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An innovative control strategy addressing the complexities of discrete interconnected nonlinear Hammerstein subsystems is
presented. The approach combines decentralized sliding mode control (DSMC) with an event-triggered mechanism (ETM)
to efficiently manage complex systems characterized by discrete elements, nonlinear behavior, and interconnections. The
event-triggered sliding mode control (ETSMC) framework offers a distributed control solution that utilizes the robustness
and disturbance tolerance of sliding mode control while optimizing resource usage and network communication through
an event-triggered mechanism. A comprehensive analysis of stability and robustness ensures that the proposed control
strategy stabilizes the system and achieves its design objectives, even in the presence of uncertainties or disturbances. The
effectiveness of the approach is demonstrated through two simulation examples.
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1. Introduction
Controlling discrete interconnected Hammerstein models
poses a significant challenge in control theory due to
their discrete nature and unique structure (Bai, 2010;
Znidi et al., 2022; Vineet and Utkal, 2022; Yiqun
and Yan, 2023). These systems are characterized by
nonlinear static blocks followed by linear dynamics,
which introduce complexities requiring innovative control
strategies. Addressing these challenges involves
tackling nonlinearities, dynamics, and interconnections
to optimize system stability and performance while
managing uncertainties. Achieving effective control
in this domain necessitates a blend of mathematical
modeling and advanced control algorithms proficient in
handling such complexities.

In the pursuit of enhancing the performance
and efficiency of interconnected nonlinear systems,
researchers in the field of control theory have explored
various decentralized control strategies (Nan and Bin,
2021; Yueheng and Spurgeon, 2022a; Nagai and Oya,
2014; Kamoun and Kamoun, 2016). Among these
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strategies, decentralized sliding mode control (DSMC)
stands out. DSMC has attracted attention due to its
potential to offer robustness and adaptability in handling
uncertainties and disturbances, thereby improving the
control of interconnected nonlinear systems (Thien and
Kim, 2018; Yueheng and Jiang, 2022).

DSMC is characterized by distributing control
actions across multiple subsystems, each operating
independently based on local information. This
decentralized approach enhances robustness and
adaptability, especially in complex systems.

DSMC emerges as a promising solution due to
its inherent robust design and adaptability, rendering it
suitable for managing the nonlinearities and complexities
in interconnected systems (Elloumi and Kamoun, 2017;
2015). These systems face various challenges, from time
varying parameters to unexpected disturbances. DSMC
demonstrates exceptional proficiency in addressing these
complexities, ensuring system stability and effective
control through its robust and adaptable design (Yueheng
and Spurgeon, 2022b; Elloumi and Kamoun, 2016;
Labibi, 2005; Ordaz et al., 2024).

To further enhance DSMC’s performance and tackle
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challenges associated with communication delays, a novel
approach called event-triggered sliding mode control has
been proposed (Menghua, 2023; Yang and Yue, 2021;
Xiaojie and Yong, 2017; Gong and Zheng, 2023). This
innovative strategy aims to optimize resource utilization
by adjusting control actions based on specific triggering
events, thereby reducing communication overhead.
Moreover, event-triggered sliding mode control offers a
more deterministic approach by triggering updates based
on predefined events, thus contributing to the overall
efficiency of the system.

Numerous studies in the literature have explored the
realm of ETSMC, presenting a diverse array of designed
methodologies that underscore its efficacy.

The research outlined by Adamiak and Bartoszewicz
(2021) introduces an innovative event-triggered
quasi-sliding mode control strategy tailored for
linear discrete time systems. This method merges
a sliding mode control technique with a reference
trajectory-based control approach to augment robustness
against disturbances. Additionally, an event-triggering
algorithm is incorporated to reduce the necessity for
system communication and minimize delays in the digital
control procedure. Moreover, Benyazid and Nouri (2023)
detailed a new event-triggered integral sliding mode
control approach for discrete nonlinear systems with time
delay, specifically concentrating on Takagi–Sugeno fuzzy
models. This method involves devising a novel integral
sliding function and determining the design parameter
matrix via linear matrix inequalities. A control protocol
is then formulated to ensure the state trajectories of fuzzy
systems with time delays.

