(0)DKC B(0)CK

BKC AK

]

−f

[
B1

0

] [
B1

0

]T ) ∈ C
4+nK

(106)
is a continuous function of f onR, with values in C

4+nK ),
we have lim

f→0
σ(f) = σ(0) ⊂ C−. Hence, for sufficiently

small |f | �= 0 we have σ(f) ⊂ C−. Analogously, we
prove the detectability of (104). �

Since Δ(δ) and WM̂0(s) are proper and stable, it
immediately follows from the robust control theory (e.g.,
Scherer, 2001) that the asymptotic stability of Σuf (δ) for
all Δ(δ) ∈ Δc (see Fig. 8), which by definition means that
the error feedback control system Σe(δ) satisfies RIS, can
be characterized as follows.

Lemma 2. The error feedback control system Σe(δ) sat-
isfies RIS if and only if

(I −WM̂0(s)Δ(δ))−1 ∈ RH∞ , Δ(δ) ∈ Δc , (107)

where RH∞ is the space of real, rational, proper and sta-
ble matrices.

The condition (107) requires that the transfer matrix
I − WM̂0(s)Δ(δ) does have a proper inverse for all
Δ(δ) ∈ Δc. This is the case if

det(I −WM̂0(∞)Δ(δ)) = det(I −WB1Δ(δ)) �= 0 ,
(108)

for all Δ(δ) ∈ Δc, which holds by (99). However, a
verification of the stability of the inverse

(I −WM̂0(s)Δ(δ))−1 =
adj (I −WM̂0(s)Δ(δ))

det(I −WM̂0(s)Δ(δ))
,

Δ(δ) ∈ Δc , (109)

is a hard job since we have to check the condition

det(I −WM̂0(s)Δ(δ)) �= 0 ,

s ∈ jR ∪ C+ , Δ(δ) ∈ Δc , (110)

which means that the rational function det(I −
WM̂0(s)Δ(δ)) has no zeros in the closed right half
plane for all Δ(δ) ∈ Δc. It follows from the proof of
Theorem 13 of Scherer (2001) that for static uncertainties
Δ the following equivalent condition holds and makes life
a bit easier.

Lemma 3. The condition (107) holds and, consequently,
the error feedback control system Σe(δ) satisfies RIS if
and only if

det(I −WM̂0(jω)Δ(δ)) �= 0 ,

Δ(δ) ∈ Δc , ω ∈ R . (111)
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The main problem with (111) is that it has to be
checked for all matrices Δ(δ) ∈ Δc and all ω ∈ R. And
here the concept of the structured singular value turns out
to be helpful since it allows us to replace (111) by a much
more practical but still equivalent condition.

4.3. Structured singular value. Recall that Lemma 3
says that for every ω ∈ R we have to check the condition

det(I −WM̂0(jω)Δ(δ)) �= 0 , Δ(δ) ∈ Δc , (112)

and by (108) we already know that it holds for ω = ∞.
Introducing the set γΔc ⊂ C

4×4, where γ > 0
is a scaling factor, we can modify the above problem as
follows: Find γ∗(ω) such that

γ∗(ω)

= (sup{γ : det(I −WM̂0(jω)Δ(δ)) �= 0 ,

Δ(δ) ∈ γΔc})−1.

(113)

If the scaling factor γ > 0 is decreasing or increasing, then
the set γΔc shrinks or becomes larger. For sufficiently
small γ the condition det(I−WM̂0(jω)Δ(δ)) �= 0 for all
Δ(δ) ∈ γΔc, always holds. Increasing γ we may meet a
matrix Δ(δ) ∈ γΔc such that det(I−WM̂0(jω)Δ(δ)) =
0. If such a value γ does not exist, we set γ∗(ω) = ∞.

