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We address a unified convex combination approach to a class of switched uncertain nonlinear systems, focusing on quadratic
stability and L2 gain. In each subsystem, there are norm-bounded uncertainties in the system matrix and nonlinear terms
with quadratic constraints. The proposed convex combination is original and unified in the sense of incorporating not only
the nominal subsystem matrices but also uncertainty and quadratic constraints in the same form. When there is no single
subsystem having the desired performance but a convex combination of subsystems does, we design a switching law so that
the switched system achieves the same performance. Moreover, the discussion is extended to switching state feedback and
its application to a boost converter.
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1. Introduction
Switched systems are composed of a set of subsystems
and a switching law activating one of the subsystems at
each time instant, and have been studied extensively in the
last three decades (Liberzon and Morse, 1999; DeCarlo
et al., 2000; Shorten et al., 2007; Goebel et al., 2009;
Alwan and Liu, 2016; Liu and Li, 2022). When all
or part of subsystems are stable, the control problem
is to identify the class of switching laws such that the
switched system is asymptotically stable. There have
been quantities of references working on this problem,
and several efficient approaches have been proposed,
including the average dwell time approach (Morse, 1996;
Hespanha and Morse, 1999; Zhai et al., 2000; Yu and
Zhai, 2020), the piecewise/multiple Lyapunov function
(Branicky, 1998; Zhai et al., 2000), the conic switching
law (Xu and Antsaklis, 2000), etc.

The more interesting and challenging case is that no
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single subsystem is stable, and the objective is to design a
switching law (strategy) such that the resultant switched
system is stable (Liberzon and Morse, 1999; Liberzon,
2003). For switched LTI systems, it has been shown
(Wicks et al., 1998; Feron, 1996) that if it is possible to
obtain a stable convex combination of subsystems (CCS),
then we can design a stabilizing switching law which
uses the state information at each time instant. Zhai
et al. (2003) have proposed a quadratic stabilizability
condition for a class of switched linear systems that
include polytopic uncertainties in subsystem matrices.

Recently, Chang et al. (2019) have extended the
idea of convex combination (Wicks et al., 1998; Feron,
1996) of subsystem matrices to quadratically stabilizing
switched linear systems where there are norm-bounded
uncertainties in subsystem matrices. In that context,
assuming that no single subsystem is quadratically stable
(QS), a new CCS is proposed by incorporating the
matrices accounting for uncertainties. If there is a CCS
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which is QS for any uncertainty under consideration, then
a switching law depending on the system state can be
designed to quadratically stabilize the switched system.
Chang et al. (2022a) have extended the discussion of
Chang et al. (2019) to the study of L2 gain performance
for switched systems with norm-bounded uncertainties
and disturbance input, and have proposed a new CCS
based switching law to guarantee that the switched system
exhibits the desired behavior.

Since the above references are mainly on analysis
and design of switched linear systems, this paper is
aimed at extending the CCS approach to the case where
nonlinear terms exist in each subsystem. The motivation
behind including nonlinear terms is that almost every real
system has nonlinear factors (elements) in its dynamics
(Sassano et al., 2019), although we may focus on its linear
(or linearized) part for simplicity and/or for technical
reasons. If the nonlinear term is completely unknown,
then it is difficult to perform any quantitative analysis and
design for the system. In this paper, we assume that the
nonlinear terms are known or unknown but they are upper
bounded by a known quadratic function of the system
state. Then, we propose a unified convex combination
of subsystems which incorporates not only the nominal
subsystem matrices but also the uncertainty and the
quadratic constraints in the same form. The performance
of the system under consideration is characterized by the
QS and L2 gain between disturbance input and controlled
output. As before, it is assumed that no single subsystem
has the desired performance (QS or L2 gain). Then,
we propose a design strategy to seek a CCS which has
the desired performance, and then propose a switching
law based on the system state to guarantee that the
switched system achieves the same performance. When
the design strategy does not work without a control input,
we consider the design of switching state feedback so
that the CCS approach is applicable, and demonstrate the
performance with a boost converter.

The contributions of this paper are summarized as
follows:

• Compared with the existing CCS, the CCS in
this study presents a major extension in the
sense that the convex combinations of subsystem
matrices, uncertainty terms, disturbance input
matrices, controlled output matrices and quadratic
constraint matrices are unified in the same form.
Thus, the CCS approach in this paper is both original
and practical.

• With the CCS approach, state-dependent switching
laws are proposed to guarantee the QS and L2 gain of
the switched uncertain nonlinear system (SUNLS),
even if each subsystem may not have the desired
property.

This paper is organized as follows. We provide some
preliminary lemmas and formulate the control problem in
Section 2. Then, Section 3 addresses quadratic stability
(QS) analysis for the SUNLS, and Section 4 proceeds
to quadratic L2 gain analysis. Section 5 extends the
discussion to the SUNLS with switching state feedback
controller design, and presents the application to L2 gain
design for a DC-DC boost converter model. Finally
Section 6 provides some concluding remarks.

Throughout this paper, we use W� (resp. W−1) to
denote the transpose (resp., inverse) of the matrix W . Rn

and R
n×m stand for the set of real n-dimensional vectors

and n×m matrices, respectively. For a square matrix V ,
we use He{V } to denote V +V � for simplicity, and write
V � 0 (resp. V ≺ 0) when V is symmetric and positive
(resp., negative) definite. For a set of matrices V1, . . . , Vn,
we define their convex combination by using the notation
Convλ{V1, . . . , Vn}, which is the set of matrices λ1V1 +
· · · + λnVn with nonnegative scalars λi satisfying λ1 +
· · ·+ λn = 1.

