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The paper discusses the inventory management problem with a single product stored in two warehouses, where each has
its unique suppliers with certain lead times. Moreover, one of the warehouses may act as a backup supplier for the other.
In other words, product exchange between two different warehouses within one company is allowed. The first warehouse
operates under an a priori known time-variant contractual demand and a bounded random one. Its secondary goal is to
accumulate emergency stock that can be delivered to the second warehouse within one time period. For this warehouse we
use a desired trajectory generator to shape the required stock level and then utilize a trajectory following control law. The
demand in the second warehouse is unknown but bounded, and its suppliers have limited delivery capacity. The challenge is
to fulfill the customers’ needs, although they might exceed the order limit. Therefore, occasional backup supplies from the
first warehouse are necessary. For the control of the second warehouse, a simple sliding mode (SM) scheme is applied. The
paper proves that, with appropriate compensation of the emergency deliveries in the first warehouse, our proposed control
scheme ensures full demand satisfaction in both warehouses despite the second one’s control limit.
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1. Introduction

Sliding mode control (SMC) is the most popular branch
of variable structure control. It has been widely studied in
the literature for decades (Utkin, 1984; 1992; Drakunov
and Utkin, 1992; Hung et al., 1993; Steinberger et al.,
2020). SM is designed so that the system’s trajectory
becomes bounded to a preselected sliding manifold.
Therefore, first the system is driven from any initial
position towards the sliding hypersurface. The distance of
the system’s representative point from this hypersurface
is described with a sliding variable, which combines the
system’s states, i.e., s(x) = f [x(t)]. Once the system’s
representative point belongs to the sliding manifold, the
sliding variable becomes zero, s(x) = 0. Then the second
stage of the control process occurs i.e., when the control
action must maintain the system’s trajectory on the sliding
manifold. This is achieved with a characteristic switching
type control law. Whenever the system’s representative
point leaves the sliding manifold, the control action is
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switched based on the current sign of the sliding variable.
Consequently, the system’s representative point moves
along the sliding manifold until it reaches a steady
state. As a result, in the sliding phase the system
becomes insensitive to matched external disturbances and
modelling uncertainties (Draz̆enović, 1969). However,
this benefit is only guaranteed assuming no delays in the
switching process occur. When applied through sample
and hold devices, SMC may result in chattering around
the sliding hypersurface introduced by sampling in the
control and output channels (Utkin and Lee, 2006; Boiko
et al., 2008).

With the development of digital control systems,
the discontinuous nature of the SMC law has led to
the definition of quasi-sliding mode (QSM), obtained in
discrete-time systems (Drakunov and Utkin, 1989; Gao
et al., 1995; Bartoszewicz, 1998; Golo and Milosavljević,
2000). As in the discrete-time domain the system’s states
exist only at certain time instants, it is assumed that
the representative point may not be kept on the sliding
hypersurface but in its vicinity called the QSM band.
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The width of this vicinity depends on the disturbance
impact directly and therefore becomes the measure of
the system’s robustness (Kaynak and Denker, 1993). An
important feature of the QSM is also comparably low
computational complexity. SMC is commonly applied in
fields such as power electronics and robotics (Edwards
and Spurgeon, 1998; Utkin et al., 1999; Liu and Wang,
2011; Ordaz et al., 2024; Hamdi et al., 2021). However,
due to their discrete time nature and usually high problem
order, inventory systems are often discussed in the context
of potential QSMC applications.

The focus of this paper is application of a reference
trajectory based SMC for a two-warehouse inventory
system. With the recent rapid development of online
sales and shortened product launching time, the logistics
business is nowadays booming. Inventory systems
are required to become more flexible and react faster
to changing market demands. Moreover, growing
logistics centers dealing with a variety of products, which
may be found on the outskirts of each bigger city,
not to mention a metropolis, are becoming more and
more difficult to manage and supply. Therefore, the
problem of inventory systems management has become
an important topic for the control engineering society in
both modelling (Framinan, 2022) and the control design
context (White, 1999; Zipkin, 2000). Various studies
considered control methods such as optimal control (Cao
and Xie, 2016; Ignaciuk and Bartoszewicz, 2010a), H∞
control (Boccadoro et al., 2008), the neural networks
based approach (Chołodowicz and Orłowski, 2023)
and the model predictive approach (Alessandri et al.,
2011). Among others some successful attempts of SMC
applications were proposed (Ignaciuk and Bartoszewicz,
2010b; Bartoszewicz and Leśniewski, 2014).

This study presents a new approach to the inventory
management problem. The manuscript considers an
inventory system consisting of two warehouses, storing
one product. For the sake of clarity, they will be denoted
with α and β. Potentially, this pictures a situation of two
warehouses in different locations owned by one company.
Each of the warehouses has its unique suppliers, who
need certain time to deliver the goods. Moreover, the
capabilities of warehouse β suppliers are limited, which
results in an order limit. Warehouse β is subject to the
conventionally considered random market demand and is
controlled according to a simple sliding mode control law.
However, for warehouse α, a novel demand definition
is introduced. The customer needs are divided into the
a priori known contractual demand part and unknown
but bounded random demand part. Having the partial
knowledge of the demand, we propose to generate a
desired trajectory profile in advance and apply a trajectory
following SMC scheme, as proposed by Bartoszewicz
and Adamiak (2018; 2020). Moreover, product exchange
between the warehouses is allowed. As warehouse β

has limited deliveries, it may not be able to fully satisfy
its demand. Therefore, warehouse α may act as an
emergency supplier, which delivers the necessary product
in one control step. Our study shows that, with appropriate
random demand and emergency deliveries compensation,
full demand satisfaction in both warehouses in ensured.

2. System presentation
In this paper, we consider an inventory system seen from
the perspective of an owner of multiple warehouses. It
stands to reason that, in a situation when one warehouse
does not have enough stock to fulfill the customers’
demand, the owner would prefer to move the product
from their nearby facility rather than initiate an often
time consuming and costly operation of ordering more
goods. The inventory management system in the article
is simplified to one product, multiple suppliers and
two warehouse systems. Each warehouse has its own
suppliers, which require a certain lead time to deliver
products to their respective warehouse. The demand
profile differs between the warehouses. Therefore, for the
sake of clarity, we denote the warehouses as α and β. This
section introduces the notation and describes the systems
in the state space.

