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The paper deals with the estimation of sensor faults for dynamic systems as well as the assessment of the uncertainty of
the resulting estimates. For that purpose, it is assumed that the external disturbances are bounded within an ellipsoidal
domain. This allows considering both stochastic and deterministic process and measurement uncertainties. Under such
an assumption, a fault diagnosis scheme is developed with a prescribed convergence rate and accuracy. To achieve fault
estimation, a conversion into an equivalent descriptor system is utilized. The paper provides a full stability and convergence
analysis of the estimator including observability analysis. As a result, a set of complementary fault uncertainty intervals is
obtained, which are minimized in such a way as to obtain a minimum detectable sensor fault. The final part of the paper
exhibits a numerical example concerning fault estimation of a multi-tank system. The obtained results clearly confirm the
performance of the proposed estimator expressed in the minimum detectable fault intervals.
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1. Introduction
Owing to the intense development of the industrial
Internet of things (IIoT) (Witczak et al., 2023) towards
Industry 4.0, companies are increasing the number
of sensors and actuators that cover the existing and
newly developed infrastructures. This leads to a higher
probability of faults. Indeed, the more sensor/actuators,
the larger a chance that some of them can be faulty.
Undoubtedly, a fault may impair the overall system
performance, and hence it may also lead to its failure.
This brings us to a straightforward conclusion that faults
should be detected as fast as possible taking into account
disturbances, model uncertainties, etc. Undeniably, these
unappealing factors may hide the effect of the fault. Thus,
the main objective of this paper is to answer the question:
What is the smallest possible sensor fault which can be
detected for a given class of dynamic systems?

*Corresponding author

The answer to this nontrivial issue contributes
directly to preventing a reduction of the system’s
availability and productivity. Indeed, the sooner a fault
is detected, the sooner a recovery or repair action can
be performed. This is the reason why fault diagnosis
(FD) plays an important role in safety and reliability
of complex systems (Blanke et al., 2006; Patton and
Chen, 1997; Zhang and Jiang, 2008).

Many successful techniques are now used in FD
research (Rodrigues et al., 2015; Pazera and Witczak,
2019; Samada et al., 2022; Zhirabok and Shumsky,
2018). FD is primarily focused on fault detection and
isolation (FDI) (Yang et al., 2015; Jung and Frisk, 2018).
However, with the development of fault-tolerant control
(FTC) (Pizzi et al., 2019; Pazera et al., 2018; Bounemeur
et al., 2018; Chen et al., 2018; Kukurowski et al., 2022),
fault estimation has become an important research area
in modern FD (Chen et al., 2018; Wen et al., 2022; Ye
et al., 2016). Fault estimation provides information
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about the presence, location and size of a fault. Such
information is necessary to accommodate the fault by
means of appropriate FTC methods (Rotondo et al., 2015;
Liu et al., 2018) or simply a hardware replacement.

There are many fault estimation schemes using
observer-based approaches (Zhang et al., 2018; Rinaldi
et al., 2018; Peng et al., 2019). Zhang et al. (2018)
reviewed observer-based fault estimation techniques for
various classes of systems, including continuous-time,
discrete-time and fuzzy systems. For example, Rinaldi
et al. (2018) provide a novel estimation scheme for
power grids based on distributed observers, i.e., the
distributed observers use only knowledge of local system
information. A nonlinear observer for the estimation of
vehicle speed along with the tire-road friction factor was
designed by Peng et al. (2019). Nasrolahi and Abdollahi
(2018) address an integrated sensor fault detection and
recovery for a satellite attitude control system. The
developed nonlinear observer allows detecting faults both
in angular rate and attitude sensors simultaneously. Gupta
et al. (2017) considered the problem of chaotic system
synchronisation for secure communication. This solution
was based on the observer design approach. The paper by
Chandra et al. (2015) concerns the synchronization of
a chaotic and Rossler system in a finite-time for safe
communication, and in that of Gupta et al. (2017) the
Lorenz system was applied for the transmission of a signal
for secure communication. Boutayeb et al. (2002) and
Wang et al. (2009) present a novel technique for both
synchronization and secure communication of chaotic
systems (well-known chaotic Lorentz systems). In the
work of Boutayeb et al. (2002), the proposed approach
is based on generalized state space observer design.
Wang et al. (2009), proposed a descriptor observer that
ensures accurate estimation of both the system states and
the transmitted signals. Dimassi et al. (2012) present
new unknown-input observers for secured transmission of
information based on master–slave synchronization.

