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New approaches to transformations of linear continuous-time systems to their positive asymptotically stable canonical
controllable (observable) forms are proposed. It is shown that, if the system matrix is nonsingular, then the desired trans-
formation matrix can be chosen in block diagonal form. Procedures for the computation of the transformation matrices are
proposed and illustrated with simple numerical examples.
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1. Introduction

In positive systems inputs, state variables and outputs
take only nonnegative values. Examples of positive
systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns,
storage systems, compartmental systems, or water and
atmospheric pollution models. A variety of models having
positive linear behavior can be found in engineering,
management science, economics, social sciences, biology
and medicine. An overview of state of art in positive
systems theory is given by Kailath (1980), Mitkowski
(2019) and Zak (2003).

The concepts of controllability and observability
introduced by Kalman (Kaczorek, 2002; Kaczorek and
Borawski, 2021) have been the basic notions in modern
control theory. It well known that, if the linear system
is controllable, then with the use of state feedback
it is possible to modify the dynamical properties of
closed-loop systems (Antsaklis and Michel, 1997; Hautus
and Heymann, 1978; Kaczorek, 1992; 2002; Kaczorek
and Borawski, 2021; Kaczorek and Rogowski, 2015;
Kailath, 1980; Kalman, 1960; 1963; Klamka, 1991; 2018;
Mitkowski, 2019). If the linear system is observable then
it is possible to design an observer which reconstructs
the state vector of the system (Antsaklis and Michel,
1997; Hautus and Heymann, 1978; Kaczorek, 1992; 2002;
Kaczorek and Borawski, 2021; Kaczorek and Rogowski,

2015; Kailath, 1980; Kalman, 1960; 1963; Klamka,
1991; 2018; Mitkowski, 2019). Descriptor systems of
integer and fractional order were analyzed by Kaczorek
(2002) and Klamka (2018). The stabilization of positive
descriptor fractional linear systems with two different
fractional orders by a decentralized controller was
investigated by Sajewski (2018; 2017). The eigenvalue
assignment in uncontrollable linear continuous-time
systems was analyzed by Kaczorek (2022).

In this paper, new approaches to the transformations
of linear continuous-time systems to their positive
asymptotically stable canonical controllable (observable)
forms are proposed. In Section 2 some basic definitions
and theorems concerning linear standard continuous-time
systems are recalled. A new approach to the
transformations of linear systems to their asymptotically
stable controllable canonical forms is proposed in
Section 3 and extended to observable canonical forms in
Section 4. Concluding remarks are given in Section 5.

The following notation will be used: R, the set of
real numbers; Rn×m, the set of n × m real matrices; In,
the n×n identity matrix; Mn, the set of Metzler matrices
(matrices with nonnegative off-diagonal entries); Rn×m

+ ,
the set of n×m matrices with nonnegative entries.
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2. Preliminaries
Consider the linear continuous-time system

ẋ = Ax+ Bu, (1a)
y = Cx, (1b)

where x = x(t) ∈ R
n, u = u(t) ∈ R

m, y = y(t) ∈ R
p

are the state, input and output vectors, respectively, and
A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n.

Theorem 1. (Kaczorek and Borawski, 2021; Kaczorek
and Rogowski, 2015; Kailath, 1980) The solution of
Eqn. (1a) has the form

x(t) = eAtx0+

∫ t

0

eA(t−τ)Bu(τ) dτ, x0 = x(0). (2)

Definition 1. (Kaczorek and Borawski, 2021; Kaczorek
and Rogowski, 2015; Kailath, 1980) The system (1) is
called (internally) positive if the state vector x(t) ∈ R

n
+,

the output vector y(t) ∈ R
p
+ for t ≥ 0 and all initial

conditions x(0) ∈ R
n
+, and all inputs u(t) ∈ R

m
+ for

t ≥ 0.

Definition 2. (Kaczorek and Borawski, 2021; Kaczorek
and Rogowski, 2015; Kailath, 1980) A real matrix A =
[aij ] ∈ R

n×n is called a Metzler matrix if its off a diagonal
entries are nonnegative, i.e., aij ≥ 0 for i �= j.