2. Some preliminaries and problem
formulation

We start with the nonlinear control system{
ẋ = (A+HΔ(t)F ) x+B1w + g(t, x),

z = Cx,
(1)

where x ∈ R
n, w ∈ R

r and z ∈ R
p are the system

state, the disturbance input and the controlled output,
respectively. A ∈ R

n×n, B1 ∈ R
n×r, C ∈ R

p×n,
H ∈ R

n×q , F ∈ R
k×n are constant matrices denoting

the nominal part of the system, and Δ(t) ∈ R
q×k

describes the norm-bounded uncertainties and without
loss of generality, ‖Δ(t)‖ ≤ 1. Here g(t, x) is a nonlinear
vector which is known or unknown, and it satisfies the
constraint (Siljak and Stipanovic, 2000)

g(t, x)�g(t, x) ≤ x�G�Gx , (2)

where the constant matrix G ∈ R
s×n characterizes the

nonlinearity. Since the right-hand side is a quadratic
function, (2) is called a quadratic constraint (Siljak and
Stipanovic, 2000).

Definition 1. (Petersen, 1987; Khargonekar et al., 1990)
The system (1) with w(t) ≡ 0 is said to be quadratically
stable (QS) if there exist P � 0 and ε > 0 such that the
quadratic function V (x) = x�Px satisfies

dV (x)

dt
≤ −εV (x) (3)

for all solutions x(t) of (1), any Δ(t) meeting ‖Δ(t)‖ ≤ 1
and any g(t, x) satisfying (2).
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Lemma 1. (Siljak and Stipanovic, 2000) When Δ(t) ≡ 0,
the system (1) is QS if and only if there exist P � 0 and
α > 0 satisfying the LMI (Boyd et al. 1994)[

He{PA}+ αG�G P

P −αIn

]
≺ 0 . (4)

When Δ(t) �≡ 0, replacing A with A + HΔ(t)F
in the above matrix inequality and then using the Schur
complement lemma leads to the following result.

Lemma 2. (Siljak and Stipanovic, 2000; Stankovic et al.,
2007; Chang et al., 2023) The system (1) is QS if and only
if there exist P � 0 and α > 0 satisfying the LMI (Boyd
et al. 1994)⎡
⎢⎣

He{PA}+ αG�G+ F�F P PH

P −αIn 0

H�P 0 −Iq

⎤
⎥⎦ ≺ 0 .

(5)

Definition 2. (Khargonekar et al., 1990; Chang et al.,
2022) Consider the system (1) where w(t) ∈ L2[0,∞),
i.e.,

∫∞
0

w�(s)w(s) ds < ∞. It is said to have (achieve)
quadratic L2 gain γ if it is QS and when x(0) = 0,∫ t

0

z�(s)z(s) ds ≤ γ2

∫ t

0

w�(s)w(s) ds (6)

holds for any t ≥ 0 and arbitrary w(t) ∈ L2[0,∞).

Applying the LMI with Kalman–Yakubovich–Popov
(KYP) lemma (Rantzer, 1996) to the system (1) with
disturbance input, we obtain the following corollary.

Corollary 1. The system (1) has quadratic L2 gain γ if
and only if there exist P � 0 and α > 0 satisfying the
LMI (Boyd et al. 1994)⎡
⎢⎢⎢⎢⎢⎣

He{PA}+ αG�G
+F�F + C�C P PH PB1

P −αIn 0 0

H�P 0 −Iq 0

B�
1 P 0 0 −γ2Ir

⎤
⎥⎥⎥⎥⎥⎦ ≺ 0 ,

(7)
or equivalently,⎡
⎢⎢⎣

He{PA}+ αG�G
+F�F + C�C

+P
(
HH� + γ−2B1B

�
1

)
P

P

P −αIn

⎤
⎥⎥⎦ ≺ 0 . (8)

With the above preparation, we now proceed to the
problem formulation. In this paper, we deal with the
switched uncertain nonlinear system (SUNLS){

ẋ = (Aσ +HσΔ(t)Fσ)x+B1σw + gσ(t, x),

z = Cσx .

(9)

Here the index function σ(t) taking value in the discrete
set SN = {1, . . . ,N} is called the switching law (signal),
which will be designed later. In correspondence with
the switching law, the matrix Aσ takes values in the set
{A1, . . . , AN } , and B1σ , Cσ , Hσ, Fσ change with the
same rule. In the above, Ai, B1i, Ci, Hi, Fi are constant
matrices with compatible dimensions. Similarly to (2),
gi(t, x) in the system (9) is a known or unknown nonlinear
vector, which is supposed to satisfy the condition

gi(t, x)
�gi(t, x) ≤ x�G�

i Gix . (10)

Here, the constant matrix Gi ∈ R
s×n characterizes the

nonlinearity in the i-th subsystem, and (10) is called
a quadratic constraint for the nonlinear part in each
subsystem.

In the remaining sections, the following two control
problems will be discussed in detail.

Problem 1. (Quadratic stabilization) When no sub-
system in (9) is QS, design a switching law σ(t) under
which the resultant SUNLS (9) is QS.