Definition 1. (Scherer, 2001) Let ω ∈ R. The
structured singular value of a matrix WM̂0(jω) for the
uncertainty structure set Δc is a non-negative number
μΔc(WM̂0(jω)) defined by the expression

μΔc(WM̂0(jω))

:=
1

γ∗(ω)

= (sup{γ : det(I −WM̂0(jω)Δ(δ)) �= 0 ,

Δ(δ) ∈ γΔc})−1 .

It should be emphasized that the structured singular
value μΔc(WM̂0(jω)) depends on both the matrix
WM̂0(jω) and the uncertainty structure set Δc.

Since the structure set Δc is star-shaped, for 0 <
γ1 ≤ γ2 we have the inclusion γ1Δc ⊂ γ2Δc. It follows
from Definition 1 that for γ ≤ γ∗(ω) we always have

det(I −WM̂0(jω)Δ(δ)) �= 0 , Δ(δ) ∈ γΔc . (114)

If γ∗(ω) satisfies 1 ≤ γ∗(ω), then

det(I −WM̂0(jω)Δ(δ)) �= 0 , Δ(δ) ∈ Δc . (115)

If γ∗(ω) satisfies 1 > γ∗(ω), then there always exists
Δ(δ) ∈ Δc such that

det(I −WM̂0(jω)Δ(δ)) = 0 , (116)

i.e., (115) fails.
Since 1 ≤ γ∗(ω) is equivalent to

1 ≥ 1

γ∗(ω)
= μΔc(WM̂0(jω)) , (117)

and 1 > γ∗(ω) is equivalent to

1 <
1

γ∗(ω)
= μΔc(WM̂0(jω)) , (118)

we obtain the following result which relates the structure
singular value and the robust internal stability of the error
feedback control system.

Theorem 3. The condition

det(I −WM̂0(jω)Δ(δ)) �= 0 , Δ(δ) ∈ Δc ω ∈ R ,
(119)

holds if and only if the structured singular value of the
matrix WM̂0(jω) for the structure set Δc satisfies

μΔc(WM̂0(jω)) ≤ 1 , ω ∈ R . (120)

Consequently, the error feedback control system Σe(δ)
satisfies the RIS condition if and only if (120) holds.

Unfortunately, there is no general method of
computing μΔc(WM̂0(jω)) exactly and we can only
compute its lower and upper bounds.

In this paper we propose to explore the essential
feature of the structure singular value following from the
fact that

γ μΔc(WM̂0(jω)) = μΔc(γWM̂0(jω)) , (121)

which means that scaling μ by the factor γ is equivalent to
scaling the matrix W . In practice, we can always expect
that we are in a position to compute some global upper
bound γu of μ, i.e.,

μΔc(WM̂0(jω)) ≤ γu , ω ∈ R . (122)

Since (122) can be equivalently written in the form

μΔc(γ
−1
u WM̂0(jω)) ≤ 1 , ω ∈ R , (123)

(123) is equivalent to the robust internal stability of Σe(δ)
for the scaled matrix of weights Wγ , where

Wγ := γ−1
u W , (124)

with the unchanged structure set Δc. This new (rescaled)
matrix of weights allows us to define new (rescaled)
intervals for parameters (see (7)) which guarantee the RIS
and RAS conditions.
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Remark 2. It is worth mentioning that the Robust Control
Toolbox of the Matlab package (MathWorks, 2020b) has
a powerful function mussv which adaptively selects a
finite series of frequencies (ωi)

i=N
i=0 ⊂ [0,∞) and returns

the lower and the upper bounds of the structured singular
value

γl(ωi) ≤ μΔc(WM̂0(jωi)) ≤ γu(ωi) ,

i = 0, 1, . . . , N . (125)

It allows us to estimate the global upper bound (122) as
follows

γu = max
i=0,1,...,N

γu(ωi) . (126)

5. Numerical simulations
In order to test the performance of the obtained robust
controller ΣK , we have computed an example of the error
feedback control system with an uncertain plant ΣG(δ)
using Matlab/Simulink. The results are presented for
the controller (AK , BK , CK , DK) with the subcontroller
(Av, Bv, Cv, Dv) based on the full order observer (86)
and the control law (88), as described in Section 3.4. The
data assumed in computations correspond to the class of
microsatellites of weight 50–100 kg.