Patel and Purwar (2023) propose an event-triggered
multi-rate output feedback sliding mode control technique
for load frequency control (LFC) in interconnected power
systems, achieving a quasi sliding mode in discrete time
with reduced resource utilization. Furthermore, Xiaojie
and Yong (2017) introduced an event-triggered sliding
mode control algorithm addressing load frequency control
in interconnected power systems, ensuring stability and
robustness through H∞ performance and time-delay
analysis. In addition, a control-based event-triggered
sliding mode strategy for networked linear systems
was explored by Yufei and Qiang (2023), featuring a
novel control value-based event-triggering mechanism,
integrating quantization policies for reduced information
transmission, and ensuring robust stability with sliding
mode control while addressing transmission delays.

Inspired by the rapid advancements in modern
research, an innovative approach known as decentralized
sliding mode control, employing an event-triggered
mechanism, has been introduced. This new control
strategy operates across multiple nonlinear or components
without a central governing unit, ensuring stability and
robustness against uncertainties. The primary objective

behind integrating this mechanism lies in alleviating the
challenge of load communication.

By judiciously employing event-triggered
conditions, this methodology aims to mitigate
communication overload within decentralized networks,
thereby reducing the volume of transmitted data.

The structure of this paper is as follows. Section 2
introduces the problem formulation. Section 3
presents a new DSMC for discrete interconnected
Hammerstein subsystems. To address the heightened
communication and computational loads of DSMC, an
event-triggered sliding mode control is proposed in
Section 4. Subsequently, a detailed stability analysis
is conducted using Lyapunov theory in Section 5.
A comprehensive robustness analysis is provided in
Section 6. The effectiveness of the proposed controller
is assessed through two simulation examples in Section 7.
Finally, conclusions are drawn in Section 8.

2. Problem formulation
The system to be controlled is characterized by
a configuration comprising discrete Hammerstein
subsystems intricately interconnected with one another.
In this complex setup, each subsystem operates discretely,
exhibiting Hammerstein nonlinearities, which mean a
combination of static nonlinearity followed by dynamic
linear behavior. These subsystems are interconnected,
forming a network where their interactions play a pivotal
role in the overall system dynamics, as described in the
following equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi(k + 1) = AiXi(k) +Bi(Ui(k) + f(k))

+
p∑

j=1;j �=i

βijXj(k) ,

Yi(k) = HiXi(k),

Ui(k) = gi(ui(k)),

(1)

where Xi represents the subsystem states, Ui(k) denotes
the controllers of the system, and Xji(k) stands for
the interactions between the subsystems, where j �= i.
External disturbances are expressed by f(k). The constant
matrices Ai, Bi, Hi and βij are assumed to be known,
where βij denotes the matrix of interactions between the
i-th and the j-th subsystems. Additionally, gi(·) represent
nonlinear functions. We denote by F an upper bound of
the disturbance signal.

The following assumptions are made.

Assumption 1. The pairs (Ai, Bi) are controllable.

Assumption 2. The disturbances are bounded.
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Assumption 3. The inverses of the nonlinear functions,
g−1
i (·), exist.

The primary objective of this work is to design an
innovative discrete, decentralized sliding mode controller
aimed at achieving desired performance criteria, such
as accurate tracking and chattering reduction, even in
the presence of external disturbances and subsystem
interconnections.

3. Decentralized sliding mode control for
interconnected Hammerstein systems

Sliding mode control is a powerful method employed for
managing nonlinear systems under external perturbations.
This section focuses on the development of a novel
discrete decentralized sliding mode control. The process
of designing DSMC typically involves the following
steps:

• Identifying a switching function that ensures stability
of the sliding mode on the switching plane.

• Establishing a control law that fulfills a reaching
condition, ensuring that the system state will
converge towards the switching plane from any initial
state within a finite time.

3.1. Choice of the appropriate sliding function. The
first step of our development involves the design of a
suitable sliding function. This function serves as a
crucial element in the sliding mode control framework,
defining the desired behavior of the system and guiding its
response to disturbances. By carefully constructing this
sliding function, we can adjust the controller’s behavior
to meet specific performance criteria, such as accurate
tracking and reduced chattering. Thus, the discrete sliding
function is chosen as follows:

δi(k) = Gi
T (Xi(k)−Xr,i(k)), (2)

where Gi ∈ R
n are the sliding function parameter vectors

and Xr,i(k) denote the desired state vectors, intended to
be equal to zero. However, it is important to note that the
initial states are different from zero.