As already mentioned, the present paper proposes
a method for determining a minimum detectable sensor
fault (MDF) for a class of linear dynamic systems
along with assessing the uncertainty of the resulting
estimates. The proposed MDF approach is based on a set
of complementary fault uncertainty intervals, which are
minimized to obtain a minimum detectable sensor fault.
The minimum detectable fault is often used as an index to
assess and characterise the performance of fault detection.
It also describes the sensitivity of FD. The reference
literature covering the MDF provides many different
points of view. In the work of Wang et al. (2022), the
sensor fault detection problem in a dynamic point-the-bit
rotary steerable system was considered. The authors
proposed a finite-frequency fault detection observer and
the calculation method of minimum detectable faults.
Xu (2022) designed a framework for computing minimal

detectable and isolable faults of set-based active fault
diagnosis methods for discrete-time linear time-invariant
systems. The guaranteed minimal detectable and isolable
faults were computed by solving a mixed integer quadratic
fractional programming problem. In the work of Tan et al.
(2023), a confidence set-based computational method of
minimal detectable faults was presented. The proposed
method was based on the confidence set-separation
condition between healthy and faulty residual sets for
discrete linear time-invariant systems. Mustafa et al.
(2016) proposed an SMI technique. It is also based on
minimum identified uncertainty bounds violation. Such a
methodology relies on the set membership identification
(SMI) technique. Minimal detectable faults for actuators
and sensors were obtained by solving a nonconvex
optimization problem. Furthermore, Samada et al. (2022)
analyses the problem of robust fault detection considering
parametric uncertainty with zonotopes. A zonotopic
recursive least squares estimator is proposed, which takes
as a reference the minimum detectable fault generated in
the worst case. In the work of Kodakkadan et al. (2017),
a detectable sensor fault obtained with interval observers
was considered. Minimum detectable sensor faults are
analyzed by means of both invariant-sets and classical
fault-sensitivity method. A framework for computing
the MDF by constructing a minimal robust positively
invariant set of linear parameter varying systems based on
a poly-quadratic Lyapunov function was proposed by Tan
et al. (2019).

The main contribution of this paper is to propose a
fault estimator with a possibly small uncertainty under
a given feasible ellipsoidal set of unknown exogenous
disturbances. Unlike the approaches presented in the
literature, the proposed solution focuses on a single sensor
fault. This means that a coverage of all sensor faults is
possible by using a bank of such estimators, which is
presented in Fig. 1. The above strategy is motivated by
the fact that it is impossible to obtain a single sensor fault
estimator which will provide the same estimation quality
for all ns sensor faults. This simply means that each
estimator (in the bank of ns of them) estimates all faults
but is designed in such a way as to provide an estimate of
the i-th (i = 1, . . . , ns) fault with as little uncertainty as
possible. The main advantage of the proposed approach
is that the minimum value of the estimation uncertainty is
achieved and expressed by an uncertainty interval. This,
in turn, gives us the value of the minimum detectable fault,
i.e., a fault which can be distinguished from the external
disturbances and the remaining uncertainties. The MDF
pertains to sensor faults and it is absolutely important due
to the fact that it allows process engineers to notice early
fault occurrence. This is particularly important because
it gives them more time to react to such a fault in order
to minimize its effects in time and prevent a failure that
may have serious consequences. In consequence, it is
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Fig. 1. Bank of sensor fault estimators.

important to notice a fault occurrence at its minimum
level, which allows, e.g., safe operation and minimizes
the costs of further maintenance. Moreover, in some way
the MDF prevents false alarms due to the bounds which
ensure that the fault is always inside them. Finally, the
convergence as well as stability analysis pertaining to the
MDF is provided as well.

The paper is structured as follows. In Section 2,
the problem is introduced and essential preliminary
information is presented. Section 3 outlines a new
estimator structure along with the underlying convergence
conditions. Section 4 expands the proposed strategy
by incorporating a design strategy towards a minimum
detectable fault. An illustrative example is then provided
in Section 5. Finally, the paper is concluded in Section 6.

2. Preliminaries

Let us start with defining a linear dynamic system, which
will be the subject of the discussion presented in the
framework of this paper:

x̄k+1 = Āx̄k + B̄uk + W̄ 1w1,k, (1)
yk = C̄x̄k +Cffk + W̄ 2w2,k, (2)

where x̄k ∈ X ⊂ R
n, uk ∈ R

r, yk ∈ R
m,

are the state, control input and output vectors, whilst
fk ∈ Fs ⊂ R

s is the sensor fault. Moreover,
w1,k ∈ R

nw1 and w2,k ∈ R
nw2 are unknown exogenous

external disturbances affecting the process and output
measurements, respectively. Note also that Cf is a fault
distribution matrix satisfying rank(Cf ) = s. This matrix
is typically formed with an appropriate subset of the
columns of the identity matrix Im. Subsequently, the

system (1)–(2) is converted into an equivalent form,

Exk+1 = Axk +Buk +W 1w1,k, (3)
yk = Cxk +W 2w2,k, (4)

with

E =

[
In 0
0 0

]
, A =

[
Ā 0
0 0

]
, C =

[
C̄ Cf

]
,

(5)

B =

[
B̄
0

]
, W 1 =

[
W̄ 1

0

]
, W 2 = W̄ 2, (6)

and xk = [x̄T
k ,f

T
k ]