In general, the inventory system may have several
suppliers with different delivery times. Let the longest
lead time required by those suppliers be denoted as n.
Consequently, not later than after n+ 1 time instants will
all the deliveries have arrived at the warehouse. Taking
that into account, the lead times of the suppliers in the
system are in the range of

i = 1, 2, . . . , n. (1)

Suppliers with equal lead time are considered as one. For
every i, we define the ai parameter, which is the part of
the order placed by the controller that was allocated to the
supplier with i periods of lead time. If a supplier with lead
time i does not exist, the matching ai parameter equals
zero. The aforementioned ai parameters satisfy

0 ≤ ai ≤ 1 and

n∑

i=1

ai = 1. (2)

The system is subject to periodic reviews, with the
review period denoted as T. The controller generates
orders at regular time instants kT with k = 0, 1, 2, . . . .
From now on, the time instants kT will be referred to as k
for simplicity. The inventory system is described with the
following state space representation:

xxx(k + 1) = AxAxAx(k) + bbbu(k)− fffh(k),

y(k) = x1(k).
(3)

The state vector xxx(k) represents the amount of product
both contained in the warehouse and in various stages of
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transit. Therefore, the order of the dynamical problem
depends on the maximum lead time n of the system and
is equal to n + 1 as the state vector has n + 1 elements,
defined as

xxx(k) =
[
x1(k) x2(k) . . . xn(k) xn+1(k)

]T
.
(4)

The first state variable of the system, x1(k),
represents the amount of goods present in the warehouse
at the time instant k, before any of the demand has been
fulfilled. The rest of the state variables define the product
that has been ordered and is currently in transit. They are
delayed orders generated by the controller, with xn+1(k)
being the amount of goods ordered at the previous time
instant, i.e., k − 1, xn(k) denoting two time instants ago,
i.e., k−2 etc. MatrixAAA is the state matrix of the inventory
system, defined as

AAA =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 an an−1 . . . a2 a1
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
0 0 0 . . . 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

The ai parameters present in the state matrix refer
to the ai parts of the order assigned to suppliers with
different lead times. Therefore, those products will be
delivered to the warehouse at the consecutive delayed time
instants. The input vector bbb has n + 1 elements and is
defined as

bbb =
[
0 0 . . . 0 1

]T
. (6)

The orders generated by the controller are defined as u(k).
We use the scalar output y(k) to denote the amount of
product in the warehouse. The initial stock level is defined
as y0 = x1(0). Customer demand is most commonly
considered random and denoted with d(k), where d(k) ≥
0. Continuing, we define the vector fff , which represents
the amount of goods that leave the warehouse. This vector
has n+ 1 elements and

fff =
[
1 0 . . . 0 0

]T
. (7)

The amount of product successfully sold to the customers
is represented by h(k).

Next, by analogy, we will present the specifications
of the warehouses α and β, considered in this paper.

2.1. Warehouse α. The first warehouse is denoted
with α. Therefore, its maximum lead time is nα and the
system order becomes nα + 1. As a result, the system’s
state equation becomes

xxxα(k + 1) = AAAαxxxα(k) + bbbuα(k)− fffhα(k),

yα(k) = xα1(k).
(8)

The state vector xxxα(k) has elements
xα1, xα2, . . . , xαn, xαnα+1, as presented in (4).
As follows from (5), the system’s state matrix is AAAα with
first row elements denoted as aα1, aα2, . . . , aαnα . The
systems control signal is uα(k) and the input vector is
bbb, as shown in (6). The sales from the warehouse are
denoted by hα(k) and vector fff remains as defined in (7).
The current stock level is expressed with yα(k), with the
initial condition yα0 = xα1(0).

The warehouse is subject to two kinds of customer
demand. We define the a priori known contractual
demand part dc(k) and the random demand part dr(k).
Moreover, the warehouse’s secondary goal is to provide
some additional product in stock reserved for emergency
needs of the second warehouse. This reserve will be
denoted by de(k) and it satisfies

0 ≤ de(k) ≤ demax. (9)

Therefore, the total demand in the system is

dα(k) = dc(k) + de(k) + dr(k). (10)

The demand’s main part, dc(k), represents the contractual
obligations of the warehouse. This demand changes in
time and its expected values are known in advance—we
denote them as d̃c(k). If the customers fulfill their part of
the contract in every review period, then

dc(k) = d̃c(k). (11)

However, to include the possibility that some of the
contracted goods are not purchased, we extend that to

0 ≤ dc(k) ≤ d̃c(k). (12)

Fulfilling the contractual sales is the warehouse’s
priority, but its secondary purpose is to keep an emergency
stock for warehouse β. The emergency demand is only
generated when the warehouse β reaches the limit of
its ordering capabilities. If the value of the demand in
the second warehouse remains under the maximum order
value, then de(k) = 0. We complete the definition with
the random demand dr(k). This term of the demand in the
system is bounded by

0 ≤ dr(k) ≤ drmax, (13)

and the warehouse fulfills it from product leftover after the
contractual sales and the emergency deliveries.

As the warehouse has different priority levels for
each demand, we split the sales into three parts as well:

hα(k) = hc(k) + he(k) + hr(k). (14)

Those sales are upper bounded by the demand as follows:

hc(k) ≤ dc(k),

he(k) ≤ de(k),

hr(k) ≤ dr(k).

(15)
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The sales in the warehouse begin with fulfilling the
contractual demand, so

hc(k) = min[yα(k), dc(k)], (16)

and then, from the leftover product yαr1(k) = yα(k) −
hc(k), we can calculate the amount of goods sent to
warehouse β:

he(k) = min[yαr1(k), de(k)]. (17)

Finally, after delivering the product to warehouse β, the
remaining stock becomes yαr2(k) = yαr1(k) − he(k),
which allows us to satisfy the random demand:

hr(k) = min[yαr2(k), dr(k)]. (18)

Considering (8), the stock level after all sales
commence for any k ≤ nα may be obtained as

yα(k) = yα0 +

nα−1∑

i=1

aαi

k−i−1∑

j=0

uα(j)−
k−1∑

i=0

hα(i), (19)

and for any k ≤ nα + 1 as

yα(k) = yα0 +

k−nα−1∑

i=0

uα(i)

+

nα−1∑

i=1

aαi

k−i−1∑

j=k−nα

uα(j)−
k−1∑

i=0

hα(i).