3.2. Computation of the DSMC law. Our controller
design integrates Gao’s reaching law within the
framework of sliding mode control, utilizing it to
drive the system onto the sliding surface for robust
performance. The reaching law ensures finite-time
convergence, while the sliding mode control law governs
the system’s behavior on the sliding surface. This
approach guarantees stability and robustness in achieving
the desired performance objectives.

Gao’s reaching law is defined as

δi(k + 1) = (1− φi)δi(k)−Mi sign(δi(k)), (3)

where φi is a positive constant, chosen such that 0 ≤ φi <
1, Mi are the discontinuous terms and the signum function
sign is defined by

sign(δi(k)) =

{
−1 if δi(k) < 0,

1 if δi(k) > 0.
(4)

The sliding function at the instant (k + 1) is expressed as

δi(k + 1) = Gi
TXi(k + 1)

= Gi
T [AiXi(k) +Bi(Ui(k) + f(k))

+

p∑

j=1;j �=i

βijXj(k)].

(5)

In the sliding mode, we suppose that f(k) = 0. Then
we can write

δi(k + 1) = Gi
T [AiXi(k) + Bi(Ui(k))

+

p∑

j=1;j �=i

βijXj(k)]

= (1− φi)δi(k)−Mi sign(δi(k))).

(6)

The controller is then calculated as

Ui(k) = −(Gi
TBi)

−1[Gi
TAiXi(k)

+Gi
T

p∑

j=1;j �=i

βijXj(k)

− (Gi
TBi)

−1((1 − φi)δi(k)

+Mi sign(δi(k)))].

(7)

Here we assume that (Gi
TBi) are nonsingular.

If g−1
i (·) exists, ui(k) is computed as

ui(k) = g−1
i (−(Gi

TBi)
−1[Gi

TAiXi(k)

+Gi
T

p∑

j=1;j �=i

βijXj(k)

− (Gi
TBi)

−1((1− φi)δi(k)

+Mi sign(δi(k)))]),

(8)

where Mi > ‖Bi‖ ‖f(k)‖.

Remark 1. If the inverse function g−1
i (·) does not

exist for a given nonlinear function gi(·), researchers
often resort to various algorithms and approximations to
estimate the corresponding nonlinear inverse. Recent
advancements in the field include approaches based on
polynomial form approximation, which can simplify
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complex functions using polynomials (Rayouf and Braiek,
2019). Another method is the Bernstein–Bezier neural
network (Hong and Mitchell, 2007), which utilizes
neural networks to approximate the inverse function.
Additionally, the De Boor algorithm, known for its
efficacy in spline interpolation, can be adapted for inverse
function estimation (Hong and Chen, 2012). Finally,
rational B-spline model approximation offers a flexible
approach to model complex nonlinear functions and
their inverses with high accuracy (Chen and Harris,
2014). These methods provide a range of options for
dealing with non-existent inverses in nonlinear functions,
allowing more efficient and precise solutions in various
applications. However, in our case, we assume that the
inverse function exists for the given nonlinear function
gi(x), allowing us to proceed with our analysis without
requiring these approximation techniques.

To improve the performance of the proposed
controller, we suggest incorporating the saturation
function, which would provide smoother control behavior,

ui(k) = g−1
i (−(Gi

TBi)
−1[Gi

TAiXi(k)

+Gi
T

p∑

j=1;j �=i

βijXj(k)

+ (Gi
TBi)

−1((1− φi)δi(k)

−Mi sat(δi(k)))]),

(9)

where

sat(δi(k)) =

⎧
⎨

⎩

δi(k)
ξii

if ‖δi(k)‖ ≤ ξii,

sign(δi(k) if ‖δi(k)‖ > ξii.
(10)

The quasi-sliding mode bands are denoted by ξii.
While decentralized sliding mode control offers

notable advantages, it is crucial to acknowledge
certain drawbacks, particularly concerning increased
communication and computational loads. This limitation
arises from the independent operation of each subsystem,
requiring constant information exchange and potentially
impacting the overall system efficiency.