Lemma 1. (Kaczorek and Borawski, 2021; Kaczorek and
Rogowski, 2015; Kailath, 1980) Let A ∈ R

n×n. Then

eAtx0 ∈ R
n×n
+ , t ≥ 0 (3)

if and only if A is a Metzler matrix.

Theorem 2. (Kaczorek and Borawski, 2021; Kaczorek
and Rogowski, 2015; Kailath, 1980) The linear system (1)
is positive if and only if

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ , (4)

where Mn is the set of Metzler matrices.

Definition 3. (Kaczorek and Rogowski, 2015) The
positive system (1) is called reachable in time [0, tf ]
if there exists an input u(t) ∈ R

m
+ for t ∈ [0, tf ]

which steers the state of the system from the zero initial
condition x(0) = 0 to the final state xf = x(tf ).

Definition 4. (Kaczorek and Borawski, 2021; Kaczorek
and Rogowski, 2015; Kailath, 1980) A square matrix is
called monomial if its every column and its every row have
only one positive entry and the remaining entries are zero.

Theorem 3. (Kaczorek and Borawski, 2021; Kaczorek
and Rogowski, 2015; Kailath, 1980) The positive system
(1) is reachable if and only if the matrix

Rf =

∫ tf

0

eAtBBT eAtdt, tf > 0 (5)

is monomial.

Consider the linear discrete-time system

xi+1 = Axi +Bui, (6a)
yi = Cxi, (6b)

where xi ∈ R
n, ui ∈ R

m, yi ∈ R
p are the state, input and

output vectors, respectively, and A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n.

Theorem 4. (Kaczorek, 2002) The solution of Eqn. (6a)
has the form

xi = Aix0 +

i−1∑
k=0

Ai−k−1Buk, i = 0, 1, . . . (7)

Definition 5. (Kaczorek and Borawski, 2021) The system
(6) is called (internally) positive if the state vector xi ∈
R

n
+, the output vector yi ∈ R

p
+ for i = 0, 1, . . . for all

initial conditions x0 ∈ R
n
+ and all inputs ui ∈ R

m
+ for

i = 0, 1, . . .

Theorem 5. (Kaczorek and Borawski, 2021) The linear
system (6) is positive if and only if

A ∈ R
n×n
+ , B ∈ R

n×m
+ , C ∈ R

p×n
+ . (8)

Definition 6. (Kaczorek and Borawski, 2021; Kaczorek
and Rogowski, 2015; Kailath, 1980) The positive system
(6) is called reachable in n steps if there exists an input
sequence ui ∈ R

m
+ for i = 0, 1, . . . , n − 1 which steers

the state of the system from the zero initial condition to
the final state xf = xn.

Theorem 6. (Kaczorek and Borawski, 2021; Kaczorek
and Rogowski, 2015; Kailath, 1980) The linear system (6)
is reachable if

rankR = rank [ B AB . . . An−1B ] = n (9a)

and

RT [RRT ] ∈ R
nm×n
+ . (9b)

Remark 1. The single input (m = 1) positive system (1)
is reachable in n steps if the matrix

R = [ B AB . . . An−1B ] ∈ R
n×n
+ (10)

is a permutation matrix.
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Theorem 7. (Gantmacher, 1959 (Kronecker–Capelli,
Rouch–Capelli)) The matrix equation

PX = Q, P ∈ R
n×p, Q ∈ R

n×q (11)

has a solution X if and only if

rank [ P Q ] = rankP. (12)

Theorem 8. (Gantmacher, 1959) If the condition (12) is
satisfied, then the solution X ∈ R

p×1 of the matrix equa-
tion (11) is given by

X =
{
PT [PPT ]−1 (13a)

+ (Iq − PT [PPT ]−1P )K1

}
Q

or

X = K2[PK2]
−1Q, (13b)

where K1 and K2 are real matrices.