Problem 2. (Quadratic L2 gain) When no subsystem in
(9) has quadratic L2 gain γ, design a switching law σ(t)
under which the resultant SUNLS (9) has quadratic L2

gain γ .

It is noted that in Problem 2, some subsystems
may not be asymptotically stable, and thus certainly
does not achieve the desired L2 gain. Alternatively,
some subsystems may be asymptotically stable but its
achievable L2 gain is larger than the specified scalar γ.
In this sense, it covers a large variety of cases. For both
Problem 1 and 2, we will try to revise the CCS approach
(Wicks et al., 1998; Feron, 1996; Chang et al., 2019;
2022a) so that the switched system has the desired QS or
quadratic L2 gain, respectively.

3. Quadratic stabilization
We first deal with Problem 1 when no single subsystem in
(9) is QS. Since the concern here is in stability, we assume
w ≡ 0 without losing generality. To extend the existing
CCS approach of Wicks et al. (1998), Feron (1996) and
Chang et al. (2019; 2022a), we use the scalars λi ≥ 0
(i = 1, . . . ,N ),

∑N
i=1 λi = 1 to define the CCS as

ẋ = (Aλ +HλΔ(t)Fλ) x+ gλ(t, x) (11)

where
Aλ = Convλ{A1, . . . , AN } , (12)

Hλ ∈ R
n×q , Fλ ∈ R

k×n are constant matrices satisfying

HλH
�
λ = Convλ{H1H

�
1 , . . . , HNH�

N }
F�
λ Fλ = Convλ{F�

1 F1 , . . . , F
�
NFN }

(13)
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and gλ(t, x) is a nonlinear vector meeting

gλ(t, x)
�gλ(t, x) ≤ x�G�

λGλx , (14)

where Gλ ∈ R
n×s is a constant matrix satisfying

G�
λGλ = Convλ{G�

1 G1 , . . . , G
�
NGN } . (15)

The key analysis method for QS is described as
follows.

Analysis Approach 1. Seek a set of λi’s (i = 1, . . . ,N )
such that the CCS (11) is QS.

It is emphasized that the specification in Analysis
Approach 1 can be called a “convex Hurwitz combination
incorporating norm-bounded uncertainty and nonlinear
quadratic constraint” since it is an extension of QS
for a single uncertain system which includes unit
norm-bounded uncertainty, and covers the nonlinearities
with quadratic constraints. Note that the convex Hurwitz
combination Aλ in (12) has appeared in the literature
(Feron, 1996; Wicks et al., 1998; Ji et al., 2004), while
the CCS in (11) with (12), (13) and (15) presents a
new concept. Moreover, as in the literature (Wicks et
al., 1998; Feron, 1996; Chang et al., 2019; 2022a),
the CCS (11) is not a real system but a differential
equation describing an uncertain system with the same
norm-bounded uncertainty Δ(t). The origin is an
equilibrium point of (11) due to the constraint (14), and
thus we can discuss its quadratic stability.

Lemma 2 indicates that Analysis Approach 1 is to
seek P � 0, α > 0 and nonnegative scalars λi satisfying

⎡
⎢⎣

He{PAλ}+ αG�
λGλ + F�

λ Fλ P PHλ

P −αIn 0

H�
λ P 0 −Iq

⎤
⎥⎦

≺ 0 (16)

or, by the Schur complement,⎡
⎣ He{PAλ}+ αG�

λ Gλ

+F�
λ Fλ + PHλH

�
λ P

P

P −αIn

⎤
⎦ ≺ 0 . (17)

With the definitions of Aλ, Hλ, Fλ and Gλ in (12), (13),
(15), the above inequality is rewritten as

N∑
i=1

λi

⎡
⎣ He{PAi}+ αG�

i Gi

+F�
i Fi + PHiH

�
i P

P

P −αIn

⎤
⎦ ≺ 0 ,

(18)
which is a convex combination of matrix inequalities for
each subsystem to be QS.

Remark 1. For given matrices Hi’s, Fi’s, Gi’s
and the scalars λi’s, the matrices Hλ, Fλ and Gλ

in (13), (15) can be computed with the Cholesky
decomposition method, and thus numerically tractable by
using MATLAB software. Although the decomposition
of these matrices (the choice of Hλ, Fλ and Gλ) is not
unique, it can be seen from (17) that Gλ, Fλ, Hλ take
the product form, and thus the feasibility of the matrix
inequality and the switching law will not depend on the
choice of the decomposition.

Since we have assumed that no single subsystem is
QS, using the necessity part of Lemma 2,⎡

⎣ He{PAi}+ αG�
i Gi

+F�
i Fi + PHiH

�
i P

P

P −αIn

⎤
⎦ ≺ 0 (19)

is NOT satisfied for any i = 1, . . . ,N . Therefore,
Analysis Approach 1 designs a CCS that is QS when
each subsystem is NOT QS. In this sense, this is a
significant extension compared with the existing Hurwitz
stable combination by Wicks et al. (1998) and Zhai et al.
(2003).

Remark 2. Using the Schur complement for (16), we
obtain another equivalent matrix inequality⎡
⎢⎢⎢⎢⎢⎢⎣

He{PAλ} αG�
λ P PHλ F�

λ

αGλ −αIs 0 0 0

P 0 −αIn 0 0

H�
λ P 0 0 −Iq 0

Fλ 0 0 0 −Ik

⎤
⎥⎥⎥⎥⎥⎥⎦
≺ 0 .