(20)

Finally, after all the sales have concluded, the product left
in the warehouse is

yαr(k) = yα(k)− hα(k). (21)

2.2. Warehouse β. Warehouse β is characterized by
the maximum lead time nβ , which results in the order of
the system equal to nβ + 1. Its dynamics are described as

xxxβ(k + 1) = AAAβxxxβ(k) + bbbuβ(k)

− fffhβ(k) + fffhe(k),

yβ(k) = xβ1(k).

(22)

By analogy to (4), xxxβ(k) contains nβ + 1 elements,
marked from xβ1 to xβnβ+1. As a result, the system’s
state matrix AAAβ is constructed as shown in (5), with
the first row elements denoted from aβ1 to aβnβ

. The
system’s control signal is uβ(k) and the input vector is
bbb, as shown in (6). The sales are represented by hβ(k)
and vector fff remains as defined in (7). The initial stock is
represented by yβ0 = xβ1(0) and the current stock level
is yβ(k).

The demand profile of warehouse β, dβ(k), is
random but bounded:

dβmin ≤ dβ(k) ≤ dβmax, (23)

with dβ min and dβmax being the lower and upper bounds
of the demand, respectively. Moreover, the suppliers of
warehouse β have limited delivery capacity, which results
in a maximum order value denoted as uβmax. Therefore,

uβ(k) ≤ uβmax (24)

for any k ≥ 0. The goal is to fulfill the demand, which
may, at times, exceed the order limit, i.e.,

uβmax < dβmax. (25)

To overcome this problem, additional deliveries from
warehouse α are necessary. These situations will be
considered emergencies and the appropriate variables are
denoted with the suffix e. The term he(k) represents
emergency deliveries from warehouse α. The purpose of
the term +fffhe(k), in (22), is to allow the deliveries from
warehouse α, he(k), to enter the stock of warehouse β as
fast as possible, i.e., after one discrete time period only.

The sales in the system satisfy

hβ(k) ≤ dβ(k) (26)

to account for the possibility of the warehouse being
unable to fully satisfy the demand. The actual sales value
is calculated as

hβ(k) = min[yβ(k), dβ(k)]. (27)

From (22), the stock level, at any k ≤ nβ , is obtained
as

yβ(k) = yβ0 +

k−1∑

i=0

he(i)

+

nβ−1∑

i=1

aβi

k−i−1∑

j=0

uβ(j)−
k−1∑

i=0

hβ(i),

(28)

and for any k ≥ nβ + 1 as

yβ(k) = yβ0 +

k−1∑

i=0

he(i) +

k−nβ−1∑

i=0

uβ(i)

+

nβ−1∑

i=1

aβi

k−i−1∑

j=k−nβ

uβ(j)−
k−1∑

i=0

hβ(i).

(29)

Finally, after all sales have been accounted for, the
remaining stock may be obtained from

yβr(k) = yβ(k)− hβ(k). (30)

3. Control strategy
In this section, two separate SMC based ordering
strategies are designed—one with a desired trajectory
generator for warehouseα and a simple order up to control



Multiple-warehouse sliding mode control with a predefined demand . . . 379

scheme for warehouse β. The controller’s goal is to
ensure full demand satisfaction in both warehouses under
the assumption that the unknown demand in the second
one exceeds its ordering capabilities. In other words, the
control process is designed so that no sale losses occur,
even in the worst case scenario, i.e., if the random demand
is continuously at its maximum admissible value.

In general, SMC is based on a predefined sliding
surface, which contains the demand position. The distance
between the system’s representative point and the sliding
surface is described by the sliding variable, denoted by
s(k), where

s(k) = cxcxcx(k). (31)

When the system’s trajectory belongs to the sliding
surface, then s(k) = 0. The choice of vector ccc, introduced
in (31), is crucial to ensure stable system performance.
Therefore, in our work, we choose ccc so that all eigenvalues
zi of the inventory system are placed at the origin of the
complex plane. This is ensured when ccc satisfies

ccc =

[
1 an

n∑

i=n−1

ai . . .

n∑

i=2

ai

n∑

i=1

ai

]
, (32)

as proposed by Bartoszewicz and Leśniewski (2014).
This definition of vector ccc results in additional desirable
features of the control system.

Lemma 1. If vector ccc for the system (3) is defined ac-
cording to (32), then

cAcAcA = ccc, cbcbcb = 1, cfcfcf = 1. (33)

Proof. The above may be obtained with a straightforward
multiplication, considering that vector ccc has 1 as the first
element, (2) holds, and matrix AAA, vectors bbb and fff are
defined according to (5), (6) and (7), respectively. �

Next, we present the control strategies designed for
the specific needs of warehouses α and β. It is also worth
mentioning that the SMC laws presented in the following
sections do not introduce any chattering to the inventory
system due to their non-switching nature.

3.1. Warehouseα. The first warehouse operates under
an a priori known contractual demand and a random
but bounded demand. Moreover, in the emergency
situations, warehouse α acts as an additional supplier
for warehouse β. The warehouse’s goal is to prioritize
the known contractual buyers, while retaining some stock
for the aforementioned emergency and random buyers.
Therefore, we propose to employ a desired trajectory
generator based on the known contractual demand profile
and an SM controller to fulfill its contract.