4. DSMC using an event triggered
mechanism

To address the aforementioned issues, we propose an
enhanced control law that integrates an event-triggered
mechanism, aiming to mitigate communication and
computational challenges associated with decentralized
sliding mode control (DSMC). This innovation
strategically leverages the advantages of event-triggered
systems, optimizing the timing of control updates and
reducing unnecessary communication overhead. By
introducing this refined control strategy, we seek to

enhance the overall efficiency and adaptability of DSMC
in discrete interconnected systems.

Define the state error caused by the event-triggered
control scheme as

ei(k) = Xi(ks)−Xi(k), (11)

where ks represents the moment when the control signal
was last updated.

The event triggered condition is proposed as follows:

ks + 1 = inf{k > ks : ‖ei(k)‖ < γ ‖Xi(k)‖}, (12)

where γ is a positive constant representing a threshold.
The sliding function at instant ks + 1 is

δi(ks + 1) = Gi
TXi(ks + 1)

= Gi
T [AiXi(ks) +Bi(Ui(ks) + f(k))

+

p∑

j=1;j �=i

βijXj(ks)].

(13)

In the sliding mode, we suppose that f(k) = 0. Then we
can write

δi(ks + 1) = Gi
T [AiXi(ks) +Bi(Ui(ks))

+

p∑

j=1;j �=i

βijXj(ks)]

= (1− φi)δi(ks)−Mi sat(δi(ks)).

(14)

The new DSMC control law using an event-triggered
communication scheme is then calculated by

ui(ks) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g−1
i ((GT

i Bi)
−1[GT

i AiXi(ks)

+GT
i

p∑

j=1

βijXj(ks)− (1− φi)δi(k)

+Mi sat(δi(ks))])

if ‖ei(k)‖ < γ ‖Xi(k)‖ ,
ui(ks − 1) if ‖ei(k)‖ > γ ‖Xi(k)‖

(15)
for all k ∈ [ks, ks+1).

The structure of the event triggered SMC is presented
in Fig. 1.

5. Stability analysis
Theorem 1. Given the system described by (1), the con-
trol defined by Eqn. (15), and the event-triggering condi-
tion (12), the state trajectories of each subsystem can be
kept in the sliding region within a finite time, that is, the
stability and robustness of the system in each area can be
guaranteed.
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Fig. 1. ETDSMC structure for the discrete interconnected system.

Proof. In order to prove the stability of the interconnected
subsystems, the Lyapunov function is chosen as follows:

Vi(k) =
1

2
δi

T (ks)δi(ks). (16)

We have

Δδi(ks) = δi(ks + 1)− δi(ks)

= Bif(k)− φiδi(k)−Mi sat(δi(ks)),
(17)

ΔVi(k) = Vi(k + 1)− Vi(k)

= δi
T (ks)Δδi(ks) +

1

2
ΔT δi(ks)Δδi(ks)

= δi
T (ks)[Bif(k)− φiδi(k)−Mi sat(δi(ks))]

+
1

2
ΔT δi(ks)Δδi(ks)

≤ −φiδi
T (ks)δi(ks) +

1

2
ΔT δi(ks)Δδi(ks)

+
∥
∥δi

T (ks)
∥
∥ ‖Bi‖ ‖f(k)‖

−Miδi
T (ks) sat(δi(ks)).

(18)
Thus, we obtain

ΔVi(k) ≤ −φiδi
T (ks)δi(ks) +

1

2
ΔT δi(ks)Δδi(ks)

+Mi

∥
∥δi

T (ks)
∥
∥−Miδi

T (ks) sat(δi(ks)).

(19)

Utilizing the saturation function sat(δi(ks)) allows us to
deduce that, if ‖δi(k)‖ ≤ ξi, when using the designed
controller in Eqn. (15), we obtain

ΔVi(k) ≤ −φiδi
T (ks)δi(ks) +

1

2
ΔT δi(ks)Δδi(ks)

+Mi

(∥
∥δi

T (ks)
∥
∥−

∥
∥δi

T (ks)
∥
∥2

ξi

)

≤ −φiδi
T (ks)δi(ks) +

1

2
ΔT δi(ks)Δδi(ks).