(20)
Due to the product of P and λi’s, the above is not an
LMI, and thus it is generally known to be difficult to
solve (20). However, since λi’s are nonnegative scalars
satisfying

∑n
i=1 λi = 1, it is practical to try a kind of

griding method (or traversal search) with respect to λi’s
when the number N is not very large.

In the following algorithm, we revise the gridding
method based algorithm proposed by Chang et al. (2022b)
so as to solve (20) with respect to λi’s and α > 0, P � 0.
As mentioned by Chang et al. (2022b), due to continuity
with respect to the scalars λi, if the matrix inequality (20)
is feasible (there exist solutions to it), the algorithm will
succeed when the division integer m is large enough.

Algorithm 1. Solving (20).

Step 1. Set the division number m of the interval [0, 1]
as a moderate integer—for example, m = 10—and
define M = {0, 1

m , . . . , m−1
m }.

Step 2. (i) Choose λ1 from M in ascending order; (ii) fix
λ1 and choose λ2 from M in ascending order under
the constraint λ1+λ2 ≤ 1; (iii) fix λ1, λ2 and choose
λ3 from M in ascending order under the constraint
λ1+λ2+λ3 ≤ 1; . . . (i) fix λ1, . . . , λi−1 and choose
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λi from M in ascending order under the constraint∑i
j=1 λj ≤ 1, and so on, until λN is chosen.

Step 3. With the λi’s chosen in Step 2, compute Fλ and
Hλ satisfying (13), compute Gλ satisfying (15) and
then solve (20). If (20) is feasible, record the solution
and end the algorithm. If (20) is not feasible, go back
to Step 2 for another set of λi’s. Or, go back to Step 1
to increase the division integer m.

Here is an example of searching parameters in Step 2.
When N = 3,m = 3, we are actually checking the linear
matrix inequality (20) in P by fixing the parameters λi in
sequence as

(λ1, λ2, λ3) =

(
0,

1

3
,
2

3

)
,

(
0,

2

3
,
1

3

)
(
1

3
, 0,

2

3

)
,

(
1

3
,
1

3
,
1

3

)
,

(
1

3
,
2

3
, 0

)
,

(
2

3
, 0,

1

3

)
,

(
2

3
,
1

3
, 0

)
.

The larger m, the more searching parameters in Step 2.
Again, since the left-hand side of the matrix inequality
(20) is continuous in the parameters λi, we can expect to
find a feasible solution for (20) when the division integer
m is large enough.

With the matrix P obtained above, we now propose
the switching law for QS as

SW1 : σ(x) = arg min
i∈SN

fi(x), (21)

fi(x) = x� (
He{PAi}+ αG�

i Gi

+F�
i Fi + PHiH

�
i P

)
x . (22)

Theorem 1. The SUNLS (9) is QS under the switching
law SW1.

Proof. Since P � 0 in SW1 satisfies the strict matrix
inequality (17), there exists a positive number ε such that⎡
⎢⎣

He{PAλ}+ αG�
λ Gλ + F�

λ Fλ

+PHλH
�
λ P + εP

P

P −αIn

⎤
⎥⎦ ≺ 0 .

(23)
Then, for any nonzero x, v� =

[
x� g�σ

]
is nonzero,

either, and thus

v�

⎡
⎣ He{PAλ}+ αG�

λ Gλ + F�
λ Fλ

+PHλH
�
λ P + εP

P

P −αIn

⎤
⎦ v

< 0 . (24)

On the other hand, the switching law (21) indicates
that

x� (
He{PAσ}+ αG�

σ Gσ + F�
σ Fσ + PHσH

�
σ P

)
x

≤ x� (
He{PAi}+ αG�

i Gi + F�
i Fi + PHiH

�
i P

)
x

(25)

is true for any x and any i ∈ SN . We multiply the above
inequality by λi ≥ 0, and then add all the inequalities to
obtain

x� (
He{PAσ}+ αG�

σ Gσ + F�
σ Fσ + PHσH

�
σ P

)
x

≤ x� (
He{PAλ}+ αG�

λ Gλ + F�
λ Fλ + PHλH

�
λ P

)
x .

(26)

Using the above inequality in (24), we get

v�

⎡
⎣ He{PAσ}+ αG�

σGσ + F�
σ Fσ

+PHσH
�
σ P + εP

P

P −αIn

⎤
⎦ v

< 0 , (27)

and thus

v�

⎡
⎣ He{PAσ}+ F�

σ Fσ

PHσH
�
σ P + εP

P

P 0

⎤
⎦ v

≤ v�
[ −αG�

σGσ 0

0 αIn

]
v . (28)

Observe that the right-hand side of (28) is
α
(
gσ(t, x)

�gσ(t, x)− x�G�
σGσx

)
, which is not

positive according to the quadratic constraint (10). Thus,

x� (
He{PAσ}+ PHσH

�
σ P + F�

σ Fσ + εP
)
x

+x�Pgσ + g�σ Px ≤ 0 , (29)

from which the following is obtained:

x� (
He{PAσ}+ PHσH

�
σ P + F�

σ Fσ

)
x

+x�Pgσ + g�σ Px ≤ −εx�Px . (30)

To check the stability of the switched system, we
compute the derivative of V (x) = x�Px along the
solutions of (9) as