5.1. Nominal plant ΣG(0). We assume the following
data for the nominal plant ΣG(0):

k(0) = 750
[N ·m

rad

]
, b(0) = 0.01 [N ·m · s] ,

I(0) = 1.7 [kg ·m2] , p(0) = 0.1 [kg ·m2] ,
(127)

and for the reference signal αr = a sin(ωrt) and the
disturbance d0:

a = 1 [rad] , ωr = 1
[deg

s

]
=

π

180

[ rad

s

]
,

d0 = 0.01 [N ·m] .
(128)

The nominal plant ΣG(0) has the state space matrix (129),
the exosystem ΣS has the state space matrix

⎡

⎣
S
Tr

Td

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0
−0.0003 0 0

0 0 0
1 0 0
0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
, (130)

with

σ(S) =
[
0 j0.0175 −j0.0175

]T
, (131)

and generates the reference αr and the disturbance d in
the form

αr(t) = sin 0.0175t ,
d(t) = 0.01 .

(132)

Moreover, the nominal modified plant Σm(0) has the state
space matrix (133). The real parameters k, b, I and p of
the uncertain plant belong to the intervals

k ∈ (kmin, kmax) , b ∈ (bmin, bmax) ,
I ∈ (Imin, Imax) , p ∈ (pmin, pmax) ,

(134)

where the bounds are assumed as follows:

kmin = 0.8k(0) = 600 , kmax = 1.2k(0) = 900 ,
bmin = 0.7b(0) = 0.007 , bmax = 1.3b(0) = 0.013 ,
Imin = 0.9I(0) = 1.53 , Imax = 1.1I(0) = 1.87 ,
pmin = 0.95p(0) = 0.095 , pmax = 1.05p(0) = 0.105 ,

(135)
and obviously agree with the nominal values (127). Hence
the weight matrix W is given by

W =

⎡

⎢
⎢
⎣

Wk 0 0 0
0 Wb 0 0
0 0 WI 0
0 0 0 Wp

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

150 0 0 0
0 0.003 0 0
0 0 0.17 0
0 0 0 0.005

⎤

⎥
⎥
⎦ ,

(136)

and the uncertain parameters in the additive form

k(δk) = 750 + 150δk , b(δb) = 0.01 + 0.003δb ,
I(δI) = 1.7 + 0.17δI , p(δp) = 0.1 + 0.005δp ,

(137)
where δk, δb, δI and δp, are normalized uncertainties. The
uncertainty structure set Δc has been defined by (27) and
(28).

5.2. Controller based on the full order observer. In
order to obtain the subcontroller Σv (see (90) and (91))
the state feedback gain matrix F ∈ R

1×7 is chosen to
minimize the quadratic functional

J(yv) = q0

∫ ∞

0

ξT (t)ξ(t) dt + u0

∫ ∞

0

y2v(t) dt , (138)

with weights q0 = 1 and u0 = 1, for the nominal modified
plant Σm(0), i.e., ξ̇(t) = Am(0)ξ(t) + Bm(0)yv(t) with
yv(t) = −Fξ(t). To solve this optimization, we used
the lqr procedure from the Control System Toolbox of
MATLAB (MathWorks, 2020a). Hence

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

11.8073
−2.5633
6.3924
−0.4524
2.4142
3.4758
3.9193

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

, (139)
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[
A(0) B(0)
C 0

]

=

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 0 0
0 0 0 1 0

−441.17 441.17 −0.0059 0.0059 0.5882
7500 −7500 0.1 −0.1 0
1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
, (129)

[
Am(0) Bm(0)
Cm 0

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−441.17 441.17 −0.0059 0.0059 0.5882 0 0 0.5882
7500 −7500 0.1 −0.1 0 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 −0.0003 0 0
1 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (133)

and

σ(Am(0)−Bm(0)F ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.2833 + j89.1145
−0.2833− j89.1145