(20)

If ‖δi(k)‖ > ξi, using the controller specified in Eqn. (15),
we obtain

ΔVi(k) ≤ −φiδi
T (ks)δi(ks) +

1

2
ΔT δi(ks)Δδi(ks).

(21)
It should be noted that φi can be selected appropriately
such that ΔVi(k) ≤ 0. �

6. Robustness analysis
Theorem 2. For the system (1) under the control of the
proposed decentralized event-triggered sliding mode con-
trol represented by (15), the utilized sliding function (13)
converges to a quasi-sliding mode when the following pa-
rameters are chosen:

ξi > Mi + F0, (22)

Mi > F0, (23)

where ξi represents a small positive constant, and F0 =
‖Bi‖ ‖f(k)‖.
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Proof. Replacing the expression of the control law (15)
in the equation of the sliding function (13), we obtain

δi(ks + 1) = (1− φi)δi(ks)−Mi sat(δi(ks))

+Bif(k).
(24)

A quasi-sliding mode in discrete DETSMC exists if and
only if

|δi(ks + 1)| < |δi(ks)| if |δi(ks)| > ξi, (25)

|δi(ks + 1)| ≤ ξi if δi(ks) > ξi. (26)

Case 1. δi(ks) > ξi
We have

δi(ks + 1)− δi(ks) = −φiδi(ks)−Mi sat(δi(ks))

+Bif(k)

≤ −φiξi −Mi + F0.

(27)

Using Eqns. (22) and (23), we can write δi(ks + 1) −
δi(ks) < 0. Thus,

δi(ks + 1) + δi(ks) = (2− φi)δi(ks)

−Mi +Bif(k)

≥ (2− φi)ξi −Mi + F0.

(28)

Making of (22) and (23), we can write δi(ks + 1) +
δi(ks) > 0.

Thus,

|δi(ks + 1)| < |δi(ks)| if δi(ks) > ξi. (29)

Case 2. δi(ks) < −ξi
In this scenario, we get

δi(ks + 1)− δi(ks) = −φiδi(ks) +Mi +Bif(k)

≥ φiξi + F0 +Mi > 0,
(30)

δi(ks + 1) + δi(ks) = (2− φi)δi(ks) +Bif(k) +Mi

≤ (φi − 2)ξi + F0 +Mi.

(31)

Since 0 ≤ φi < 1, we can write

δi(ks + 1) + δi(ks) ≤ (φi − 1)ξi < 0. (32)

Equations (22) and (23) lead to

|δi(ks + 1)| < |δi(ks)| if δi(ks) < −ξi. (33)

Case 3. 0 ≤ δi(ks) ≤ ξi
We can write

δi(ks + 1) = (1− φi)δi(ks)

−Mi sat(δi(ks)) +Bif(k)

≤ ξi −Mi + F0 < ξi.

(34)
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Fig. 2. Evolution of the control signal U2(k) and the sliding sur-
face δ2(k) (Example 1).

Additionally, δi(ks) can satisfy the following inequality:

δi(ks + 1) = (1− φi)δi(ks)−Mi +Bif(k)

≥ −Mi − F0 > −ξi.
(35)

Therefore,

|δi(ks + 1)| ≤ ξi if 0 ≤ δi(ks) ≤ ξi. (36)

Case 4. −ξi ≤ δi(ks) ≤ 0
We assume that δi(k) fulfills the requirements set by the
following two inequalities:

δi(ks + 1) = (1− φi)δi(ks)

−Mi sat(δi(ks)) +Bif(k)

≥ −(1− φi)ξi +Mi + F0

≥ −ξi,

(37)

δi(ks + 1) = (1− φi)δi(ks)

−Mi sat(δi(ks)) +Bif(k)

= (1− φi)δi(ks)−Mi
δi(ks)

ξi

+ Bif(k)

≤ F0 < ξi.

(38)

Thus,

|δi(ks + 1)| ≤ ξi if − ξi ≤ δi(ks) ≤ 0. (39)

Afterward, we show that, by choosing appropriate
parameters for the control law, our method ensures the
existence of the quasi-sliding mode. �
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7. Simulation

In this section, we provide two simulation examples to
assess how well the suggested controller performs.