V̇ (x) =
d

dt
x�Px = He{x�P ẋ}

= x� (He{PAσ}+ He{PHσΔFσ})x
+x�Pgσ + g�σ Px

≤ x� (
He{PAσ}+ PHσH

�
σ P + F�

σ Fσ

)
x

+x�Pgσ + g�σ Px . (31)
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Combining the above inequality with (30), we have
V̇ (x) ≤ −εV (x). Since this evaluation is valid for
any activated subsystem, and the Lyapunov function
V (x) = x�Px does not jump at the switching instants,
we conclude that the inequality (3) is satisfied for any time
t. Therefore, the SUNLS (9) is QS. �

Remark 3. It is to be noted that the switching law
(21) is similar to the minimum (energy) rule (van der
Schaft and Schumacher, 2000), and theoretically they may
result in the so-called “chattering” or “Zeno” phenomena
(switchings occur an infinite number of times on a
finite time interval), which are not desired in any real
application. The same is true with the switching law
(38) in the next section. To avoid the possibility of this
trouble, we propose to adopt a kind of hybrid switching
rule for our switched system. More precisely, assuming
the present activated subsystem index is i0 (σ(t) = i0),
for a specified small positive scalar μ, we do not switch
to other subsystems until the tolerance bound fi0(x) <
−μx�Px is violated. This is based on the observation
that the above inequality holds on a nonzero time interval,
since the function fi(x) is continuous with respect to the
state x (and thus time t).

4. Quadratic L2 gain
Now, we proceed to deal with Problem 2. According to
Definition 2, the performance of the quadratic L2 gain
includes QS, and thus we update the CCS (11) as{

ẋ = (Aλ +HλΔ(t)Fλ)x+B1λw + gλ(t, x),

z = Cλx .

(32)
In the above, the disturbance input term B1λw and the
controlled output term z = Cλx are added, and B1λ ∈
Rn×r, Cλ ∈ Rp×n are constant matrices satisfying

B1λB
�
1λ = Convλ{B11B

�
11, . . . , B1NB�

1N },
C�

λ Cλ = Convλ{C�
1 C1 , . . . , C

�
NCN } .

(33)

Obviously, the above convex combinations take the same
form as (13) and (15). In this sense, the CCS (32)
presents a unified form for convex combinations involving
uncertainties, disturbance inputs, controlled outputs and
quadratic constraints, and thus is a major extension to the
one in the existing literature.

Continuing from Analysis Approach 1 for QS, we
now propose the following approach for quadratic L2

gain:

Analysis Approach 2. Seek a set of λi’s (i = 1, . . . ,N )
such that the CCS (32) achieves a quadratic L2 gain γ.

Corollary 1 indicates that Analysis Approach 2 is to

seek P � 0, α > 0 and nonnegative scalars λi satisfying[
S(λ) P

P −αIn

]
≺ 0 , (34)

where

S(λ) = He{PAλ}+ αG�
λ Gλ + F�

λ Fλ + C�
λ Cλ

+P
(
HλH

�
λ + γ−2B1λB

�
1λ

)
P . (35)

If (34) is feasible, there exists a positive number ε
satisfying [

S(λ) + εP P

P −αIn

]
≺ 0 . (36)

Similarly to the discussion in the previous section,
for any nonzero x, v� =

[
x� g�σ

]
is nonzero, either.

We pre- and postmultiply the matrix inequality (36) by v�

and v, respectively, to obtain

x�S(λ)x ≤ −εx�Px+ αg�σ gσ − He{x�Pgσ} . (37)

The switching law for the quadratic L2 gain is
proposed as follows:

SW2 : σ(x) = arg min
i∈SN

f̂i(x), (38)

f̂i(x) = x� [
He{PAi}+ αG�

i Gi + F�
i Fi + C�

i Ci

+P
(
HiH

�
i + γ−2B1iB

�
1i

)
P
]
x . (39)

Theorem 2. The SUNLS (9) achieves quadratic L2 gain
γ under the switching law SW2.

Proof. According to SW2,

x� [
He{PAσ}+ αG�

σ Gσ + F�
σ Fσ + C�

σ Cσ

+P
(
HσH

�
σ + γ−2B1σB

�
1σ

)
P
]
x

≤ x� [
He{PAi}+ αG�

i Gi + F�
i Fi + C�

i Ci

+P
(
HiH

�
i + γ−2B1iB

�
1i

)
P
]
x (40)

for any x and all i ∈ SN . As before, we multiply both the
sides of the above inequality by λi ≥ 0 and then add all
the inequalities to obtain

x� [
He{PAσ}+ αG�

σ Gσ + F�
σ Fσ + C�

σ Cσ

+P
(
HσH

�
σ + γ−2B1σB

�
1σ

)
P
]
x

≤ x� [
He{PAλ}+ αG�

λ Gλ + F�
λ Fλ + C�

λ Cλ

+
(
HλH

�
λ + γ−2B1λB

�
1λ

)
P
]
x

= x�S(λ)x . (41)
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Combining the above inequality with (37) leads to

x� [
He{PAσ}+ αG�

σ Gσ + F�
σ Fσ + C�

σ Cσ

+P
(
HσH

�
σ + γ−2B1σB

�
1σ

)
P
]
x+ He{x�Pgσ}

= x�S(λ)x + He{x�Pgσ}
≤ −εx�Px+ αg�σ gσ . (42)