T . One can easily observe that (3) and
(4) constitute a descriptor system with the extended state
containing both the original state and the sensor fault. The
objective of the subsequent part of this section is to bring
(3) and (4) to the classical state-space form with the state
shaped by xk. For that purpose, let us start with showing
that there exist N and T such that

TE +NC = In+s. (7)

Then, we proceed partitioning T as follows:

T =

[
T 1 T 2

T 3 T 4

]
, (8)

and hence

TE =

[
T 1 0
T 3 0

]
. (9)

Similarly, let N = [NT
1 , N

T
2 ]

T , and hence

NC =

[
N 1C̄ N1Cf

N 2C̄ N2Cf

]
. (10)

Thus, by substituting (9) and (10) into (7), we can show
that it is equivalent to

[
T 1 +N1C̄ N 1Cf

T 3 +N2C̄ N 2Cf

]
= In+s. (11)

Finally, a solution satisfying the above equality is

N1 = 0, N2 = Cx, T 1 = In, T 3 = −CxC̄,
(12)

where Cx stands for a general solution to CxCf = Is,
which is given by

Cx = C+
f +C0

(
I −CfC

+
f

)
, (13)

where C0 ∈ R
s×m is any arbitrary matrix while C+

f

stands for the pseudoinverse of Cf . Moreover, T 2 and
T 4 are arbitrary matrices of appropriate dimensions. This
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means that there are infinitely many solutions. However,
T 2 and T 4 have no practical impact, and hence they can
be set as T 2 = 0 and T 4 = 0. This leads to the final form
of matrices T and N :

T =

[
In 0

−CxC̄ 0

]
, N =

[
0
Cx

]
. (14)

Thus, by multiplying (3) by T and then substituting
TE = I −NC , one can get

xk+1 =

[
Ā 0

−CxC̄Ā 0

]
xk +

[
0 0

CxC̄ Is

]
xk+1

+

[
B̄

−CxC̄B̄

]
uk +

[
W̄ 1

−CxC̄W̄ 1

]
w1,k.

(15)

Subsequently, using the new state variable, one can
multiply the output equation (2) by N , which yields

[
0
Cx

]
yk+1 =

[
0 0

CxC̄ Is

]
xk+1

+

[
0

CxW̄ 2

]
w2,k+1.

(16)

Finally, substituting (16) into (15) gives a new
state-space equation:

xk+1 =Ãxk +

[
B̄

−CxC̄B̄

]
uk

+

[
0
Cx

]
yk+1 +

[
W̄ 1

−CxC̄W̄ 1

]
w1,k

+

[
0

−CxW̄ 2

]
w2,k+1,

(17)

where

Ã =

[
Ā 0

−CxC̄Ā 0

]
,

while the output equation is

yk = [C̄ Cf ]xk + W̄ 2w2,k

= Cxk + W̄ 2w2,k. (18)

Note that the form (17) is obtained by a chain of
mathematical manipulations, which are inherited from
the classical approaches presented, e.g., by Hou and
Patton (1998), Hsieh (2011), Chen and Patton (1999) and
Witczak (2014). Note that this form involves yk+1, and
hence, it is not suitable for control purposes. This clearly
means that the estimation of the state xk+1 requires the
measurement yk+1. This is also a common strategy in
Kalman filter-based approaches (Gillijns and De Moor,
2007). Moreover, as proposed by Hsieh (2011), the state
estimation problem can be formed using the descriptor
form similar to (3).

3. Development of a fault diagnosis scheme
Having a system description (17)–(18), it is possible to
propose a fault diagnosis scheme capable of estimating
the faults and states:

x̂k+1 =Ãx̂k +

[
B̄

−CxC̄B̄

]
uk

+

[
0
Cx

]
yk+1 +K(yk −Cx̂k),

(19)

where K is an unknown matrix, which has to be
determined in such a way as to guarantee the convergence
of the estimation error ek = xk − x̂k:

ek+1 = Xek + Y w̃k, (20)

where

X = Ã −KC,

Y =

[
W̄ 1

−CxC̄W̄ 1
−KW̄ 2

0
−CxW̄ 2

]
,

(21)

while w̃k = [wT
1,k,w

T
2,k,w

T
2,k+1]

T .
As mentioned in Section 1, the proposed solution

focuses on a single sensor fault. This means that a
coverage of all sensor faults is possible by using a bank of
(19) (see Fig. 1). This simply implies that each estimator
(in the bank of s of them) estimates all faults but it is
designed in such a way as to provide an estimate of the i-th
(i = 1, . . . , s) fault with as little uncertainty as possible.