The warehouse is described in Section 2.1., with its
dynamics defined by (8). The control signal uα(k) is a
scalar amount of goods ordered by the controller at the

time instant k. This value will enter the state vector in the
time instant k+1 as its last state variable xxxαnα+1(k+1),
which can be inferred from the system’s state matrix
and its input vector. The vector fff and the value hα(k)
represent the sales in the system, with hα(k) being the
sum of the fulfilled contractual obligations hc(k), the
occasional emergency deliveries to warehouse β, he(k),
and the random sales hr(k). The control strategy for
warehouse α uses a desired trajectory generator to achieve
its goals. Hence, we continue with the generation
of a trajectory that fulfills the contractual sales in the
warehouse. We already know the future values of the
contract, so the desired trajectory sαd(k) will contain the
sum of the values of the contract for all the nα + 1 future
time instants. In other words,

sαd(k) =

k+nα+1∑

l=k+1

d̃c(l), (34)

where, for k = 0,

sαd(0)

= d̃c(1) + d̃c(2) + · · ·+ d̃c(nα) + d̃c(nα + 1).
(35)

The sliding plane for warehouse α is defined as
sα(k) = 0, and the position of the representative point
of the inventory system relative to the desired trajectory is
denoted with the sliding variable sα(k). It is assumed that
at the time instant k = 0 the sliding variable equals zero,
so the initial condition of the system yα0 is

yα0 = xα1(0) = sαd(0), (36)

with sα(0) = 0. Hence, the initial stock present in the
warehouse at the time instant k = 0 must be enough
to satisfy the contractual demand up to the time instant
nα + 1 when the slowest supplier delivers the product
ordered at k = 0. This value must be further modified
due to the possibility of the emergency sales he(k) and
random sales hr(k) appearing from the very beginning of
the control process. The reserve of the product for both
demand terms will be added to the initial value with a
compensation term. The trajectory of the system cccαxxxα(k)
shall follow the generated reference trajectory sαd(k). We
achieve that with

sα(k + 1) = sαd(k + 1)− cccαxxxα(k + 1) = 0, (37)

where the control vector cccα is chosen according to (32).
Inserting the state equation (8) into the above reaching law
yields the control law for the warehouse:

uα(k) = (cccαbbb)
−1[sαd(k+1)−cccαAAAαxxxα(k)+cccαfffhα(k)].

(38)
The controller does not know the value of sales

hα(k) at the moment of calculating the control signal
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uα(k). However, the aim of the controller is to provide
a sufficient amount of goods to satisfy all demand terms
at any time instant k. Therefore, the worst possible
scenario must be considered when both emergency and
random demands assume their maximum admissible
values. Considering the expected value of the contractual
demand and the upper bounds of both the emergency
demand from warehouse β and a random demand, we
substitute hα(k) with its maximum possible value at time
instant k:

hα(k) = d̃c(k) + dβmax − uβmax + drmax, (39)

where dβmax and uβmax are the upper bounds of the
random demand and the maximum order quantity in
warehouse β. The difference between those two values
is the maximum possible amount of product needed by
warehouse β at a single time instant k, denoted by
dβmax − uβmax = demax. Additionally, we must secure
a reserve of product for both warehouse β and the random
sales, bounded by drmax. Therefore, we must ensure
that both values are always present in warehouse α after
its contractual obligations are fulfilled. We define the
sum of those maximum values as demax + drmax =
dermax to simplify the notation. Moreover, in order to
avoid any sale losses, the delivery delay in the system
must be considered. Thus, the reserve products must be
ordered in advance. The goods ordered by the controller at
instant k arrive in the warehouse in full at the time instant
k + nα + 1, so a compensation term for the whole period
of nα + 1 time instants is necessary. Therefore, we define
the compensation vectorDerDerDer with

DerDerDer =
[
1 1 . . . 1 1

]T
nα+1

dermax. (40)

Upon including the compensation term in the control
law, the control signal becomes

uα(k) = (cccαbbb)
−1{sαd(k + 1)− cccαAAAαxxxα(k)

+ cccαfff [d̃c(k) + dermax] + cccαDerDerDer}.
(41)

We also modify the initial conditions of the system to
allow both the emergency deliveries and random demand
to be fulfilled at the time instants k = 0, 1, 2, . . . , nα.
Therefore,

yα0 = xα1(0) = sαd(0) + cccαDerDerDer. (42)

Additionally, the control law above keeps the
representative point of the system in the vicinity of
the sliding surface for any k ≥ 0, with

|sα(k)|
= |sαd(k)− cccαxxxα(k)| ≤ cccαfffdermax + cccαDerDerDer.

(43)

We continue with the proof that neither random
sales nor emergency deliveries prevent warehouse α from
fulfilling its contractual obligations.

Theorem 1. Applying the control law (41) to warehouse
α with the initial condition (42) ensures that, for any k ≥
0, the control signal

uα(k) ≤ d̃c(k + nα + 1) + dermax (44)

and the stock level

yα(k) ≥ d̃c(k) + dermax. (45)

Hence

hc(k) = dc(k) and yαr1(k) ≥ dermax. (46)

Therefore, the warehouse fully satisfies all the demand
terms present in the system.

Proof. Consider the worst case scenario for the demand
in the warehouse, with both the emergency and random
demands at their upper bounds de(k) = demax and
dr(k) = drmax. Taking Lemma 1 into consideration, the
control (41) becomes

uα(k) = sαd(k + 1)− cccαxxxα(k)

+ d̃c(k) + dermax + cccαDerDerDer,
(47)

with the compensation term cccαDerDerDer being

cccαDerDerDer = dermax + aαnαdermaxdermax

+

nα∑

i=nα−1

aαi + · · ·+
nα∑

i=2

aαidermax

+ dermax ≥ 2dermax,

(48)

after considering both (32) and (40). The initial condition
(42) results in the following control signal at k = 0:

uα(0) =

nα+1∑

i=1

d̃c(i)−
nα∑

i=0

d̃c(i)− cccαDerDerDer

+ d̃c(0) + dermax + cccαDerDerDer

= d̃c(nα + 1) + dermax.

(49)

In the case considered, the demand is always at its
maximum, so d̃c(k) − dc(k) = 0 and the sales satisfy
hc(0) = d̃c(0). The initial condition provides enough
product to satisfy the demand at k = 0, so the state vector
at k = 1 becomes

xxxα(1) =

⎡

⎢⎢⎢⎢⎢⎣

∑nα

i=1 d̃c(i) + cccαDerDerDer − dermax

0
...
0

⎫
⎪⎬

⎪⎭
nα − 1

d̃c(nα + 1) + dermax

⎤

⎥⎥⎥⎥⎥⎦

nα+1

(50)
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with

cccαDerDerDer − dermax

= aαnαdermax +

nα∑

i=nα−1

aαidermax + . . .

+

nα∑

i=2

aαidermax + dαermax ≥ dermax.