Now, we use V (x) = x�Px to show QS and
estimate the L2 gain of the SUNLS (9) by computing the
derivative of V (x) along the solutions of (9) as

V̇ (x)

=
d

dt
x�Px = He{x�P ẋ}

= He{x�P (Aσx+HσΔFσx+B1σw + gσ)}
= x� (He{PAσ}+ He{PHσΔFσ})x

+He{x�Pgσ}+ x�PB1σw + w�B�
1σPx

≤ x� (
He{PAσ}+ PHσH

�
σ P + F�

σ Fσ

)
x

− (
γ−1x�PB1σ − γw�) (γ−1x�PB1σ − γw�)�

+γ−2x�PB1σB
�
1σPx+ x�C�

σ Cσx

+He{x�Pgσ} − z�z + γ2w�w

≤ x� [
He{PAσ}+ F�

σ Fσ + C�
σ Cσ

+P (HσH
�
σ + γ−2B1σB

�
1σ)P

]
x

+He{x�Pgσ} − z�z + γ2w�w

≤ −εV (x) + α(g�σ gσ − x�G�
σGσx) − z�z + γ2w�w

≤ −εV (x) − z�z + γ2w�w . (43)

Firstly, when there is no disturbance (w ≡ 0), (3) is
obtained immediately from (43), which implies the system
(9) is QS.

Secondly, since V (x) ≥ 0, the inequality (43)
implies V̇ (x(s)) ≤ −z�(s)z(s) + γ2w�(s)w(s) . Thus,
integrating both sides of the inequality from s = 0 to s =
t, we obtain immediately the inequality (6). Therefore,
the SUNLS (9) achieves the desired quadratic L2 gain γ .
This completes the proof. �

Remark 4. With the definitions in (12), (13), (15) and
(33), the matrix inequality (34) turns out to be

N∑
i=1

λi

[
S(i) P

P −αIn

]
≺ 0 , (44)

where

S(i) = He{PAi}+ αG�
i Gi + F�

i Fi + C�
i Ci

+P
(
HiH

�
i + γ−2B1iB

�
1i

)
P . (45)

Therefore, even if each single subsystem does not achieve
quadratic L2 gain γ, Analysis Approach 2 provides

us a design tool, by using the convex combination of
subsystems, for the switched system to achieve quadratic
L2 gain γ. As mentioned before, this idea is a
significant and original extension compared with the
stable combination by Wicks et al. (1998), Zhai et al.
(2003) and Chang et al. (2019).

Remark 5. Using the Schur complement lemma to the
inequality (34) results in⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He{PAλ} αG�
λ P PHλ

αGλ −αIs 0 0

P 0 −αIn 0

H�
λ P 0 0 −Iq

Fλ 0 0 0

B�
1λP 0 0 0

Cλ 0 0 0

F�
λ PB1λ C�

λ

0 0 0

0 0 0

0 0 0

−Ik 0 0

0 −γ2Ir 0

0 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0 . (46)

Letting Q = P−1, β = α−1 and multipling the
above inequality by diag{Q, I, I, I, I, I, I} from both left
and right, we obtain⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He{AλQ} QG�
λ βIn Hλ

GλQ −βIs 0 0

βIn 0 −βIn 0

H�
λ 0 0 −Iq

FλQ 0 0 0

B�
1λ 0 0 0

CλQ 0 0 0

QF�
λ B1λ QC�

λ

0 0 0

0 0 0

0 0 0

−Ik 0 0

0 −γ2Ir 0

0 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0 . (47)

This is equivalent to (34), and thus also serves as a
design condition for Analysis Approach 2. Furthermore,
it will be used later for switching state feedback controller
design.

Remark 6. Although the L2 gain γ has been fixed in
the discussion by now, it is easy to extend to minimizing
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it, which leads to optimal disturbance attenuation in
real systems. As described in the previous remark, the
matrix inequalities (46) and (47) are linear with respect
to γ2 . Thus, the extended specification is reduced to the
optimization problem of min γ2, subject to (46) or (47)
together with P � 0 or Q � 0 , which can be dealt with by
using the same algorithm combined with the generalized
eigenvalue minimization command GEVP in MATLAB
Robust Toolbox.

Example 1. Consider the SUNLS (9) with the following
coefficient matrices:

A1 =

[ −9.96 17.28
17.28 −20.04

]
,

A2 =

[ −21.60 −19.20
−19.20 −10.40

]
,

B11 =

[
0.5

0

]
, B12 =

[
−1

0.2

]
,

C1 =
[
0.5 1.5

]
, C2 =

[ −1.0 0.5
]
,

H1 =

[
0.5 0.5
1.5 0.5

]
, H2 =

[
0.5 2.0
0.5 1.0

]
,

F1 =

[
0.2 0
0.2 0.2

]
, F2 =

[
0.2 −0.2
0.2 0.4

]
.

The uncertainty term is

Δ(t) =

[
0.5 sin t− 0.1 cos t

−0.3 sin t− 0.2 cos t

−0.2 sin t− 0.3 cos t

0.1 sin t− 0.4 cos t

]
,

satisfying ‖Δ(t)‖ ≤ 1 , and the nonlinear terms are

g1(t, x) =

[
0.6x1 sin(x

2
1 − x2)

0

]
,

g2(t, x) =

[
0

0.5x2 cos(0.5x1 + x2
2)

]
,

satisfying the quadratic constraint with

G1 =
[ −0.6 0

]
, G2 =

[
0 0.5

]
.