The objective of the subsequent part of this section is
to perform a comprehensive convergence analysis of the
estimation error (20). For that purpose, let us start with
defining a Lyapunov function Vk = eTkPek, P � 0.
In the deterministic case, w̃k = 0 in (20), and hence
the conventional Lyapunov approach can be employed.
On the other hand, for w̃k �= 0, suitable assumptions
about w̃k should be performed. To settle this problem,
the celebrated H∞ approach along with an alternative
strategy called quadratic boundedness (QB) (Alessandri
et al., 2006; Ding, 2010; Pazera and Witczak, 2019) can
be employed. Thus, for the purpose of further discussion,
the following definitions are introduced:

Definition 1. The estimator (19) is convergent in the H∞
sense iff (20) satisfies

Vk+1 − Vk + eTk ek − μ2w̃T
k w̃k < 0, (22)

where μ > 0 is a disturbance attenuation level and w̃k ∈
l2 whilst (Zemouche et al., 2008)

l2 = {w̃ ∈ R
nw | ‖w̃‖l2 < +∞} ,

‖w̃‖l2 =
( ∞∑

k=0

‖w̃k‖2
) 1

2

.
(23)
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Definition 2. The estimator (19) is convergent in the QB
sense iff (20) satisfies

Vk+1 − (1− α) Vk − αw̃T
k Qww̃k < 0, (24)

where 0 < α < 1 for all w̃k ∈ E satisfying

E =
{
w̃ : w̃TQww̃ ≤ 1

}
, Qw � 0. (25)

Comparing (22) and (24), we can observe a similarity
between them. This feature enables formulating the
following unifying framework:

Vk+1 − Vk + eTkRek − w̃T
kQw̃k < 0, (26)

with R 	 0 as well as Q 	 0.
Thus, by substituting the following values to (26), we

can obtain

• Lyapunov approach: R = 0, Q = 0,

• QB approach: R = αP , Q = αQw,

• H∞ approach: R = I, Q = μ2I .

Before proceeding to the main result of this section, let us
recall Finsler’s lemma (Skelton et al., 1997).

Lemma 1. The following properties are equivalent:

1. ẽTEẽ < 0, ∀ẽ ∈ {ẽ ∈ R
n+s|ẽ �= 0,F ẽ = 0},

2. ∃M ∈ R
n+s×m such that E+MF +F TMT ≺ 0.

Theorem 1. The system (20) satisfies (26) iff there exist
matrices P � 0, R 	 0, Q 	 0 U , L for which

⎡
⎢⎣

−P +R 0 Ã
T
UT −CTLT

0 −Q DT

UÃ −LC D P −U −UT

⎤
⎥⎦ ≺ 0, (27)

D =

[
U

[
W̄ 1

−CxC̄W̄ 1

]
−LW̄ 2 U

[
0

−CxW̄ 2

]]
.

(28)
Proof. Definine the following super-vector:

ẽk =
[
eTk , w̃

T
k , e

T
k+1

]T
. (29)

As a result, (20) can be rewritten in the form

[X Y − I] ẽk = F ẽk = 0. (30)

Moreover, define

Z = diag(−P +R,−Q,P ), M =

⎡
⎣0
0
U

⎤
⎦ . (31)

Finally, using Finsler’s lemma yields⎡
⎣−P +R 0 XTUT

0 −Q Y TUT

UX UY P −U −UT

⎤
⎦ ≺ 0. (32)

Inserting

UX = U
(
Ã −KC

)
= UÃ − LC, (33)

UY = D

into (32) completes the proof. �

The practical application of Theorem 1 boils down to
selecting either

• the H∞ approach by setting R = I , Q = μ2I in
(27), or

• the QB approach by setting R = αP , Q = αQw in
(27),

and then solving (27). In both the cases, a bilinear
matrix inequality is obtained with respect to either μ or α,
respectively. Such a problem can be solved by choosing
either μ or α from a predefined set and then solving
(27). Alternatively, the problem can transformed into a
generalized eigenvalue one (Witczak, 2007).

Irrespective of the selected approach, the estimator
(19) gain matrix can be calculated as follows:

K = U−1L. (34)

Note that the regularity of U is ensured by the fact that
satisfying (27) implies P − UT − U ≺ 0. Finally,
it should be noted that the selection of matrix M in
(31) is not accidental. Indeed, as proven by de Oliveira
et al. (1999), such an approach is equivalent to the usual
Lyapunov matrix inequality-based strategy. However, as
indicated by de Oliveira and Skelton (2007), replacing
zero entries of M in (31) may provide some additional
design freedom, which can be beneficial while obtaining
the numerical solutions of (27).

Having (17) and (18), the observability condition of
the pair (Ã,C) should be checked, which boils down to
verifying the rank of the observability matrix

rank(O) = n+ s, O =

⎡
⎢⎢⎢⎢⎢⎢⎣

C

CÃ

CÃ
2

...
CÃ

n+s−1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (35)

Let us start with noting that

Ã
b
=

[
Ā

b
0

−CxC̄Ā
b

0

]
,

CÃ
b
=

[
[Im −CfCx]C̄Ā

b
0
]
.