(51)

We continue with the control for k = 1:

uα(1) =

nα+2∑

i=2

d̃c(i)−
nα∑

i=1

d̃c(i)− cccαDerDerDer

+ dermax − d̃c(nα + 1)− dermax

+ d̃c(1) + dermax + cccαDerDerDer

= d̃c(1)− d̃c(1) + d̃c(nα + 2)

+ dermax.

(52)

Finally,

uα(1) = d̃c(nα + 2) + dermax. (53)

The stock once again satisfies all the demand, so hc(1) =

d̃c(1) and

xxxα(2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

yα(2)
0
...
0

⎫
⎪⎬

⎪⎭
nα − 2

d̃c(nα + 1) + dermax

d̃c(nα + 2) + dermax

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

nα+1

, (54)

where

yα(2) =

nα∑

i=2

d̃c(i) + cccαDerDerDer − 2dermax

+ aα1d̃c(nα + 1) + aα1dermax.

(55)

We will use g(k) to denote the terms compensating
for both the emergency and random demand, with

g(2) = cccαDerDerDer − 2dermax + aα1dermax

= aαnαdermax +

nα∑

i=nα−1

aαidermax

+ · · ·+
nα∑

i=2

aαidermax + aα1dermax.

(56)

With (2), we obtain

g(2) = aαnαdermax +

nα∑

i=nα−1

aαidermax + . . .

+

nα∑

i=3

aαidermax

+

nα∑

i=2

aαidermax + aα1dermax

︸ ︷︷ ︸
dermax

≥ dermax,

(57)

which means that the stock is sufficient, so hc(2) = d̃c(2).
Next, the control for k = 2 is

uα(2) =

nα+3∑

i=3

d̃c(i)−
nα∑

i=2

d̃c(i) + 2dermax

− aα1[d̃c(nα + 1) + dermax]

−
nα∑

i=2

aαi[d̃c(nα + 1) + dermax]

− d̃c(nα + 2) + d̃c(2),

(58)

which results in

uα(2) = d̃c(nα + 3) + dermax. (59)

The state vector becomes

xxxα(3) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yα(3)
0
...
0

⎫
⎪⎬

⎪⎭
nα − 3

d̃c(nα + 1) + dermax

d̃c(nα + 2) + dermax

d̃c(nα + 3) + dermax

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

nα+1

, (60)

where

yα(3) =

nα∑

i=3

d̃c(i) +

2∑

i=1

aαid̃c(nα + 1)

+ aα1d̃c(nα + 2) + g(3),

(61)

and

g(3) = g(2)− dermax +
2∑

i=1

aαidermax

= aαnαdermax +

nα∑

i=nα−1

aαidermax + . . .

+

nα∑

i=4

aαidermax +

nα∑

i=3

aαidermax +

2∑

i=1

aαidermax

︸ ︷︷ ︸
dermax

≥ dermax,

(62)
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so the stock is sufficient to satisfy all the demand.
Considering all the above, we can say that the state vector
at any moment 0 ≤ k ≤ nα becomes

xxxα(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yα(k)
0
...
0

⎫
⎪⎬

⎪⎭
nα − k

d̃c(nα + 1) + dermax

...
d̃c(nα + k) + dermax

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

nα+1

, (63)

and the control signal for any k ≥ 0 is

uα(k) = d̃c(k + nα + 1) + dermax. (64)

For k = nα, the state vector is

xxxα(nα) =

⎡

⎢⎢⎢⎣

yα(nα)

d̃c(nα + 1) + dermax

...
d̃c(nα + nα) + dermax

⎤

⎥⎥⎥⎦

nα+1

, (65)

where

yα(nα) = d̃c(nα) +

nα−1∑

i=1

aαi

nα+nα−i∑

j=nα+1

d̃c(j)

+ g(nα),

(66)

and

g(nα) = aαnαdermax +

nα−1∑

i=1

aαidermax

= dermax.

(67)

Considering the above, the stock level for any 0 ≤ k ≤ nα

is

yα(k) =

nα∑

i=k

d̃c(i) +

nα−1∑

i=1

aαi

k+nα−i∑

j=nα+1

d̃c(j)

+ g(k),

(68)

where

g(k) =

nα∑

i=k

aαidermax +

k−1∑

i=1

aαidermax

︸ ︷︷ ︸
dermax

+

nα∑

i=k+1

aαidermax +

nα∑

i=k+2

aαidermax + . . .

+

nα∑

i=nα−1

aαidermax + aαnαdermax

≥ dermax.

(69)

We conclude that all the demand in warehouse α is
fully satisfied for 0 ≤ k ≤ nα. Thus

uα(nα + 1) = d̃c(nα + nα + 1) + dermax, (70)

and the state vector is

xxxα(nα+1) =

⎡

⎢⎢⎢⎣

yα(nα + 1)

d̃c(nα + 2) + dermax

...
d̃c(nα + nα + 1) + dermax

⎤

⎥⎥⎥⎦

nα+1

(71)

for k = nα + 1, where

yα(nα + 1)

=

nα∑

i=1

aαid̃c(nα + 1)

+

nα−1∑

i=1

aαi

nα+nα+1−i∑

j=nα+2

d̃c(j) + g(nα + 1),

(72)

and

g(nα + 1) =

nα∑

i=1

aαidermax. (73)

As (2) holds, the stock level for k = nα + 1 is

yα(nα + 1) = d̃c(nα + 1)

+

nα−1∑

i=1

aαi

nα+nα+1−i∑

j=nα+2

d̃c(j)

+ dermax,

(74)

and, for any k ≥ nα + 1,

yα(k) = d̃c(k) +

nα−1∑

i=1

aαi

k+nα−i∑

j=k+1

d̃c(j)

+ dermax.

(75)

As the control signal uα(k) satisfies (64), the stock
level is

yα(k) ≥ d̃c(k) + dermax, (76)

where dermax = demax + drmax, which concludes the
proof. �

From (76) it is clear that all the ingredients of
the demand (dc(k), de(k) and dr(k)) are fully satisfied
within their ranges for any k ≥ 0.