−1.2608
−0.3849 + j0.8545
−0.3849− j0.8545
−0.6345 + j0.5541
−0.6345− j.5541

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(140)
The output injection gain matrix L ∈ R

7×1 is chosen such
that LT ∈ R

1×7 minimizes the quadratic cost functional

J(ϑ) = q1

∫ ∞

0

ξT (t)ξ(t) dt+ u1

∫ ∞

0

ϑ2(t) dt , (141)

with weights q1 = 1 and u1 = 1, for the system dual
to Σm(0), i.e. ξ̇(t) = AT

m(0)ξ(t) + CT
mϑ(t) with ϑ(t) =

−LT ξ(t). To solve this problem we again used the lqr
MATLAB procedure. Hence,

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3.4156
2.9474
5.3332
4.6864
9.9954
6.0420
2.4117

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (142)

and

σ(Am(0)−LCm) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0659+ j89.1130
−0.0659− j89.1130
−0.3577 + j0.8413
−0.3577− j0.8413

−1.2102
−0.7321 + j0.4910
−0.7321− j0.4910

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (143)

The obtained state space matrix of the subcontroller
(Av, Bv, Cv, Dv) is given by (144) (according

to (91)) and the final error feedback controller
(AK , BK , CK , DK) is described by (92) with

P =

⎡

⎣
0 1 0
0 0 1
0 −0.0003 0

⎤

⎦ , Q =

⎡

⎣
1
1
1

⎤

⎦ ,

R =
[
1 0 0

]
.

5.3. Performance for the nominal plant ΣG(0). The
results of numerical simulations showing the performance
of the controller ΣK in the error feedback control
system with the nominal plant ΣG(0) are displayed in
Figs. 11–13.

5.4. Structured singular value μΔc(WM̂0). In
order to show the robustness of the controller ΣK in the
error feedback control system with an uncertain plant
ΣG(δ), we have used the mussv MATLAB procedure
to compute the global upper bound γu of the structured
singular value

sup
ω≥0

μΔc(WM̂0(jω)) ≤ γu , (145)

where WM̂0(jω) = WM̂0(s)|s=jω and WM̂0(s) is the
transfer function of the system ΣM (see (101) and (102)).
We have obtained the maximum

γu = 1.2875 for ωu = 1.276 , (146)

and

1.2845 = γl ≤ μΔc(WM̂0(j1.276)) ≤ γu = 1.2875 ,
(147)

which shows that (147) is a reasonably tight estimate. If
we now rescale the weight matrix W by the factor γ−1 =
0.7692, where γ = 1.3 ≥ γu, then we get

μΔc(WγM̂0(j1.276)) ≤ γu
γ

= 0.9905 < 1 , (148)
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[
Av Bv

Cv Dv

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.8 0 1 0 0 0 0 3.4156
−2.9 0 0 1 0 0 0 2.9474
−453.5 442.7 −3.8 0.272 −0.8319 −2.0446 −2.3055 5.3332
7495.3 −7500 0.1 −0.1 0 0 0 4.6864
−9.0 0 0 0 0 1 0 9.9954
−5.0 0 0 0 0 0 1 6.0420
−1.4 0 0 0 0 −0.0003 0 2.4117

−11.8073 2.5633 −6.3924 0.4524 −2.4142 −3.4758 −3.9193 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (144)
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Fig. 11. Output α(t) for ΣG(0).
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Fig. 12. Error e(t) for ΣG(0).
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Fig. 13. Control torque τ (t) for ΣG(0).

and for the new matrix

Wγ = γ−1W

=

⎡

⎢
⎢
⎣

Wγk 0 0 0
0 Wγb 0 0
0 0 WγI 0
0 0 0 Wγp

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

115.3846 0 0 0
0 0.0023 0 0
0 0 0.1308 0
0 0 0 0.0038

⎤

⎥
⎥
⎦ (149)

we have new (rescaled) parameter bounds

kmin = k(0)−Wγk = 634.6154 ,
kmax = k(0) +Wγk = 865.3846 ,
bmin = b(0)−Wγb = 0.0077 ,
bmax = b(0) +Wγb = 0.0123 ,
Imin = I(0)−WγI = 1.5692 ,
Imax = I(0) +WγI = 1.8308 ,
pmin = p(0)−Wγp = 0.0962 ,
pmax = p(0) +Wγp = 0.1038 .