(36)
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Thus, the observability condition becomes

rank(O) = n+ s,

O =

⎡
⎢⎢⎢⎢⎢⎣

C̄ Cf

[Im −CfCx]C̄Ā 0

[Im −CfCx]C̄Ā
2

0
...

...
[Im −CfCx]C̄Ā

n+s−1
0

⎤
⎥⎥⎥⎥⎥⎦
.

(37)

Since Im − CfCx is an idempotent matrix, it is evident
that

rank(Im −CfCx) = m− rank(CfCx)

= m− rank(Cf ) = m− s,
(38)

which clearly proves that the number of sensors should be
larger than that of faults being considered, m > s. Note
also that the choice of C0 has no impact on observability,
and hence it does not influence the final estimator design
problem.

As a result of the above-performed analysis, the
following conclusions can be drawn:

• A necessary condition for the observability of the
pair (Ã,C) is that m > s.

• Together, m > s and rank(O) = n + s
form a necessary and sufficient condition for the
observability of (Ã,C).

• The observability of (Ã,C) is a necessary condition
for the existence of a solution of (27).

Obviously, the proposed fault estimation scheme
refers to sensor faults and this is undoubtedly important.
However, the descriptor-based scheme can be easily
transformed to actuator fault estimation, or both sensor
and actuator fault estimation, which might appear
simultaneously. Such schemes can be found, e.g., in
the work of Witczak et al. (2022), Kukurowski et al.
(2021a; 2021b), Pazera and Witczak (2019) or Pazera
et al. (2021).

4. Determining a minimum detectable fault
Irrespective of the fault and state estimation scheme being
used, it always provides estimates with an associated
uncertainty. Thus, instead of a point estimate, a fault
uncertainty interval is obtained. It can be formally defined
as

fi,k ∈ Fi, Fi =
[
f
i,k
, f i,k

]
, i = 1, . . . , s, (39)

where f
i,k

≤ f i,k stand for its lower and upper bound,
respectively. This means that any value contained in Fi

is an equally good estimate of fi,k. As a consequence,

0 2000 4000 6000 8000 10000 12000
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 2. Fault uncertainty interval and the fault detection time td.

the fault detection time td is defined as a time instance
at which one of the extremities of Fi gets zero. Such
a situation is illustrated in Fig. 2. The most common
approach to form the fault uncertainty interval is to use the
fault estimate along with the knowledge of its uncertainty
expressed by oi, i.e.,

Fi =
[
f
i,k
, f i,k

]
=

[
f̂i,k − oi,k, f̂i,k + oi,k

]
, (40)

i = 1, . . . , s. Thus, the fault is detected if either f̂i,k −
oi,k ≥ 0 or f̂i,k + oi,k ≤ 0 are satisfied. This clearly
means that the minimum detectable fault is the one for
which f̂i,k ≥ oi,k or f̂i,k ≤ −oi,k. As a result, the MDF
depends solely on oi,k.

The objective of the subsequent part of this section
is to provide a way for determining the form as well as
the minimum value of oi,k . Let us start with recalling that
(26) can be written as

Vk+1 < eTk (P −R)ek + w̃T
k Qw̃k. (41)

Moreover, the satisfaction of (27) implies P − R � 0.
This means that there exists a scalar γ ∈ (0, 1) such that

eTk Rek ≤ γeTk Pek, (42)

Note that, in the QB case, R = αP , and hence the above
nonstrict inequality becomes an equality with γ = α.
Thus, substituting (42) and Q = γQγ (Qγ � 0) yields

Vk+1 − (1 − γ)Vk < γw̃T
k Qγw̃k. (43)

Again, note that, in the QB case, Qγ = Qw and
w̃T

kQγw̃k ≤ 1. Thus, to guarantee the boundedness
of (43) in the H∞ case, a similar assumption has to be
imposed, i.e., w̃T

k Qγw̃k ≤ 1. Under such an assumption,
the inequality (43) can be simply written as

Vk+1 − (1− γ)Vk < γ. (44)
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Subsequently, by applying induction to (44), we can
get

Vk ≤ (1 − γ)kV0 + γ
k−1∑
i=0

(1− γ)i, (45)

and finally,

Vk ≤ ψ(γ) = (1− γ)k(V0 − 1) + 1. (46)

Irrespective of V0, the relation (46) converges to Vk ≤ 1,
i.e., ekPek ≤ 1. This means that the fault uncertainty
interval is given by

fj,k ∈ Fj,

Fj =

[
f̂j,k −

√
ψ(γ)cTi P

−1ci,

f̂j,k +

√
ψ(γ)cTi P

−1ci

]
,

(47)

where ci is a column of the n + s identity matrix while
i = n+ j and j = 1, . . . , s.