However, the amount of goods in stock, (75), shows
a slight surplus. That is caused by the fact that some of
the suppliers conclude their deliveries earlier than after
nα+1 steps. Those early deliveries may be used to satisfy
the contract at current steps. Taking that into account, we
introduce a compensation term γ intended to reduce the
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necessary stock level to minimum, without compromising
the contract, such that

γ = min
k→∞

[sαd(k)− cccαxxxαd(k)] , (77)

where xxxαd(k) is comprised of the subsequent contract
values:

xxxαd(k) =
[
d̃c(k) d̃c(k + 1) . . . d̃c(k + nα)

]T
. (78)

Utilizing (77), the control signal (41) becomes

uα(k) = (cccαbbb)
−1{sαd(k + 1)− cccαAAAαxxxα(k)

+ cccαfff [d̃c(k) + dermax] + cccαDerDerDer − γ}. (79)

In the same manner, the system’s initial condition may be
reduced to

yα0 = xα1(0) = sαd(0) + cccαDerDerDer − γ. (80)

The above compensation term allows reducing the amount
of product stored, which minimizes the warehouse space
and increases its efficiency.

3.2. Warehouse β. The dynamics of warehouse β
are presented in (22). The inventory system is subject
to bounded market demand dβ(k), as shown in (23).
Moreover, there is a control limit uβmax imposed on the
system, caused by limited capabilities of its suppliers,
as shown in (24). According to (25), there may be
instants when the demand exceeds the maximum order
value. In that case, the emergency demand de(k) will
be generated and sent as a request to warehouse α for
an emergency delivery, denoted by he(k). Therefore,
the second warehouse will be controlled with a simple
order up to control strategy, bolstered by the emergency
deliveries.

First, we define the desired stock level in warehouse
β as yβd. This value is a positive constant, derived further
in this section. The controller’s goal is to provide the yβd
amount of products in stock at any k ≥ 0. Therefore, the
demand state vector becomes

xxxβd =
[
yβd 0 . . . 0 0

]T
. (81)

Next, we design a simple discrete-time SM controller. We
define the sliding hyperplane as

sβ(k) = cccβ [xxxβd − xxxβ(k)] = 0, (82)

where vector cccβ is defined according to (32) and
cccβxxxβd = yβd. The current value of sβ(k) describes the
distance between the system’s representative point and the
switching surface at any time. We assume that the initial
stock of warehouse β exactly matches the demand value.
Therefore,

yβ(0) = yβ0 = yβd, (83)

and the representative point belongs to the sliding
hyperplane (82), i.e., sβ(0) = 0. We propose to derive
an SM equivalent control law that would keep the system
on the sliding hyperplane with a simple nonswitching
reaching law of Drakunov and Utkin (1989), by assigning

sβ(k + 1) = yβd − cccβxxxβ(k + 1) = 0. (84)

From the state equation (22) and the above reaching
law (84), we obtain the following equivalent control
uβeq(k):

uβeq(k) = (cccβbbb)
−1 [yβd − cccβAAAβxxxβ(k)

+cccβfffhβ(k)− cccβfffhe(k)] .
(85)

As the demand is a priori unknown and bounded by
(23), we consider the worst possible scenario, when
hβ(k) = dβ max. Furthermore, we assume that in the
ideal case emergency deliveries do not exist, i.e., he(k) =
0. Consequently, considering Lemma 1, the equivalent
control (85) simplifies to

uβeq(k) = yβd − cccβxxxβ(k) + dβmax. (86)

However, in the system considered, the order volume
generated by the controller is upper bounded by the
maximum suppliers’ capabilities, as defined in (24). Thus,
there may exist such time instants when uβeq(k) >
uβmax. At those instants uβeq(k) is not applicable and the
emergency demand de(k) will be generated. Therefore,
for warehouse β we define the control law as follows:

uβ(k) =

{
uβeq(k) for uβeq(k) ≤ uβmax,

uβmax for uβeq(k) > uβmax.
(87)

Furthermore, the controller will generate the
emergency demand de(k) according to the following rule

de(k) =

{
0 when uβ(k) ≤ uβmax,

uβeq(k)− uβmax when uβ(k) > uβmax.

(88)
From (25) and (86), it follows that the emergency demand
is upper bounded by

de(k) ≤ demax = dβmax − uβmax. (89)

The emergency signal de(k) is sent as a request for lacking
good delivery to warehouse α. If the stock of warehouse
α is sufficient to fulfill the demand, then the emergency
delivery in the volume of he(k) arrives at warehouse β
at one time instant, as defined in the state equation (22).
Next, we prove that the proposed control strategy ensures
full demand satisfaction, even in the presence of control
limitation.
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Theorem 2. If the demand stock level for the system (22)
satisfies

yβd = (nβ + 1)dβmax + nβdemax

−
nβ−1∑

i=1

aβiuβmax −
nβ−2∑

i=1

aβiuβmax

− · · · −
2∑

i=1

aβiuβmax − aβ1uβmax,

(90)

then the control law (87), with the emergency demand gen-
erated according to (88) and matching deliveries he(k),
guarantees that

yβ(k) ≥ dβmax (91)

for any k ≥ 0.

Proof. We begin by arguing that warehouse α is able to
fulfill the emergency demand de(k), within its maximum
range demax (89), at any k ≥ 0, as shown in (76). Next,
we will carry out the proof assuming the worst admissible
conditions, i.e., dβ(k) = dβmax at each instant and,
consequently, dβ(k) > uβmax.

Assuming that the system’s initial condition satisfies
(83), the state vector at k = 0 becomes

xxxβ(0) =
[
yβd 0 . . . 0 0

]T
nβ+1

. (92)

We calculate the equivalent control at k = 0:

uβeq(0) = yβd − cccβxxxβ(0)︸ ︷︷ ︸
yβd=yβ0

+dβmax = dβ max. (93)

Therefore, according to (87),

uβ(0) = uβmax, (94)

and the emergency demand is generated according to (88),
that is,

de(0) = demax. (95)

As the worst case is considered, dβ(0) = dβmax.
Taking into account (83), yβ(0) > dβ max, so the stock is
sufficient to satisfy the demand. Therefore,

hβ(0) = dβmax. (96)

Moreover, as shown in the previous subsection,
warehouse α is able to satisfy de(k) at any k ≥ 0.
Consequently, at k = 1, warehouse β receives an
emergency delivery:

he(0) = demax. (97)

Therefore, at k = 1, the state vector becomes

xxxβ(1) =

⎡

⎢⎢⎢⎢⎢⎣

yβd − dβmax + demax

0
...
0

⎫
⎪⎬

⎪⎭
nβ − 1

uβmax

⎤

⎥⎥⎥⎥⎥⎦

nβ+1

. (98)

Next, we calculate the equivalent control at k = 1:

uβeq(1) = yβd − cccβxxxβ(1) + dβmax

= yβd − yβd + dβmax

−demax − uβmax︸ ︷︷ ︸
−dβ max

+dβmax = dβmax.
(99)

The same situation as for k = 0 occurs. The control
uβ(1) = uβmax and de(1) = demax. From (83), (90) and
(98), we obtain the current stock level as

yβ(1) = nβdβmax + (nβ + 1)demax

−
nβ−1∑

i=1

aβiuβmax −
nβ−2∑

i=1

aβiuβmax − . . .