7.1. Example 1. A complex system, S, comprises
two interconnected subsystems. These subsystems S1
and S2, are defined by sets of linear discrete-time
state-space equations, each preceded by nonlinear
blocks, representing interconnected Hammerstein systems
(Kamoun and Kamoun, 2016):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1(k + 1) =

[
0 1

−0.38 −1.06

]

X1(k)

+

[
0
1

]

(tanh(0.4× u1(k)) + f(k))

+

[
0.15 0.24
0.34 0.09

]

X12(k),

M1 = 4× 10−3,

X2(k + 1) =

[
0 1

−0.26 0.88

]

X2(k)

+

[
0
1

]

(tanh(0.4× u2(k)) + f(k))

+

[
0.08 0.32
0.17 0.37

]

X21(k),

M1 = 3× 10−3,

f(k) = 0.001× sin(2kπ100 ) for 50 ≤ k ≤ 80,
(40)

where the initial values are defined as X(1) = [0.1, 0.5]T ,
X(2) = [0.91, 0.95]T , the switching vector is given by
G1 = [0, 0.15] and G2 = [0, 0.5]. The control parameters
are chosen as φ1 = 0.5 and φ2 = 0.81.

The simulation results using the DSMC and ETSMC
methods are presented in Figs. 2–7. Figure 2 displays
the evolution of control signals and the sliding surface
for the first subsystem, while Fig. 3 shows the same for
the second one. This analysis is further supported by the
state evolution depicted in Figs. 4 and 5. The simulation
results indicate that the ETSMC method utilizes only 34%
for Subsystem 1 and 31% for Subsystem 2 from the total
sampled dataset, showcasing a significant reduction in
communication resource consumption. This highlights
the capability of the proposed ETSMC approach to
effectively halve the usage of communication resources.

Additionally, to enhance the assessment of this
method, another simulation example will be presented in
the subsequent section.
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Fig. 3. Evolution of the system states X11(k) and X12(k) (Ex-
ample 1).

7.2. Example 2. The system to be controlled is
described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1(k + 1) =

[
0 1

−0.32 1.2

]

X1(k)

+

[
0
1

]

(sin(0.2× u1(k)) + f(k))

+

[
0.1 0.4
0.2 −0.1

]

X12(k),

M1 = 4× 10−3,

X2(k + 1) =

[
0 1

−0.2 −0.92

]

X2(k)

+

[
0
1

]

(tanh(0.4× u2(k)) + f(k))

+

[
0.2 0.1
−0.3 0.1

]

X21(k),

M1 = 4× 10−3,

f(k) = 0.001× sin(2kπ100 ) for 50 ≤ k ≤ 80,
(41)

where the initial values are defined as X(1) = [0.1, 0.5]T ,
X(2) = [0.1, 0.5]T , and the switching vector is given
by G1 = [0.01, 0.2] and G2 = [0, 0.01]. The control
parameters are chosen as φ1 = 0.42 and φ2 = 0.651.

Remark 2. The function sin(·) is noninvertible over
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tem 1 (Example 1).

its entire range due to its periodic nature, as it repeats its
values every 2π. However, within a single cycle, such as
from −π/2 to π/2, sin(·) is invertible. This implies that
each output value in that range corresponds to one input
value.

Example 2 illustrates a scenario where the input
signal range in sin(0.2u1(k)) falls within the invertible
part of sin(·). Therefore, the input signal is confined
to a range that permits the nonlinearity to be invertible,
ensuring control efficiency is not negatively impacted by
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Fig. 7. Evolution of the control signal U1(k) and the sliding sur-
face δ1(k) (Example 2).

a noninvertible nonlinearity.
The simulation results for discrete event-triggered

SMC are presented in Figs. 8–13. They emphasize that the
ETSMC technique utilizes only 13% of the total sampled
data for Subsystem 1 and 60% for Subsystem 2, resulting
in a substantial reduction in communication resource
usage.