As already mentioned, the size of the
minimum detectable fault is proportional to

oj,k =
√
ψ(γ)cTi P

−1ci. Thus, to derive its optimal
value, the following minimization problem is formulated:

min
P�0

cTi P
−1ci (48)

subject to (27). To make the above problem tractable,
i.e., to eliminate the inverse of P , it is assumed that there
exists a scalar β > 0 satisfying

cTi P
−1ci ≤ β, (49)

which, by employing the Schur complement, can be
transformed into an LMI:[−β cTi

ci −P

]
≤ 0. (50)

Finally, it should be noted that minimizing (48) under
(27) is equivalent to

min
β>0

β (51)

under (27) and (50). This leads directly to the following
iterative design procedure:

Step 0: Choose a maximum allowable bound of β, i.e.,
β̄, and its iteration step Δβ > 0. Choose the
minimum convergence factor γ ∈ (0, 1) along with
the iteration step Δγ > 0. Set β = β̄.

Step 1: Set γ = γ.

Step 2: If possible, obtain a feasible solution of (27) and
(50).

Fig. 3. Multi-tank system.

Step 3: If γ + Δγ < 1, set γ = γ + Δγ ; otherwise, go
to Step 4.

Step 4: If β − Δβ > 0, then update β = β − Δβ and
proceed to Step 1.

As a result of applying the above procedure, a grid of
possible (γ, β) solutions is obtained. Finally, the most
well-suited one can be selected.

5. Sample results
5.1. Simulation study. The minimum detectable
sensor fault approach is verified using the multi-tank
(MT) system portrayed in Fig. 3. The examined system
is fully computer-based controlled, which facilitates the
implementation of various control, identification, and
estimation strategies. The system consists of three
vertically arranged tanks with different volumes and
shapes. A fully controlled water pump supplies liquid to
the top tank. The liquid then flows sequentially from the
top tank to the middle one and then to the lower one before
ultimately reaching the reservoir. To achieve control over
the interconnections between the tanks, solenoid valves
are employed and adjusted using a pulse width modulation
(PWM) signal. Also, the PWM signal is utilized to
control the pump’s behaviour. The water levels in the
tanks are measured through water pressure readings. The
system considered offers three different control modes,
each serving specific purposes:

1. Pump Control: This mode is the most popular and
simplest approach. It allows stabilizing the water
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level in a single tank by adjusting the pump’s control
signal while keeping all the valves open permanently.

2. Valve Control: In this mode, the water level in
all three tanks can be simultaneously stabilized by
adjusting the control signals of the valves. However,
the pump operates with a constant flow, limiting the
achievable water levels.

3. Pump-Valve Control: This is the most interesting and
challenging mode. It enables the stabilization of the
water level in each tank and, unlike in the previous
mode, a predefined water level in each tank can be
achieved.

In summary, the system offers great flexibility, with
the pump-valve control mode providing the most
comprehensive control over the water levels in the tanks.
However, the primary objective is to test the performance
of the sensor fault estimation schemes, and hence a simple
pump control is used exclusively.

The nonlinear model of the system (Pazera and
Witczak, 2019) is linearized and discretized (INTECO,
2013). This is realized under a sampling time of
Ts = 0.01 seconds, which leads to the following system
matrices:

Ā =

⎡
⎣ 0.9997 0 0

0.0004088 0.9995 0
7.318e− 08 0.0003579 0.9997

⎤
⎦ ,

B̄ =

⎡
⎣1.1430

0

⎤
⎦ , C̄ =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ , (52)

W̄ 1 = 0.05In, W̄ 2 = 0.01Im.

The distribution matrices W̄ 1 and W̄ 2 should
express the influence and magnitude of wk onto the
state and output (1) and (2), respectively. To obtain
an appropriate proportion between the elements of W̄ 1

and W̄ 2, a series of constant liquid level measurements
were performed for the top tank. Subsequently, the
mean was subtracted, which represents the constant liquid
level, and then the disturbances where analyzed. The
standard deviation of the disturbance obtained for a
series of measurements is equal to 1.75 · 10−4. Almost
identical results were obtained for the sensors in the
middle and bottom tanks. As a result, the above settings
of the distribution matrices were established. Moreover,
w1 and w2 were generated according to the truncated
normal distribution with expectations equal to 0, standard
deviations σw1 and σw2 , and the truncation level equal to
4 · 10−4 and 2 · 10−4 , respectively.

The sensor fault distribution matrix Cf is defined
with components of ones and zeros, where the value
of one indicates that the fault affects the corresponding

sensor readings while zero signifies the opposite. In the
second sensor case, this matrix is set as follows:

Cf =

⎡
⎣01
0

⎤
⎦ . (53)

All the three liquid levels were measured, but the
sensor in the middle tank was impaired by a fault. Such
a configuration of the system allows defining a scenario
for investigating the fault estimation process which is
given as follows:

F-Sc:

f2,k

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0.05 ·

4∑
i=1

pc,i · k|i−4|, 5001 ≤ k ≤ 11500,

0.105, k ≥ 11501,

0, otherwise,
(54)

where f2,k stands for a fault signal corresponding to the
level sensor in the second (middle) tank at time k, with pc
denoting a coefficient vector,

pc =
[− 2 · 10−15, 3 · 10−13,−9 · 10−11, 5 · 10−6

]
.