−
2∑

i=1

aβiuβmax − aβ1uβmax.

(100)

Therefore, the stock satisfies yβ(1) > dβmax.
Consequently, hβ(1) = dβmax. After the sales, the state
vector at k = 2 becomes

xxxβ(2)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

yβd − 2dβmax + 2demax + aβ1uβmax

0
...
0

⎫
⎪⎬

⎪⎭
nβ − 2

uβmax

uβmax

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

nβ+1

.

(101)

Substituting yβd from (90), we obtain the stock level as

yβ(2) = (nβ − 1)dβmax + (nβ + 2)demax

−
nβ−1∑

i=1

aβiuβmax −
nβ−2∑

i=1

aβiuβmax

− · · · −
2∑

i=1

aβiuβmax.

(102)

We continue with uβeq(2),

uβeq(2) = yβd − cccβxxxβ(2) + dβmax

= yβd − yβd + 2dβmax − 2demax − uβmax

−aβ1uβmax −
nβ∑

2

aβiuβmax

︸ ︷︷ ︸
−uβ max

+dβmax

= dβmax.

(103)

We obtain uβ(2) = uβmax and de(2) = demax. The stock
level satisfies yβ(2) ≥ dβmax. Thus, hβ(2) = dβ max.
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Next, the state vector at k = 3 becomes

xxxβ(3) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yβ(3)
0
...
0

⎫
⎪⎬

⎪⎭
nβ − 3

uβmax

uβmax

uβmax

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

nβ+1

, (104)

where

yβ(3) = yβd − 3dβmax + 3demax

+

2∑

i=1

aβiuβmax + aβ1uβmax

= (nβ − 2)dβmax + (nβ + 3)demax

−
nβ−1∑

i=1

aβiuβmax −
nβ−2∑

i=1

aβiuβmax

− · · · −
3∑

i=1

aβiuβmax.

(105)

The equivalent control for k = 3 becomes

uβeq(3) = yβd − cccβxxxβ(3) + dβmax

= yβd − yβd + 3dβmax

− 3demax − uβmax

−
2∑

i=1

aβiuβmax −
nβ∑

3

aβiuβmax

︸ ︷︷ ︸
−uβ max

−aβ1uβmax −
nβ∑

2

aβiuβmax

︸ ︷︷ ︸
−uβ max

+dβmax

= dβmax.

(106)

Consequently, uβ(3) = uβmax and de(3) = demax.
The stock level satisfies yβ(3) ≥ dβmax. Therefore,
hβ(3) = dβmax. We continue in the same manner for
the following steps up to k = nβ , when

xxxβ(nβ) =

⎡

⎢⎢⎢⎣

yβ(nβ)
uβmax

...
uβmax

⎤

⎥⎥⎥⎦

nβ+1

(107)

and the current stock level yβ(nβ) satisfies

yβ(nβ) = yβd − nβdβmax + nβdemax

+

n−1∑

i=1

aβiuβmax +

n−2∑

i=1

aβiuβmax + . . .

+

2∑

i=1

aβiuβmax + aβ1uβmax.

(108)

Substituting the value of yβd from (90), we obtain

yβ(nβ) = dβmax. (109)

The sales at k = nβ are hβ(nβ) = dβmax and the control
satisfies uβ(nβ) = uβmax and de(nβ) = demax. Finally,
for any k ≥ nβ + 1, the state vector becomes

xxxβ(k) =

⎡

⎢⎢⎢⎣

yβ(k)
uβmax

...
uβmax

⎤

⎥⎥⎥⎦

nβ+1

, (110)

where
yβ(k) = dβmax, (111)

which ends the proof.
�

As shown in (111), the proposed control strategy
ensures that the demand in warehouse β is fully satisfied
for any k ≥ 0, despite the control limit.

4. Simulation example
In this section, we will verify the control properties
presented in the paper. We consider two warehouses
selling a single product, measured in pieces [pcs].

The first warehouse, α, is a 7th order inventory
system with four suppliers:

• Supplier 1 with six time instants of lead time that
delivers 40% of the goods,

• Supplier 2 with five time instants of lead time that
delivers 30% of the goods,

• Supplier 3 with four time instants of lead time that
delivers 20% of the goods,

• Supplier 4 with two time instants of lead time that
delivers 10% of the goods.

Therefore, nα = 6 and the aαi parameters are aα6 =
0.4, aα5 = 0.3, aα4 = 0.2 and aα2 = 0.1, with
the remaining ones equal to zero. The dynamics of the
system are described in Section 2.1. The demand in the
warehouse is comprised of three terms. The contractual
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Fig. 1. Demand terms in warehouse α.
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Fig. 2. Desired trajectory sαd(k).

demand vector is a repeating sequence of four values
dc(k) = 20, 30, 10, 50, presented in Fig. 1. The
emergency demand de(k) is a signal generated by the
controller of warehouse β, as a request for additional
deliveries. It may be considered as random and bounded
by (89). As depicted in Fig. 1, the emergency demand will
change between zero and demax every 20 time instants.
The random demand dr(k) changes between its bounds
drmin = 1 and drmax = 10 every 20 time instants,
as shown in Fig. 1. The control vector of warehouse
α, i.e., cccα, is chosen according to (32) and cccα =[
1 0.4 0.7 0.9 0.9 1 1

]
.