(150)

It is guaranteed that the controller ΣK will robustly
stabilize all uncertain plants ΣG(δ) with real parameters
k, b, I and p from these new intervals and, moreover,
the robust asymptotic tracking condition will hold. Notice
that the weight matrix Wγ is modified but the uncertainty
structure set Δc has not been changed. The results of
numerical simulations showing the performance of the
controller for different uncertain plants are given below.

5.5. Performance for two uncertain plants ΣG(δ).

Example 1. For ΣG(δ) with the parameters

k = k(0)− 0.9Wγk = 646.1538 ,

b = b(0)− 0.9Wγb = 0.0079 ,

I = I(0) + 0.9WγI = 1.8177 ,

p = p(0) + 0.9Wγp = 0.1035 ,

(151)

the state space matrix takes the form of (152).
The corresponding results are shown in Figs. 14–16.

�
Example 2. For the plant ΣG(δ) with the parameters

k = k(0) + 0.9Wγk = 853.8462 ,
b = b(0) + 0.9Wγb = 0.0121 ,
I = I(0)− 0.9WγI = 1.582 ,
p = p(0)− 0.9Wγp = 0.0965,

(153)
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Fig. 14. Output α(t) for ΣG(δ).
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Fig. 15. Error e(t) for ΣG(δ).
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Fig. 16. Control torque τ (t) for ΣG(δ).

the state space matrix takes the form of (154).

The corresponding results are shown in Figs. 17–19.
�

For choosing the feedback gain F and the output
injection L we have used the LQR optimization which
resulted in a satisfactory behaviour of signals. The
scalar weights q0, u0 and q1, u1 have been introduced to
control that behaviour and have been chosen by trial and
error. Instead of the simple scalar weights q0, q1 in the
functionals (138) and (141), one can introduce matrices to
weigh the state variables of Σm(0) selectively.

In both the cases of uncertain plants (151) and (153)
we have assumed significant deviations of parameters
from their nominal values. The graphs presented in
Figs. 14–18 confirm that the controller ΣK , or rather
the subcontroller Σv, guarantees robustness of the exact
asymptotic tracking.
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Fig. 17. Output α(t) for ΣG(δ).
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Fig. 18. Error e(t) for ΣG(δ).
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Fig. 19. Control torque τ (t) for ΣG(δ).

6. Final remarks

In the paper we have demonstrated that the robust
general regulator theory provides an efficient algorithm
for a robust feedback error controller which makes
the displacement of an underactuated 2DOF mechanical
system to asymptotically track a harmonic signal in the
presence of significant parametric uncertainties in the
mathematical model. As an example, we have considered
the attitude control problem of an earth observation
microsatellite with a solar panel. The performed
numerical computations show that this approach may
be seen as a completion to the robust control theory
based on the μ-synthesis which is well supported by
the Matlab/Simulink computational software. It should
be emphasized that the exact asymptotic tracking (36)
cannot be fit in the μ-synthesis problem as a performance
criterion since it cannot be expressed in terms of
H∞-norm minimization.
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[
A(δ) B(δ)
C 0

]

=

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 0 0
0 0 0 1 0

−355.5 355.5 −0.0044 0.0044 0.5501
6245.4 −6245.4 0.0766 −0.0766 0

1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
, (152)

[
A(δ) B(δ)
C 0

]

=

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 0 0
0 0 0 1 0

−539.6 539.6 −0.0076 0.0076 0.6320
8844.6 −8844.6 0.1251 −0.1251 0

1 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
. (154)
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