By computing the eigenvalues of A1 and A2, we
easily check that both the subsystems are not QS.

When setting λ1 = 2
3 , λ2 = 1

3 , we find that

Aλ =
2

3
A1 +

1

3
A2 =

[ −13.84 5.12
5.12 −16.8267

]

is Hurwitz, whose eigenvalues are {−20.6667,−10.0}.
For given γ = 0.1 and the same λ1, λ2, we solve the

Fig. 1. State trajectories of the SUNLS in Example 1.

design condition (46) with MATLAB Robust Control
Toolbox to obtain α = 2.6635 and

P =

[
0.2248 0.0684

0.0684 0.2043

]
,

which implies that Analysis Approach 2 is applicable.
Other coefficient matrices in the CCS (32) are

B1λ =

[
0.7071 0

−0.0943 0.0667

]
,

Cλ =

[
0.7071 0

0.4714 1.1667

]
,

Hλ =

[
1.3229 0

1.0709 0.9677

]
,

Fλ =

[
0.2828 0

0.1414 0.2708

]
,

Gλ =

[
0.2939 0

0 0.1443

]
.

Assume the initial state is x(0) =
[
1.0 −1.0

]�,
and the disturbance input is w(t) = 2e−t cos 2t. We apply
the switching law SW2 (38) to the SUNLS, and obtain the
state trajectories of the SUNLS depicted in Fig. 1. The
figure suggests that the states of the system converge to
zero quickly. Moreover, the L2 gain requirement (6) holds
for any t > 0, which guarantees the desired QS and L2

gain. �

5. Switching state feedback

We deal with the SUNLS, where the control input can be
designed together with the switching law. More precisely,
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we consider⎧⎪⎨
⎪⎩

ẋ = (Aσ +HσΔ(t)Fσ) x+B1σw

+B2σu+ gσ(t, x),

z = Cσx ,

(48)

where u ∈ R
m is the control input and B2i is the control

input matrix with proper dimensions. All the other vectors
and matrices are the same as in (9).

The control objective here is to design a state
feedback controller

u = Kix (49)

for each subsystem such that the switched closed-loop
system achieves the desired quadratic L2 gain γ. This
is nontrivial when the analysis approach by now for
the SUNLS (9) without control input does not work
well, i.e., the switched system cannot achieve the desired
quadratic L2 gain γ only through switching. In this
case, it is practical to consider state feedback for each
subsystem so that the whole switched system can have
better performance.

The closed-loop system composed of (48) and (49) is⎧⎪⎨
⎪⎩

ẋ = (Aσ +HσΔ(t)Fσ +B2σKσ)x

+B1σw + gσ(t, x),

z = Cσx .

(50)

Use the design condition (47) with Aλ replaced by
Aλ +

∑N
i=1 λiB2iKi, and then define KiQ = Mi to

obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω1 QG�
λ βIn Hλ

GλQ −βIs 0 0

βIn 0 −βIn 0

H�
λ 0 0 −Iq

FλQ 0 0 0

B�
1λ 0 0 0

CλQ 0 0 0

QF�
λ B1λ QC�

λ

0 0 0

0 0 0

0 0 0

−Ik 0 0

0 −γ2Ir 0

0 0 −Ip

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0 , (51)

where

Ω1 = He

{
AλQ+

N∑
i=1

λiB2iMi

}
. (52)
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Fig. 2. DC-DC boost converter model.

Theorem 3. A switching state feedback (49) exists such
that the SUNLS (50) under SW2 achieves quadratic L2

gain γ, if there are Q � 0, Mi, β > 0 and nonnegative
scalars λi satisfying (51).

When (51) is feasible, the feedback gains are given
by Ki = MiQ

−1 , and the matrix P in the switching law
SW2 is given by P = Q−1 .

Remark 7. Similarly to Remark 2, the matrix
inequality (51) is a bilinear matrix inequality in the
unknown variables (Q,Mi), β and λi’s, and thus
cannot be solved directly. Observing that (51) is an
LMI when λi’s are fixed, we suggest that the griding
method based algorithm proposed in the previous section
should be used here to search in the parameter space
spanned by (λ1, λ2, . . . , λN ). Moreover, if we expect to
obtain minimal γ for greater disturbance attenuation, we
need to consider the optimization problem mentioned in
Remark 6.

Remark 8. Similarly to Remark 4, the design condition
(51) is equivalent to

N∑
i=1

λi (He{AiQ+B2iMi}+ βIn

+HiH
�
i + γ−2B1iB

�
1i

+Q
(
β−1G�

i Gi + F�
i Fi + C�

i Ci

)
Q
) ≺ 0 .

(53)

This is a convex combination of matrix inequalities, where
each inequality works for the corresponding subsystem to
achieve quadratic L2 gain γ through a state feedback. In
other words, when there is no single subsystem achieving
quadraticL2 gain γ by state feedback, Theorem 3 requires
(designs) a CCS that can make it. Therefore, it is natural
to regard the condition of Theorem 3 as an extension to
Analysis Approach 2.