Considering the contractual demand of warehouse
α shown in Fig. 1, we generate the desired trajectory
sαd(k). As seen from (34), the trajectory contains the
sum of the contractual values for all the nα + 1 = 7
future time instants and it is depicted in Fig. 2. The
initial amount of stock required in the warehouse is, as
defined in (36), yα0 = 170. This amount fulfills the
contractual obligations of the warehouse for k = [0, 6].

Using the desired trajectory sαd(k) we design the
control for warehouse α. Its representative will shall
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Fig. 3. Control signal uα(k).
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Fig. 4. Amount of product in warehouse α.

follow sαd(k) according to the reaching law (37). The
emergency deliveries and random sales present in the
system are a disturbance and must be compensated for.
As described by (40), the compensation vector is DerDerDer =[
15 15 15 15 15 15 15

]
.

We also compare the trajectory of warehouse α,
cccαxxxαd(k), with the generated desired trajectory sαd(k)
and lower the desired trajectory according to (80), with
γ = 26, to minimize the storage space required by the
warehouse α. With both considered, the initial stock
required in warehouse yα0 = 170 + cαDerDerDer − γ = 232.5.
The resulting control signal uα(k) is depicted in Fig. 3. It
is clear that the amount of ordered goods closely follows
the known contractual demand, with values increased by
the need to compensate for the two random terms. When
both the emergency and random demand are in their upper
bounds, the control signal is at its maximum, and when
they decrease, the controller reacts accordingly. It is
worth mentioning that the generated control signal must
then be distributed between the suppliers. However, in
real problems each supplier may only deliver a finite
integer number of products, depending on the type of the
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goods measured in pieces, packs, kilograms, litres, etc.
Therefore, the control value for a specific supplier may
need to be rounded up, and always up in order to avoid
any sale losses.

The amount of goods in the warehouse yα(k)
resulting from the controller’s effort can be seen in Fig. 4.
The effects of increased emergency and random demands
result in the lowered value of yα(k). Additionally,
the figure also presents the stock of warehouse α after
each step of sales in the warehouse—the contractual
obligations, the emergency deliveries to warehouse α, and
the random sales. It can be noticed that the compensations
terms result in a system with the smallest possible
amount of goods stored in the warehouse, as the stock
occasionally falls to zero in situations where the demands
are in their upper bounds.

The second warehouse, denoted with β, is a 6th order
system with three suppliers:

• Supplier 1 with five time instants of lead time that
delivers 40% of the goods,

• Supplier 2 with four time instants of lead time that
delivers 30% of the goods,

• Supplier 3 with two time instants of lead time that
delivers 30% of the goods.

From the above, we can calculate that nβ = 5. The
maximum order quantity of the warehouse is uβmax =
10. The aβi parameters of the warehouse are aβ5 = 0.4
and aβ4 = aβ2 = 0.3, with the remaining ones equal
to zero. The dynamics of the warehouse are described
in Section 2.2. The demand in warehouse β, displayed
in Fig. 5, is random and changes between its bounds
dβmin = 5 and dβmax = 15 every 20 time instants.

The warehouse’s control vector, i.e., cccβ ,
is chosen according to (32) and is cccβ =[
1 0.4 0.7 0.7 1 1

]
. The initial stock yβ0

and the desired value yβd are calculated according to
Theorem 2 and are yβ0 = yβd = 53. We continue by
applying the control law (87) to warehouse β, presented
in Fig. 6. It can be seen that, in situations where the
random demand exceeds the maximum order quantity,
uβeq(k) is higher than what is possible to order from the
suppliers. As a result, the control signal uβ(k) reaches
its upper bounds uβmax and the warehouse α is notified
about the need for additional deliveries by de(k).

These control efforts result in the stock of warehouse
β, yβ(k), as depicted in Fig. 7. Once again, higher values
of the demand result in lower amounts of goods inside the
warehouse. We can also see the warehouse’s stock after
the random sales. With the demand in its upper bound,
the amount of goods falls to zero, which means that the
smallest possible values of yβ(0) and yβd were chosen.

Finally, the presented figures show that no sale losses
were encountered. We achieved full demand satisfaction

0 20 40 60 80
Time (periods)

0

5

10

15

20

A
m

ou
nt

 o
f 

go
od

s 
(p

ie
ce

s)

Fig. 5. Demand in warehouse β.
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Fig. 6. Equivalent control uβeq(k) and control signal uβ(k).
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Fig. 7. Amount of product in warehouse β.

with the stock levels of both warehouses at their lowest
possible values for the chosen control schemes.

5. Conclusions

In this study we considered an inventory system consisting
of two periodic review warehouses owned by the same
company. Both warehouses store one and same product,
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and each of the warehouses is characterised by its specific
suppliers with different lead times and different customer
demand profiles. Warehouse β operates under random
customer demand and is controlled according to a simple
order-up-to control strategy. Moreover, system β is
subject to delivery limitations, which at times may result
in an inability to fulfill the demand. To tackle such
emergency situations, we propose to transfer some of the
leftover stock from warehouse α and use it to satisfy β’s
clients. On the other hand, warehouse α is subject to
market demand of two sorts. We defined an a priori
known contractual demand part and a random demand
term. Based on the contractual demand knowledge, we
generated a reference trajectory profile in advance. Next,
we designed a reference trajectory following the SMC
law, which ensures sufficient stock level to fulfill the
contract at any step k. The secondary goal of system
α is to provide supplementary deliveries to warehouse
β in case of emergencies. Therefore, the proposed
control law was enriched with random demand and
emergency deliveries compensation. The paper proves
that the suggested control strategy ensures full demand
satisfaction in both warehouses, while retaining the
minimum necessary stock level. We believe that the
idea presented in this manuscript may be successfully
extended to multiple warehouse systems, which will
greatly simplify the control of large logistics centres.

It is worth pointing out that the proposed control
strategy is much more flexible than commonly used
inventory resupply strategies, such as the EOQ method.
Unlike the EOQ strategy, the proposed control scheme
takes into account changing market conditions. The
contractual demand profile considered changes over time
and will be known with the advance of n+1 time instants
only. Therefore, the control may be easily adjusted
when the demand changes, whereas EOQ provides an
optimal order number with constant market demand.
Moreover, the proposed strategy provides much better
time coordination of the process. It considers delivery
delays and minimizes storing costs as a certain amount of
goods arrives at the warehouse at the exact time instants
they are needed for contracted buyers.
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