3. Positive linear continuous-time systems
with controllable pairs (A,B) in
canonical forms

Problem 1. For a given pair (A,B) of the system (1) for
m = 1 satisfying the condition

rank [ A B ] = n, (14)

find a nonsingular matrix

M =

[
M11 M12

M21 M22

]
∈ R

(n+1)×(n+1),

M11 ∈ R
n×n, M22 ∈ R

1×1

(15)

such that

[ A B ]M = [ Ā B̄ ], (16)

where the pair (Ā, B̄) is in controllable canonical form:

Ā =

⎡
⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 1

−a0 −a1 −a2 . . . −an−1

⎤
⎥⎥⎥⎥⎦ , (17a)

B̄ =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦

or

Ā =

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 −an−1

⎤
⎥⎥⎥⎥⎦ ,

B̄ =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ . (17b)

The following two cases will be analyzed.
Case 1. The matrix A is nonsingular,

detA �= 0. (18)

Case 2. The matrix A is singular,

detA = 0. (19)

Case 1. It will be shown that, if the condition (18) is
satisfied then we may assume M21 = 0. In this case,

[ A B ]

[
M11 M12

0 M22

]
= [ Ā B̄ ] (20)

and
AM11 = Ā. (21)

From (21) we have

M11 = A−1Ā (22)

since detA �= 0.
From (20) we also have

[ A B ]

[
M12

M22

]
= B̄. (23)

From (14) and Theorem 7 it follows that Eqn. (23)
has a solution M22 since we may choose M12 such that

rank[ B B̄ −AM12 ] = rankB (24)

and the equation

BM22 = B̄ −AM12 (25)

has a solution M22 for given B̄ and M12.

Therefore, the following theorem has been proved.

Theorem 9. If the condition (18) is satisfied, then the
matrix (15) can be chosen in the form

M =

[
M11 M12

0 M22

]
, (26)

where the matrix M11 is given by (22) and M22 is a solu-
tion of Eqn. (25).
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Fig. 1. Linear electrical circuit.

Theorem 10. If detA �= 0 and B̄ = cB, c ∈ R, then the
matrix M has the block diagonal form

M =

[
M11 0
0 M22

]
. (27)

Proof. By Theorem 9, if detA �= 0, then M21 = 0. From
the equality (25) it follows that if B̄ = cB, then we may
assume M12 = 0 and M22 = cIm, where m is the number
of columns of B and B̄. �

To compute the matrix (15) for given controllable
pairs (A,B) and (Ā, B̄) satisfying (14), the following
procedure can be used.

Procedure 1. Determining matrix M for Case 1.
Step 1. Check the condition (18) and the controllability of
the pair (Ā, B̄).

Step 2. Using (22), compute the matrix M11 for given
matrices A and Ā.

Step 3. Choose the matrix M12 satisfying (24).

Step 4. Using (25) compute the matrices M22 and M .

Example 1. For the electrical circuit shown in Fig. 1 with
resistance R = 2, inductance L =1, capacitance C = 1,
find the nonsingular matrix (15) satisfying Eqn. (16).

Using Kirchhoff’s laws we may write, for the
electrical circuit, the equations

e = Ri+ L
di

dt
+ u, i = C

du

dt
, (28)

where e is the source voltage, i is the current, u is the
voltage on the capacitor and R,L,C are the resistance,
inductance and capacitance, respectively. As the state
variables we choose current i and voltage u.

Equations (28) can be written in the form

d

dt

[
i
u

]
= A1

[
i
u

]
+B1e,

A1 =

[ −R
L − 1

L
1
C 0

]
, (29a)

B1 =

[
1
L
0

]

or

d

dt

[
u
i

]
= A2

[
u
i

]
+B2e,

A2 =

[
0 1

C

− 1
L −R

L

]
, (29b)

B2 =

[
0
1
L

]

Note that the matrices A1 and A2 are different but
their characteristic polynomials

det[I2s−A1] =

∣∣∣∣ s+ R
L

1
L− 1

C s

∣∣∣∣
= s2 +

R

L
s+

1

LC
(30a)

and

det[I2s−A2] =

∣∣∣∣ s − 1
C

1
L s+ R

L

∣∣∣∣
= s2 +

R

L
s+

1

LC
(30b)

are equal.
Using Procedure 1, we compute the matrices

separately for the pairs (A1, B1), (A2, B2) and

Ā =

[ −2 1
1 −3

]
, B̄ =

[
0
1

]
. (31)

Using Procedure 1 for the pair (A1, B1), we obtain
the following.
Step 1. The condition (18) is satisfied since detA1 =
1/LC is nonzero and the pair (31) is controllable.