Example 2. Apply the switching state feedback strategy
in Theorem 3 to quadratic stabilization of a DC-DC boost
converter (Fig. 2) (Yang et al., 2013), which includes one
transistor-diode switch S. Moreover, i(t) is the inductor
current, uc(t) and uo(t) are the voltage on the capacitance
and the resistance.
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Define the state variables as x1(t) = i(t), x2(t) =
uc(t), and suppose the control input is u(t) = E(t). To
consider the L2 gain, let w(t) be the disturbance input of
the input voltage, and let the controlled output z(t) be the
capacitance voltage uc(t). When S is closed, the dynamic
equation of the whole circuit is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

[
−R0+ΔR0

L 0

0 − 1
(R+ΔR)C

]
x(t)

+

[
1
L

0

]
(u(t) + w(t)) −

[
1
L

0

]
g1(x1),

z(t) =
[
0 1

]
x(t) ,

(54)
and when the switch S is open, it is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

[
−R0+ΔR0

L − 1
L

1
C − 1

(R+ΔR)C

]
x(t)

+

[
1
L

0

]
(u(t) + w(t)) −

[
1
L

0

]
g2(x1),

z(t) =
[
0 1

]
x(t) .

(55)
In the above equations, ΔR0 and ΔR denote

uncertain perturbation from the nominal resistance R0

and R, which are bounded by |ΔR0| ≤ ΔR0max and
|ΔR| ≤ ΔRmax, respectively. Moreover, the function
gi(x1) denotes the diode voltage loss satisfying |gi(x1)| ≤
ζi|x1| , i = 1, 2.

After using the first-order Taylor expansion to
separate the uncertainty from the term 1

(R+ΔR)C , the
above two subsystems can be linearized, and thus the
switched system turns out to take the form (48) with

A1 =

[
−R0

L 0

0 − 1
RC

]
,

A2 =

[
−R0

L − 1
L

1
C − 1

RC

]
,

B11 = B12 = B12 = B12 =

[
1
L

0

]
,

C1 = C2 =
[
0 1

]
, H1 = H2 = I2,

F1 = F2 =

[
ΔR0max

L 0

0 ΔRmax

R2C

]
,

and Δi(t)
�Δi(t) � I2. The nonlinear parts in (54) and

(55) are evaluated by (10) with Gi = diag{ζ2i , 0} .
To carry out the simulation, we set the parameters

and the uncertainty in the dynamical equations as L =
102mH, C = 105μF, R = 100Ω, R0 = 0.1Ω,

Fig. 3. State trajectories of the SUNLS in Example 2.

ζ1 = 0.1, ζ2 = 0.11 and the uncertainties are ΔR0 =
0.05 sin(100t)R0, ΔR = 0.1 cos(100t)R . We obtain

A1 =

[
−1.0 0

0 −0.1

]
, A2 =

[
−1.0 −10.0

10.0 −0.1

]
,

B11 = B12 = B21 = B22 =

[
10

0

]
,

C1 = C2 =
[
0 1

]
, H1 = H2 = I2,

F1 = F2 =

[
0.5 0

0 0.0001

]
,

G1 =

[
0.01 0

0 0

]
, G2 =

[
0.0121 0

0 0

]
.

Here, we set γ = 0.3, and use the gridding method
mentioned in Remark 5 to solve (51) with MATLAB
Robust Control Toolbox. It turns out the matrix inequality
is feasible when λ1 = 0.75 (and thus λ2 = 0.25) and thus

Aλ =

[
−1.0 −2.5

2.5 −0.1

]
.

The solutions of (51) are

Q =

[
7.1760 −2.2942

−2.2942 2.3351

]

M1 =
[ −85.3135 32.3970

]
M2 =

[
28.1195 −99.6660

]
.

Thus, the state feedback gain matrices are

K1 = M1Q
−1 =

[ −10.8663 3.1981
]
,

K2 = M2Q
−1 =

[ −14.1814 −56.6152
]
.
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Let the initial value be x(0) =
[
1 −1

]� and
the disturbance input be w(t) = e−2t sin t, which is a
signal in L2[0,∞). Using the switching law SW2 with
P = Q−1, we obtain the state trajectories of x1, x2 of
the switched system in Fig. 3. It is observed that good
convergence is obtained and the inequality (6) can be
confirmed for all t > 0, which implies that the desired
L2 gain has been achieved. �

6. Conclusion

We have addressed quadratic stabilization (QS) and L2

gain for a class of switched systems that are composed of
nonlinear subsystems with norm-bounded uncertainties in
linear parts and quadratic constraints for nonlinear parts.
In the case where there is no subsystem which is QS,
we have designed an analysis approach seeking a new
CCS which is QS, and then have proposed a switching
law under which the switched system is QS. Moreover,
in the case where no subsystem has quadratic L2 gain
γ, by seeking a new CCS that can make it, we have
proposed another switching law under which the switched
system achieves the same L2 gain γ. Both the CCSs
involve a combination of linear subsystems and quadratic
constraint matrices for nonlinearities, and they present a
major extension to the existing approach with the convex
combination of subsystems. The discussion has also been
extended to the discussion of switching state feedback
when the control input can be designed.

It is observed from the existing references and the
present results that the convex combination approach is
useful both theoretically and practically, especially in the
cases where neither subsystem in the switched system has
the desired performance. Our future research will extend
the approach to more complicated problems such as
output dependent switching (Egidio and Deaecto, 2021),
robust H∞ filter design, fault tolerant control (Sánchez
and Bernal, 2019; Yang et al., 2012) for more general
or mixed type of switched nonlinear systems (Leth and
Wisniewski, 2014; Xiao et al., 2020).
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