(55)

It should be noted that this is only a function that
describes the behaviour of a real fault applied to the
system and does not have any direct impact on the
estimation error. In other words, the function describes
the shape of a real fault. Such a fault scenario allows
examining the fault estimation approach in two ways.
Firstly, the sensor fault is slowly developing and then it
starts to rise in an exponential way. Finally, the readings
show a value that is 10 cm higher than it really is in the
tank. The proposed iterative estimator design procedure
requires β̄ as an initialization parameter. Indeed, for
a real system, its value can be easily assessed. In the
proposed strategy, the maximum value of the minimum
detectable sensor fault is assumed to be β̄ = 0.35. Such
an assumption simply stems from the highest water level
which might be reached in each tank.

This assumption enables the calculation of the
relationship between two important parameters: the
convergence rate 0 < γ < 1 and the minimum detectable
fault bound 0 < β < β̄. The results obtained from this
analysis are depicted in Fig. 4. The dots on the graph
represent situations where a numerical solution can be
found for a specific combination of γ and β.

It can be observed from (46) that the higher γ, the
higher the convergence rate. This simply means that it is
harder to design an estimator, which is clearly visible in
Fig. 4. In cases where such a combination is not feasible,
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Fig. 4. Convergence rate γ vs. bound β on the uncertainty in-
terval.
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Fig. 5. State values of the first tank—simulation study.

0 5000 10000 15000
0

0.1

0.2

0.3

0.4

Fig. 6. State values of the second tank—simulation study.

the numerical optimization problem remains unsolvable.
Thus, one can clearly observe also some unappealing
features of the solver itself.

It is important to note that the dots in the figure
indicate that a solution can be obtained for a given
configuration of γ and β. Otherwise, a solution cannot be
obtained. The experiment was conducted in an open-loop
setup, where the control signal for the pump was kept
constant throughout the entire duration of the experiment.
Specifically, the water pump operated at 50% efficiency
during the entire time span, while the solenoid-valves
remained fully opened.

Figures 5–7 display the system’s response. In these
figures, the solid lines represent the states, the dashed lines
indicate the estimates, and the dash-dotted lines represent
the measured outputs.

As can be observed, the state estimates exhibit a
remarkable accuracy, even in the presence of considerable
measurement disturbances. In all three cases, the state
estimates quickly converge to the actual states. Thus, the
state estimation can be considered a highly appropriate
one. The sensor fault estimation results are presented
in Fig. 8. The dashed line represents the real fault
impact on the system and the solid one corresponds to the
fault estimate. It is important to note that the real fault
is shown for illustration purposes only, and its estimate
was obtained solely based on the system model and the
estimator’s structure, without any prior knowledge of its
shape and magnitude.

The fault estimate demonstrates a relatively high
level of accuracy, i.e., it follows the true fault while
being influenced by some small disturbances. These
disturbances cause the estimates to oscillate around
a specific value with a relatively small amplitude. Note
that the estimator was able to accurately reconstruct the
sensor faults, regardless of whether they were abrupt,
constant or slowly developing ones. The fault estimate
demonstrates a quick and precise response to changes
related to the real fault. Figure 9 portrays the thresholds
obtained with the proposed approach (cf. Section 4),
which are marked as the optimal ones.

The proposed methodology was compared with
other methods widely available in the literature (Mustafa
et al., 2016), which are marked as the SMI technique.
The compared approach is also based on the minimum
identified uncertainty bounds violation. However, such a
methodology relies on the set membership identification
(SMI) technique. Indeed, the proposed approach allowed
achieving narrower thresholds. This clearly determines
the minimum detectable fault. Moreover, the convergence
of the estimator is strictly related to parameters γ and β.
Figure 10 shows the evolution of the trace of P while
changing these dependent parameters.

As can be observed, a minor change in the trace is
observed while changing β and γ. This can be clearly
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Fig. 7. State values of the third tank—simulation study.
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Fig. 8. Sensor fault and its estimate along with uncertainty
intervals—simulation study.

explained by the fact that a decrease in one sensor fault
uncertainty interval causes an increase in the others. As a
result, the trace remains almost untouched.