Step 2.Using (22), (31) and

A1 =

[ −R
L − 1

L
1
C 0

]
=

[ −2 −1
1 0

]
, (32)

we obtain

M11 = A−1
1 Ā =

[ −2 −1
1 0

]−1 [ −2 1
1 −3

]

=

[
1 −3
0 5

]
.

(33)

Step 3. In this case, the matrix M12 satisfying (24) has the
form

M12 =

[
1
−1

]

since

B1M22 = B̄ −A1M12

=

[
0
1

]
−
[ −2 −1

1 0

] [
1
−1

]

=

[
1
0

]
.

(34)
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Step 4. Using (34) and

B1 =

[
1
L
0

]
=

[
1
0

]
,

we obtain M22 = [1]. Therefore, the desired matrix M
has the form

M =

[
M11 M12

0 M22

]
=

⎡
⎣ 1 −3 1

0 5 −1
0 0 1

⎤
⎦ . (35)

For the pair (A2, B2) we obtain, respectively, the
following.
Step 1. The condition (18) is satisfied since detA2 =
1/LC = 1 is nonsingular and the pair (31) is controllable.

Step 2. Using (18), (29) and

A2 =

[
0 1

C

− 1
L −R

L

]
=

[
0 1
−1 −2

]
, (36)

we obtain

M11 = A−1
2 Ā =

[
0 1
−1 −2

]−1 [ −2 1
1 −3

]

=

[
3 1
−2 1

]
.

(37)

Step 3. In this case,

B̄ = B2 =

[
0
1

]

and by Theorem 10,

M12 =

[
0
0

]

since

B2M22 = B̄ −A2M12

=

[
0
1

]
−
[

0 1
−1 −2

] [
0
0

]

=

[
0
1

]
.

(38)

Step 4. Using (36) and

B2 =

[
0
1
L

]
=

[
0
1

]
,

from (38) we obtain M22 = [1]. Therefore, the desired
matrix M in this case has the form

M =

[
M11 M12

0 M22

]
=

⎡
⎣ 3 1 0

−2 1 0
0 0 1

⎤
⎦ (39)

and is different from the matrix (35). �

Case 2. If the matrix A is singular (detA = 0), then from
(16) we have

[ A B ]

[
M11

M21

]
= Ā (40a)

and

[ A B ]

[
M12

M22

]
= B̄. (40b)

By Theorem 7 Eqns. (40) have solutions by the
assumption

rank [ A B ] = n. (41)

In this case, using Theorem 8, we may find the solutions
of Eqns. (40) and the desired nonsingular matrix (40).

Therefore, we have the following result.

Theorem 11. If the matrix A is singular and the condi-
tion (41) is satisfied, then there exists a nonsingular matrix
M such that the pair (A,B) is in controllable canonical
form (17).

In this case, the matrix M can be computed by the
following procedure.

Procedure 2. Determining matrix M for Case 2.
Step 1. Using (13), find the general solution of Eqns. (40).
Step 2. Choose the matrix K1 (or K2) such that the matrix
M is nonsingular.

Example 2. Given the matrices

A =

[
0 1
0 2

]
, B =

[
1
0

]
(42)

and

Ā =

[ −2 1
1 −3

]
, B̄ =

[
0
1

]
, (43)

compute the matrix (15) such that the condition (16) is
satisfied.

Using Procedure 2, we obtain what follows.
Steps 1 and 2. Using (42), (43) and (40a), we obtain

[ A B ]

[
M11

M21

]
=

[
0 1 1
0 2 0

] [
M11

M21

]

= Ā =

[ −2 1
1 −3

] (44)
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and
[

M11

M21

]

=
{
[ A B ]T [[ A B ][ A B ]T ]−1

+ (I3 − [ A B ]T ([ A B ][ A B ]T )−1

× [ A B ])K1

}
Ā

=

{⎡
⎣ 0 0

1 2
1 0

⎤
⎦
[

2 2
2 4

]−1

+

(⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

−
⎡
⎣ 0 0

1 2
1 0

⎤
⎦
[

2 2
2 4

]−1 [
0 1 1
0 2 0

])

×
⎡
⎣ k11 k12

k21 k22
k31 k32

⎤
⎦
}[ −2 1

1 −3

]

=

⎡
⎣ k11 0

0.5 −1.5
−2.5 2.5

⎤
⎦

(45)

for k11 �= 0.
Similarly, using (40b), (42) and (43) for K = 0, we

obtain
[

M12

M22

]
= [ A B ]T ([ A B ][ A B ]T )−1,

B̄ =

⎡
⎣ 0 0

1 2
1 0

⎤
⎦
[

2 2
2 4

]−1 [
0
1

]

=

⎡
⎣ 0

0.5
−0.5

⎤
⎦ .