7.3. Discussion. In the discussion section, we will
investigate the proposed controller’s effectiveness by
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examining its behavior during transition periods and its
robustness against external disturbances. We will also
measure its performance using the RMSD index and
evaluate the consistency of the ETSMC approach by
adjusting the event-triggering threshold.

Reaching phase analysis. The reaching phase (0 <
k < 20 in this case) is crucial in sliding mode
control because it represents a critical period of transition
where the system’s state is directed toward a predefined
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ample 2).
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tem 1 (Example 2).

switching surface. This phase is essential for ensuring
that the system reaches the sliding mode accurately and
efficiently. During this time, the system is most sensitive
to external influences and disturbances. Optimizing this
phase through methods such as linear matrix inequalities
(LMI) in future work can lead to faster convergence and
improved overall performance

Counteracting external disturbances. In the discussion
of the proposed method’s performance, the ability
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Fig. 12. Release intervals and instants of the ETM of Subsys-
tem 2 (Example 2).

to counteract time-varying external disturbances is
key. Discrete sliding mode control (DSMC) effectively
addresses these disturbances by ensuring they the
switching gain Mi is higher than the product of the system
parameters ‖Bi‖ and ‖f(k)‖. This matching condition
allows the control system to maintain the desired state
trajectory by stabilizing the system dynamics on the
sliding surface. The control input’s capability to handle
varying disturbances can be seen through the successful
application of an external disturbance, f(k) = 0.001 ×
sin(2kπ/100), within the range from k = 50 to k = 80.
The results demonstrate high accuracy in sliding surface
convergence to zero and state convergence to desired
values (for Examples 1 and 2).

Performance evaluation with the RMSD index. The
efficiency of the proposed ETSMC is evaluated using the
root mean square deviation (RMSD) index

RMSDi =

√
√
√
√ 1

NH

NH∑

k=1

(Yi(k)− Yr,i(k))2 for i = 1, 2,

(42)
where NH = 100 is the simulation horizon. The desired
reference is given by

Yr,i(k) = HiXr,i(k),

where

Xr,i(k) = [0, 0]T ,

H1 = [0, 0.01],

H2 = [0, 0.001].

Despite the presence of disturbances, the proposed
ETSMC achieves excellent tracking performance. This is

Table 1. Event-triggered rates with different γi values (Exam-
ple 1).

Triggering parameter γ1 0.01 0.5 0.85 0.95
Event-triggered rates 99% 96% 48% 34%

Triggering parameter γ2 0.01 0.5 0.85 0.95
Event-triggered rates 100% 96% 46% 32%

demonstrated by the RMSD index values:

RMSD1 = 5.18× 10−4, RMSD1 = 1.10× 10−4

for Example 1 and

RMSD1 = 4.9× 10−4, RMSD1 = 6.82× 10−4

for Example 2.

Assessment of ETSMC smoothness. The smoothness
of the proposed ETSMC approach is assessed by varying
the event-triggering threshold. Table 1 summarizes the
outcomes of 100 simulation runs with different values of
the event-triggering parameter γ (threshold).

These results demonstrate that higher γ values lead
to a reduced event-triggered ratio, which is the proportion
of event-triggering releases out of a total of simulation
steps. This implies that the ETSMC approach can reduce
the need for data transmissions, thereby alleviating the
communication load.

In summary, the proposed controller demonstrates
notable effectiveness in handling transitions and
disturbances, while the RMSD index and event-triggering
threshold assessment reveal its potential for consistent
and efficient performance.

8. Conclusion
This paper introduced and explored a novel paradigm of
decentralized sliding mode control (DSMC) for discrete
interconnected Hammerstein subsystems and addressed
its limitations through the introduction of an innovative
event-triggered sliding mode control (ETSMC). By
employing Lyapunov theory, a comprehensive stability
analysis was conducted, affirming the robustness and
effectiveness of the proposed controllers. The simulations
presented in Section 7 underscored the effectiveness
and performance enhancement achieved by the ETSMC
method over traditional DSMC approaches. The results
demonstrated promising advancements in mitigating
communication and computational burdens while
maintaining stability and control efficacy in complex
systems. This research paves the way for further
advancements in control strategies, emphasizing the
significance of adaptive and efficient methodologies in
addressing contemporary challenges within decentralized
control systems.
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