5.2. Application to a real system. This subsection
is concerned with the application to a real MT system.
According to the model of the system, it is a nonlinear
one (INTECO, 2013; Witczak, 2014). However, to
deal with nonlinearities, the proposed approach can
be easily extended by handling the nonlinear function
describing the behaviour of the system. With such an
extension, the estimator can be obtained, e.g., using the
linear parameter varying (LPV) technique (Zemouche
and Boutayeb, 2013). In such a case, the estimator is
calculated not only for the linear model. Rather, the
estimator is obtained for all vertices (sub-models) of the
LPV model. To compare the experimental study with
simulations, the same fault scenario (54) was performed
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0.4
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0.8
6000 6500 7000

-0.04
-0.02
0
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Fig. 9. Comparison of optimal and non-optimal uncertainty in-
tervals for the fault estimate—simulation study.
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Fig. 10. Evolution of trace (P ).

to validate the correctness of the proposed approach.
Figures 11–13 show the results obtained with the real
system. In these figures, the output of the system is
presented with dash-dotted lines while the real state is
given by solid ones. Moreover, the state estimate is
portrayed with the dashed line.

It should be noted that the estimation process was
based only on measurement data and the real state of the
system is portrayed in these figures only for informative
purposes. The real states were measured additionally
while the system was performing and the signals were
supplementarily filtered with a simple first order low-pass
filter. It can be easily noticed that the states were
estimated properly despite the sensor fault occurrence.
The magnifying windows docked into these figures show
the accuracy and convergence of the proposed approach.

Furthermore, Fig. 14 portrays the sensor fault which
was introduced into the real system. The real fault is
presented with the solid line while its estimate is given
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Fig. 11. Water level in the top tank—experimental study.
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Fig. 12. Water level in the middle tank—experimental study.

by a dashed one. Moreover, the thresholds are presented
with the black solid lines. It can be easily seen that the
fault is estimated with a good accuracy. The real fault in
this figure is presented only for the information purpose.
It is not taken into account during the estimation process.
The fault estimate is obtained based on the measurements
and estimator structure exclusively.

It should be noticed that in both the
cases—simulation study as well as the application
to the real system—the faults were estimated in a very
proper way. Moreover, the uncertainty intervals obtained
during the simulation study are slightly narrower. For
the clarity of presentation, the comparison results are
included in Table 1. It can be easily shown that the mean
as well as the standard deviation of the distance of the
bound from the real fault are much lower in the proposed
approach for simulation and experimental studies than in
the SMI technique developed by Mustafa et al. (2016).

For better presentation, Fig. 15 shows the state
estimation error. It can be clearly seen that it is influenced
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Fig. 13. Water level in the lower tank—experimental study.
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Fig. 14. Sensor fault and its estimate along with uncertainty
intervals—experimental study.

by disturbances.
For comparison purposes, a case with two available

sensors was considered as well. For that purpose, the
following setting was employed:

C =

[
1 0 0
0 1 0

]
, (56)

which corresponds to the fact that the sensor in the
bottom tank is not available. Due the lack of space,
only the immeasurable state along with the sensor fault
is portrayed in Figs. 16 and 17. As can be noticed,
despite the fact that the bottom tank water level was
immeasurable, the state as well as the fault were estimated
properly.

6. Conclusions
The main objective of this paper was to propose an
estimation strategy for sensor faults, which guarantees
as little uncertainty as possible. Subsequently, the
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Fig. 15. State estimation error.
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Fig. 16. Sensor fault and its estimate in the case of an unmea-
surable state of the bottom tank—experimental study.
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Fig. 17. Water level in the lower tank in the case of an unmea-
surable state—experimental study.

Table 1. Comparison table.

Mean Standard
deviation

Simulation 0.017 0.0023study
Experimental 0.0642 0.0038study
SMI 0.2571 0.0027technique

level of such an uncertainty is utilized to define the
so-called minimum detectable sensor fault. Additionally,
a guaranteed exponential convergence rate is achieved
as well. In particular, the developments started with
converting a given class of linear dynamic systems
into equivalent descriptor ones. Subsequently, a
comprehensive observability analysis was performed.
As a result, feasible design conditions were obtained,
which allowed determining the convergence requirements.
Finally, the design procedure was formulated as a
two-dimensional iterative process. This process boils
down to finding a golden solution between two trade-offs,
namely, convergence and uncertainty. The final part of
the paper showed a numerical example concerning fault
estimation of a multi-tank system. The obtained results
clearly validate the performance of the proposed estimator
within the minimum detectable fault intervals.

The future research direction is focused on extending
the proposed scheme towards actuator faults and applying
it into reliable and convergence-guaranteed fault-tolerant
control.
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University of Technology, and his DSc degree
in computer science from the West Pomeranian
University of Technology in Szczecin, in 1992,
1998, and 2023, respectively. He has been with
the Institute of Control and Computation Engi-
neering, University of Zielona Góra (Poland),

since 1998, currently as an associate professor. His present research in-
terests include design and optimization of DESs, modelling and control
of DESs, and fault-tolerant control. Paweł Majdzik has published more
than 45 papers in international journals and conference proceedings. He
is the author of two monographs. ORCID: 0000-0001-7307-8253.

Ryszard Matysiak was born in Poland in 1970.
He received his MSc and PhD degrees in physics
from Adam Mickiewicz University in Poznań
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