(46)

Therefore, the desired matrix M has the form

M =

[
M11 M12

M21 M22

]

=

⎡
⎣ k11 0 0

0.5 −1.5 0.5
−2.5 2.5 −0.5

⎤
⎦ .

(47)

�

4. Positive linear systems with (A,C) in
canonical forms

In this section the findings of Section 3 will be extended to
continuous-time linear systems with the observable pairs
(A,C) in canonical forms. To simplify the notation, we
assume p = 1 (single-output systems).

Problem 1. For a given pair (A,C) of the system (1) for
p = 1 satisfying the condition

rank

[
A
C

]
= n, (48)

find a nonsingular matrix (15) such that

M

[
A
C

]
=

[
Â

Ĉ

]
, (49)

where the (Â, Ĉ) is in observable canonical form:

Â =

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 −a2
1 0 . . . 0 −a1
0 1 . . . 0 −a2
. . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 −an−1

⎤
⎥⎥⎥⎥⎦ ,

Ĉ =
[
0 . . . 0 1

]
(50a)

or

Â =

⎡
⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 1

−a0 −a1 −a2 . . . −an−1

⎤
⎥⎥⎥⎥⎦ ,

Ĉ =
[
1 0 . . . 0

]
(50b)

Case 1. The matrix A is nonsingular—the condition (18)
is satisfied.

Case 2. The matrix A is singular—the condition (19) is
satisfied.

In Case 1, if detA �= 0, then we may assume M12 =
0, and from[

M11 0
M21 M22

] [
A
C

]
=

[
Â

Ĉ

]
(51)

we have
M11A = Â (52)

and
M11 = ÂA−1. (53)

From (51) we also have

[ M21 M22 ]

[
A
C

]
= Ĉ. (54)

From Theorem 7 it follows that Eqn. (54) has a
solution M22 since we may choose M21 such that

rank

[
C

Ĉ −M21A

]
= rankC, (55)

and the equation

M22C = Ĉ −M21A (56)

has a solution M22 for given Ĉ and M21.
Therefore, the following result has been proved.
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Theorem 12. If (50b) holds, then the matrix M can be
chosen in the form

M =

[
M11 0
M21 M22

]
, (57)

where M11 is given by (53) and M22 is a solution of
Eqn. (56).

Theorem 13. If (50a) holds and

rankC = rank

[
C

Ĉ

]
, (58)

then the matrix M has the block diagonal form

M =

[
M11 0
0 M22

]
. (59)

The proof is similar (dual) to that of Theorem 10.

In Case 2, if the matrix A is singular, then

[ M11 M12 ]

[
A
C

]
= Â (60a)

and

[ M21 M22 ]

[
A
C

]
= Ĉ. (60b)

By Theorem 7, Eqns. (60) have solutions since

rank

[
A
C

]
= n (61)

In this case, using Theorem 8 we may find the solutions
of Eqns. (60) and the matrix M .

Therefore, we have the following result.

Theorem 14. If the matrix A is singular and the condi-
tion (61) is satisfied, then there exists a nonsingular matrix
M such that the pair (A,C) is in observable canonical
form (50).

The presented discussion for continuous-time linear
systems can be easily extended to discrete-time linear
ones described by Eqns. (6).

5. Concluding remarks
New approaches to the transformations of linear
continuous-time systems to their positive asymptotically
stable canonical controllable (observable) forms were
proposed. Conditions were established under which
the problems have solutions (Theorems 10–12, 12–14).
Procedures for the computation of the transformation
matrices were given and illustrated with simple numerical
examples. The new approaches can be extended to
linear discrete-time systems as well as fractional linear
continuous-time and discrete-time ones. An open problem
is an extension of this approach to fractional linear
systems.
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